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Abstract

Background: The major histocompatibility complex class I chain-related protein A (MICA) and 

protein B (MICB) participate in tumor immunosurveillance and may be important in colorectal 

cancer (CRC), but have not been examined in CRC development.

Methods: sMICA and sMICB blood levels were measured by SomaScan in Visit 2 (1990–

92, baseline) and Visit 3 (1993–95) samples in cancer-free participants in the Atherosclerosis 

Risk in Communities (ARIC) study. We selected rs1051792, rs1063635, rs2516448, rs3763288, 

rs1131896, rs2596542, and rs2395029 that were located in or in the vicinity of MICA or 

MICB and were associated with cancer or autoimmune diseases in published studies. SNPs 
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were genotyped by the Affymetrix Genome-Wide Human SNP Array. We applied linear and Cox 

proportional hazards regressions to examine the associations of pre-selected SNPs with sMICA 

and sMICB levels and CRC risk (236 CRCs, 8,609 participants) and of sMICA and sMICB 

levels with CRC risk (312 CRCs, 10,834 participants). In genetic analyses, estimates adjusted for 

ancestry markers were meta-analyzed.

Results: Rs1051792-A, rs1063635-A, rs2516448-C, rs3763288-A, rs2596542-T, and rs2395029-

G were significantly associated with decreased sMICA levels. Rs2395029-G, in the vicinity 

of MICA and MICB, was also associated with increased sMICB levels. Rs2596542-T was 

significantly associated with decreased CRC risk. Lower sMICA levels were associated with lower 

CRC risk in males (HR=0.68, 95%CI 0.49–0.96) but not in females (p-interaction=0.08).

Conclusions: Rs2596542-T associated with lower sMICA levels was associated with decreased 

CRC risk. Lower sMICA levels were associated with lower CRC risk in males.

Impact: These findings support an importance of immunosurveillance in CRC.
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Introduction

Colorectal cancer (CRC) is the third leading cause of cancer death and the third most 

common cancer in men and women in the U.S (1). One of the mechanisms affecting cancer 

development, including CRC, is tumor immunosurveillance, which allows the host immune 

system to identify and clear tumor cells (2–4). Therefore, understanding the interaction 

between colorectal tumor cells and the immune response may inform interception strategies.

Major histocompatibility complex class I-like molecules (MICA and MICB) are 

transmembrane proteins that may be important in tumor immunosurveillance (5). MICA 

and MICB serve as major ligands for natural-killer group 2, member D (NKG2D) receptors 

(6,7). NKG2D, which are present on natural killer (NK) cells, can recognize MICA and 

MICB expressed on the surface of abnormal cells and trigger NK killing (8–10). In line with 

this, two studies of CRC patients from China (N=863 in the primary cohort and N=556 in 

the validation cohort) (11) and from the United Kingdom (N = 449) (12) found that higher 

MICA and MICB expression in their tumors was associated with better survival. However, 

a smaller study of 182 CRC tumors from GSE41258 and 65 CRC tumors from GSE29621 

found that higher MICA expression was associated with worse prognosis (13).

Cancer cells may escape NK cell immune surveillance by releasing MICA and MICB from 

the cell surface into a soluble form (sMICA and sMICB) and can be detected in blood 

(14,15). Many studies have investigated whether sMICA and sMICB are linked to cancer 

survival; a meta-analysis of 13 studies of sMICA or sMICB examined together showed that 

their high levels were associated with a poorer overall survival of cancer patients, although 

that meta-analysis did not include individuals with CRC (9). In addition, several studies have 

examined associations of MICA and MICB polymorphisms with cancer risk (16–22). To our 
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knowledge, no studies have examined the associations of MICA and MICB polymorphisms 

or sMICA and sMICB levels with CRC risk.

Given the important role of MICA and MICB in tumor immunosurveillance and highly 

polymorphic nature of the MICA and MICB genes (9,18,23–26), we examined whether 

MICA and MICB single nucleotide polymorphisms (SNPs) and sMICA and sMICB blood 

levels were associated with CRC risk. We selected seven SNPs that were located either in 

or in the vicinity of MICA or MICB and were previously associated with risk of different 

types of cancers, including breast (16), hepatocellular (19,20,27), and cervical (21,22), 

or autoimmune diseases, such as rheumatoid arthritis (28), Takayasu arteritis (29), and 

psoriasis (30) (Supplemental Table 1). Of those SNPs, rs2516448 is approximately 7.5 kb 

downstream of MICA, and rs2395029 is approximately 50 kb downstream of MICA and 35 

kb upstream of MICB. All the other pre-selected SNPs are located in MICA (31). Using 

the Atherosclerosis Risk in Communities (ARIC) prospective cohort, we examined: 1) the 

associations between the pre-selected SNPs and protein levels (sMICA or sMICB) (Aim 1), 

and 2) the associations of the pre-selected SNPs and sMICA and sMICB levels with CRC 

risk (Aim 2). We hypothesized that the pre-selected SNPs associated with lower levels of 

sMICA and sMICB were associated with a lower CRC risk.

Materials and Methods

Study population

The ARIC study (RRID:SCR_021769) is a prospective cohort initiated in 1987 (32,33). In 

1987–89 (Visit 1), 15,792 volunteers aged 45–64 were recruited from four study centers 

-- Maryland, Minnesota, Mississippi, and North Carolina. Participants in Maryland and 

Minnesota were primarily White, and the recruitment in Mississippi was restricted to 

Black residents. The ARIC study was approved by institutional review boards at each 

participating center, and all study participants provided written informed consent. Thus far, 

nine visits have been completed (32). Additionally, ARIC participants have received follow-

up telephone calls annually in 1987–2012 and semi-annually after 2012, with response rates 

of 90%−99% for the annual follow-up calls and 83%−90% for semi-annual follow-up calls 

among living participants who have not withdrawn consent to be contacted (33).

Ascertainment of CRC cases and death

Incident CRC cases were ascertained through 2015 via linkage with state cancer registries 

in Maryland, Minnesota, Mississippi, and North Carolina. These records were supplemented 

by the abstraction of medical records and hospital discharge codes (33). Deaths were 

identified through annual (semi-annual since 2012) follow-up telephone calls to participants 

or their proxies, surveillance of local hospitals, state records and linkage to the National 

Death Index.

Blood collection

The ARIC protocol for plasma sample collection, processing, and storage was designed 

to minimize the spontaneous biochemical reactions after blood collection and is 

consistent with the recommended practice for proteomics data analysis in epidemiological 
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studies (34–36). After venipuncture, blood samples were put immediately in an ice 

water bath and centrifuged at 15–25 °C within 10 min of venipuncture. Then, the 

aliquots were stored at −80 °C within 90 min of venipuncture and were never 

thawed before this analysis (https://sites.cscc.unc.edu/aric/sites/default/files/public/manuals/

Blood_Collection_and_Processing.2_7.pdf).

Measurement of sMICA and sMICB levels and quality control

We examined sMICA and sMICB levels measured in EDTA-plasma samples collected 

at Visit 2 (1990–92) and Visit 3 (1993–95). Samples were analyzed using a SOMAmer 

(Slow Off-rate Modified Aptamers)-based capture array called SomaScan® by Somalogic, 

Inc. (Boulder, CO, USA) (37–40). The description of the SomaScan assay and the data 

normalization process have been described in published papers (36,40,41). In ARIC, the 

median split sample reliability coefficients were 0.93 at Visit 2 and 0.88 at Visit 3 after 

excluding proteins with a Bland-Altman coefficient of variation greater than 50% or a 

variance of less than 0.01 on the log scale, or proteins binding to mouse Fc-fusion, 

contaminants, or non-proteins (42). sMICA and sMICB levels were measured in relative 

fluorescent units (RFU) and were log2 transformed to correct for skewness.

Genotyping of MICA and MICB genetic variants

The SNPs were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0 

and analyzed with the Birdseed variant-calling algorithm (43). Measured SNPs used for 

imputation were restricted to SNPs with minor allele frequencies >1%, call rate >95%, and 

Hardy–Weinberg equilibrium P-values >0.00001 (44). Individuals with cryptic relatedness, 

defined as an identity-by-state distance >0.8, generated using PLINK, were also excluded 

(45). Genotypes were then imputed on the Michigan Imputation Server to the TOPMed 

reference panel R1, and the resulting dosage values were used in subsequent analyses 

(46,47). Ancestry markers, principal components (PCs) based on the GWAS data, were 

generated by EIGENSTRAT (48) to reflect the population structure or genetic ancestry of 

the ARIC participants.

Assessment of other participants’ characteristics

Other variables of interest that were collected at Visits 1–3 included demographic 

characteristics and CRC risk factors, namely age, sex, race, study center, cigarette smoking, 

height, weight, hormone replacement therapy (females only), aspirin use, and diabetes status 

(49). Information on smoking, use of medications and the measures of height and weight 

were collected at each visit. Body mass index (BMI) was calculated as weight in kilograms 

divided by height in meters squared at each visit. The detailed procedures for assessing 

pack-years of smoking have been published (50). Diabetes mellitus was defined as fasting 

glucose ≥126 mg/dL, non-fasting glucose ≥200 mg/dL, treatment for diabetes mellitus, or 

self-reported physician diagnosis of diabetes. Another variable of interest was estimated 

glomerular filtration rate (eGFR) because it was associated with different SomaScan protein 

levels in a pilot ARIC study, and it was associated with sMICA and sMICB levels in our 

analysis. eGFR (ml/min per 1.73 m2) at Visits 2 and 3 was calculated based on serum 

creatinine and Cystatin C by incorporating age and sex (51). We were also interested in the 
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inflammatory and immune biomarkers, C-reactive protein (CRP) and beta-2 microglobulin 

(B2M), that were measured in blood samples collected at Visit 2 (52,53).

Statistical analysis

The meta-analyses were performed using R statistical software, version 4.1.2, package 

“metafor”. All the other analyses were performed using SAS version 9.4 (SAS Institute Inc, 

Cary, NC). In all analyses, a p-value < 0.05 was considered statistically significant, because 

we had pre-specified hypotheses for each biomarker and each SNP (54). Dosage values of 

the pre-selected SNPs were modeled as continuous variables unless stated otherwise.

We excluded participants with missing sMICA and sMICB levels at Visit 2 (N=2,550), 

participants with race other than White or Black (N=37), and those who reported prevalent 

cancer at Visit 2 (N=927), resulting in 10,834 White and Black participants without a history 

of cancer at Visit 2. Among those participants, 312 developed CRC through the end of 

2015. For the analyses involving SNPs, we additionally excluded 1,882 participants who 

had missing SNPs information, resulting in 8,952 participants (253 incident CRC cases 

through the end of 2015). Accounting for ancestry markers in the analyses of SNPs led to an 

additional exclusion of 343 participants who had missing information on ancestry markers, 

resulting in 8,609 participants (236 incident CRC cases through the end of 2015) (Figure 1).

Demographic and lifestyle/medical characteristics at Visit 2 were examined across quartiles 

of Visit 2 sMICA and sMICB levels as mean (standard deviation (SD)) or percentage (%). 

The Pearson correlation coefficient was calculated between sMICA and sMICB levels.

For Aim 1, we used linear regression to assess associations between the pre-selected SNPs 

and corresponding sMICA and sMICB levels (modeled as continuous variables) at Visit 2. 

For Aim 2, we used Cox proportional hazards regression to calculate hazard ratios (HRs) 

and 95% confidence intervals (CIs) for incident CRC in relation to the pre-selected SNPs 

and Visit 2 sMICA and sMICB levels (modeled as continuous variables per 1 RFU decrease, 

and in quartiles). For each participant, person-years were determined from Visit 2 date until 

the diagnosis of CRC or another cancer, death, loss to follow-up, or administrative censoring 

on December 31, 2015, whichever occurred first. For both aims 1 and 2, we adjusted for age, 

sex, and joint terms for race and study center (Black participants from Mississippi; Black 

participants from any of the other field centers; White participants from Maryland or North 

Carolina; and White participants from Minnesota), education, BMI, cigarette smoking, pack-

years of smoking, hormone replacement therapy (in women), aspirin use, diabetes status, 

and eGFR at Visit 2. We adjusted for these variables because they were associated with 

sMICA or sMICB levels and with CRC risk. In addition, we tested for B2M and CRP as 

potential confounders, but they changed the estimate by less than 2% and were not included 

into the model. Finally, we included both sMICA and sMICB levels simultaneously in the 

model when examining the association with CRC risk.

The analyses of pre-selected SNPs with corresponding sMICA and sMICB levels and 

risk of CRC were further adjusted for ancestry markers (two ancestry-specific PCs 

for White individuals and four ancestry-specific PCs for Black individuals). We used 

fixed effects model to meta-analyze the race-specific estimates if the estimates were not 
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statistically significantly different from each other (p-heterogeneity > 0.05). We used 

random effects model to meta-analyze the race-specific estimates if the estimates were 

statistically significantly different from each other (p-heterogeneity ≤ 0.05) but were in 

the same direction. We did not meta-analyze the race-specific estimates if the estimates 

were in opposite directions. For the analyses of seven pre-selected SNPs and CRC risk, we 

accounted for the multiple testing using the False Discovery Rate (FDR) p-values.

In both aims, we also examined whether sex modified these associations since immune 

response may differ by sex (55,56). We also examined whether race or diabetes modified 

these associations because Black individuals had a higher CRC incidence (57), and 

individuals with diabetes might have a higher CRC risk versus those without diabetes (58).

Exploratory and sensitivity analyses

We conducted several exploratory analyses. In the exploratory analyses of pre-selected SNPs 

and CRC risk, we examined if the associations between the pre-selected SNPs and CRC risk 

were mediated by sMICA or sMICB levels, by including sMICA or sMICB levels to the 

models. Further, we examined the associations of pre-selected SNPs and sMICA and sMICB 

levels with CRC risk stratified by the family history of CRC and by subtypes of CRC – 

proximal colon cancer, distal colon cancer, or rectal cancer.

We also conducted two sensitivity analyses. Because we have a relatively small number of 

participants who had information on both SNPs and ancestry markers (N = 8,609) compared 

to all participants with SNPs’ information (N = 8,952), to increase the sample size, we 

also examined these associations without adjustment for ancestry markers in all the 8,952 

participants with SNPs’ data. In this sensitivity analysis, for rs1131896 and sMICA levels, 

we reported the estimates for White and Black participants instead of overall, because these 

race-specific estimates were in opposite directions. In the other sensitivity analysis, we 

calculated sMICA and sMICB levels as the mean of their levels at Visits 2 and 3. The mean 

was used to reflect the usual levels of these proteins. We repeated the main analyses using 

the mean of protein levels instead of protein levels at Visit 2. For this sensitivity analysis, the 

follow up of participants started at Visit 3.

Data availability

The data used in this study are available from the corresponding author upon reasonable 

request (https://sites.cscc.unc.edu/aric/pubs-policies-and-forms-pg).

Results

The study included 10,834 White and Black participants without a history of cancer at Visit 

2 who were followed up for 199,821 person-years. Among them, 312 incident CRC cases 

occurred until 2015. Those with lower sMICA levels at Visit 2 were less likely to be White 

and tended to have higher eGFR and lower B2M. Those in the highest quartile of sMICA 

levels were more likely to have diabetes and were less likely to be current smokers and ever 

users of hormone replacement therapy. Those with lower Visit 2 sMICB levels were less 

likely to be male and White, were more likely to be current smokers, and were more likely to 
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have higher eGFR and lower B2M (Table 1). sMICA and sMICB levels were not correlated 

(r=0.01, p=0.24).

Associations between the pre-selected SNPs and corresponding sMICA and sMICB levels 
at Visit 2

In the main analysis that meta-analyzed the race-specific estimates, six of seven pre-

selected SNPs, rs1051792-A, rs1063635-A, rs2516448-C, rs3763288-A, rs2596542-T, and 

rs2395029-G, were associated with lower sMICA levels (Table 2). Rs1131896-A was 

associated with lower sMICA levels among White participants, but with higher sMICA 

levels among Black participants (p-heterogeneity < 0.01) (Table 2 and Supplemental Table 

2). For two other SNPs, rs2516448-C and rs3763288-A, the associations with sMICA 

levels were statistically different in White and Black participants (p-heterogeneity < 0.05) 

(Supplemental Table 2), although the direction of the associations in White and Black 

participants were the same. Rs2395029-G was also associated with higher sMICB levels 

(Table 2), and this association was significantly different across race groups (p-heterogeneity 

= 0.01) (Supplemental Table 2), although the associations were in the same direction. Sex 

did not statistically modify any associations between pre-selected SNPs and corresponding 

sMICA or sMICB levels, while diabetes statistically modified the associations of rs1051792 

and rs2596542 with sMICA levels, but the associations were in the same direction for those 

with and without diabetes (Supplemental Table 2).

Associations of the pre-selected SNPs and of sMICA and sMICB levels at Visit 2 with 
subsequent CRC risk

In the main analysis that meta-analyzed the race-specific estimates, only rs2596542-T was 

significantly associated with a lower CRC risk (Table 2). Sex, race, or diabetes did not 

statistically modify this association (Supplemental Table 3). Another pre-selected SNP, 

rs1051792-A, was associated with a lower CRC risk in males but not females (p-interaction 

= 0.29) (Supplemental Table 3). There were no associations of sMICA and sMICB levels 

(modeled as continuous variables per 1 RFU decrease, or in quartiles) with CRC risk (Table 

3 and Supplementary Table 4). However, lower sMICA levels appeared to be associated 

with a decreased CRC risk in males (HR=0.68, 95% CI 0.49–0.96) but not in females 

(p-interaction=0.08) (Table 3). Race and diabetes status at Visit 2 did not statistically modify 

the associations of sMICA and sMICB levels with CRC risk (Table 3). When both sMICA 

and sMICB levels were included in the same model, the HR (95% CI) for CRC risk 

associated with sMICA was 0.83 (0.66, 1.05) and with sMICB was 1.10 (0.87, 1.39). These 

HRs were the same as the results for CRC risk when sMICA and sMICB levels were 

examined individually.

Exploratory analyses for CRC risk

In the exploratory analysis of pre-selected SNPs and CRC risk, the associations did not 

change markedly (less than or equal to 10%) after additional adjustment for sMICA or 

sMICB levels (Supplemental Table 5). Therefore, the impact of the pre-selected SNPs on 

the development of CRC is mainly not through sMICA or sMICB levels. In the exploratory 

analysis of risk of subtypes of CRC, most of the estimates for the risk of proximal colon 

cancer and distal colon cancer were similar (Supplemental Table 6). The estimates for the 
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risk of rectal cancer appeared to be different for sMICB levels and several pre-selected 

SNPs, including a stronger inverse association for rs2596542 with risk of rectal cancer (HR 

= 0.49, 95% CI 0.26–0.93) than with risk of CRC (HR = 0.75, 95% CI 0.61–0.92), but the 

number of rectal cancer cases was small (≤44 across different analyses) (Supplemental Table 

6). In the analysis stratified by family history of CRC, family history did not modify the 

associations of sMICA or sMICB levels or pre-selected SNPs with CRC risk (p-interactions 

= 0.37–0.97) (Supplemental Table 7).

Sensitivity analyses

In the sensitivity analysis of pre-selected SNPs with sMICA and sMICB levels without 

adjustment for ancestry markers, the associations between all pre-selected SNPs and 

corresponding sMICA and sMICB levels were similar to the associations in the main 

analysis (Supplemental Table 8). In the sensitivity analysis of CRC risk, without adjustment 

for ancestry markers, two additional SNPs, rs1051792-A and rs2395029-G, examined 

individually, were significantly associated with a lower CRC risk (Supplemental Table 8). 

The difference between the findings in the main and sensitivity analyses for rs2395029-G 

may be because the sensitivity analysis included both White and Black participants while 

Black participants were excluded in the main analysis because of a small number of Black 

participants with one or two effect alleles. For rs1051792-A and CRC risk, it is possible 

that the association was not significant in the main analysis due to a smaller sample size 

of 8,609 participants compared to 8,952 participants in the sensitivity analysis or just due 

to chance, but this should be tested in larger studies. The associations of pre-selected SNPs 

with the mean of sMICA and sMICB levels at Visits 2 and 3 (Supplementary Table 9) and 

the associations of the mean of sMICA and sMICB levels at Visits 2 and 3 with CRC risk 

(Supplementary Table 10) were similar to the findings in our main analysis, respectively.

Discussion

In this large prospective study of White and Black individuals, we found associations 

between the pre-selected SNPs, located in or in the vicinity of the MICA or MICB 
genes, and corresponding sMICA and sMICB levels. We found that rs2596542-T that was 

significantly associated with decreased sMICA levels was also significantly associated with 

a decreased CRC risk. Although no association was observed for sMICA or sMICB levels 

with CRC risk overall, lower sMICA levels were associated with a decreased risk of CRC in 

males but not females.

The interaction between MICA and MICB and receptor NKG2D on the NK cells is essential 

for the activation of NK cells against tumor cells (9,59). NKG2D can recognize MICA and 

MICB expressed on the tumor cell surface and trigger the activation of NK cells to target 

and eliminate tumor cells (8–10). In agreement with this, two previous studies reported that 

higher MICA and MICB expression in CRC cells was associated with a favorable outcome 

(11,12). One of these studies found that a lower versus higher MICA expression in 449 

colorectal tumor samples was associated with worse disease-specific survival: HR =1.50, 

95%CI 1.14–1.97 (12). Likewise, the second study reported better overall survival in CRC 

patients with higher MICB expression (N=863 in the primary cohort and N=556 in the 
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validation cohort): for those with higher versus lower MICB expression, HR was 0.74 (95% 

CI 0.59–0.92) in the primary cohort and HR was 0.70 (95% CI 0.51–0.96) in the validation 

cohort (11). However, cancer cells may escape the immune response involving NKG2D 

ligands through the release of MICA and MICB via proteolytic cleavage into circulation 

(59,60). Circulating sMICA and sMICB can bind to NKG2D receptor and induce its 

downregulation and therefore decrease immune response (5,61,62). In agreement with this 

mechanism, a meta-analysis of 13 studies of several cancer types combined, reported that 

high levels of sMICA or sMICB were associated with a poorer overall survival: HR=1.65, 

95%CI 1.42–1.92 compared to the low levels (9).

In our study, lower sMICA levels were associated with a decreased CRC risk only among 

males. Although the exact explanation for this difference is unknown, the absence of the 

association in females may be explained by the stronger immune response and higher 

activity of NK cells in females so that NK cells can exert their cytolytic effect at any 

levels of sMICA and the sMICA does not impact CRC (55,56). However, the p-interaction 

between sex and sMICA levels was 0.08, and the possibility of the findings by chance 

cannot be excluded.

Rs2596542 (C/T), a well-studied polymorphism, is located in the promoter region of 

MICA (63), and may initiate and promote gene expression. In our study, we found that 

rs2596542-T was statistically significantly associated with lower sMICA levels in cancer-

free participants at Visit 2. Our result is in agreement with other studies that observed 

lower sMICA levels in healthy controls with rs2596542-T (19). Also, we found that the 

rs2596542-T was significantly associated with a lower CRC risk, which is in line with 

this SNP’s association with lower sMICA levels. No other studies examined this SNP 

and CRC risk; however, previous studies investigated the association between this SNP 

and hepatocellular carcinoma risk. A meta-analysis of 11 studies including two European 

studies, reported a positive association in Whites (CC vs. CT+TT: OR=1.56, 95% CI 1.12–

2.18) (20), i.e., rs2596542-T was associated with lower hepatocellular carcinoma risk, which 

is consistent with our findings. Of note, in our study, the association between rs2596542-

T and CRC risk was inverse in both White (HR=0.72, 95% CI 0.56–0.92) and Black 

(HR=0.82, 95% CI 0.55–1.18) participants.

In our study, we also examined a functional MICA-129 polymorphism (rs1051792) that 

causes a replacement of valine (Val) by methionine (Met) in the position 129 (the change 

from G to A) (16,64). MICA-129Met variant (rs1051792-A) has a higher affinity of binding 

MICA to NKG2D receptor than MICA-129Val (rs1051792-G) (64,65). MICA-129Met is 

more prone to shedding than MICA-129Val (24,25). Thus, we expected a greater shedding 

of MICA-129Met; however, in our study, those with MICA-129Met (rs1051792-A) had 

significant lower mean sMICA levels in both main and sensitivity analyses and a significant 

lower CRC risk in the sensitivity analysis. Although the higher shedding and lower blood 

levels seem contradictory, previous studies (24,66) also observed this phenomenon: a 

study of 552 patients infected with hepatitis B virus and 418 healthy controls found that 

MICA-129Val (rs1051792-G) was associated with higher sMICA levels in both patients and 

controls (19); a study of 73 patients diagnosed with oral squamous cell carcinoma and 149 

healthy controls reported significantly higher sMICA levels in both cases and controls with 
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MICA-129Val/Val versus other genotypes (24) and another study of 91 patients diagnosed 

with multiple myeloma reported higher sMICA levels in patients with MICA-129Val/Val 

versus other genotypes (66). These findings were explained by intracellular retention among 

those with MICA-129Met as observed in transfected cells (67). Besides the reported 

association between rs1051792 and sMICA levels, rs1051792-A (MICA-129Met) was 

associated with a lower breast cancer risk in a case-control study of 192 breast cancer 

patients and 205 age-matched healthy controls from Tunisia (A vs. G: OR=0.61, 95% CI 

0.44–0.84) (16). However, there have been no reports of studies examining this SNP and 

CRC risk. In our study, rs1051792-A was significantly associated with decreased CRC 

risk only in the analysis that did not adjust for ancestry markers (HR=0.78, 95% CI 0.63–

0.96; 253 CRC cases in 8,952 participants) but not in the meta-analysis that pooled the race-

specific estimates adjusted for ancestry markers (HR=0.82, 95% CI 0.66–1.01); however, the 

latter sample size was smaller.

The other SNP under study, rs2395029, is approximately 50 kb downstream of MICA and 

35 kb upstream from MICB (31). This SNP was found to be associated with psoriasis, 

an autoimmune disease (30), but there were no reports of studies examining this SNP and 

cancer. In our study, we found that rs2395029-G was associated with higher sMICB levels, 

but with lower sMICA levels. HRs (95% CIs) for the association between this SNP and 

colorectal cancer risk were 0.43 (0.18–1.03) with and 0.36 (0.15–0.88) without adjustment 

for ancestry markers. Future larger studies will be needed to test our results for rs1051792 

and rs2395029 with CRC risk.

Two other SNPs, rs1131896 and rs1063635, which were previously associated with 

hepatocellular carcinoma risk (19), were not associated with CRC risk in our study. Our 

results are similar to those in a previous study that did not detect different distributions of 

these SNPs’ genotypes among gastric cancer patients and healthy controls (18). In addition, 

another pre-selected SNP, rs2516448, was previously associated with cervical cancer risk 

(21,22), and pre-selected rs3763288 was associated with rheumatoid arthritis and Takayasu 

arteritis (28,29). However, we did not detect any associations between these SNPs and CRC 

risk.

To the best of our knowledge, our study is the first to report on the associations between 

MICA and MICB polymorphisms with sMICA and sMICB levels measured by SomaScan 

assay. Only a few studies, including two studies of individuals from Europe (24,66), one 

study of Vietnamese (19), and a previous study (mainly White participants) conducted by 

our group (17), examined the associations of rs1051792, rs1131896, and rs2596542 with 

sMICA levels measured by other assays, such as Luminex Bead-based assay or ELISA. The 

associations of rs1051792 and rs2596542 with sMICA levels reported in our current study 

and previous studies were in the same direction (17,19,24,66). However, for rs1131896 

and sMICA levels, we found that the associations were in opposite directions for White 

and Black participants; and the direction of association reported in the previous study 

of Vietnamese (19) was the same as the association in Black participants in our study. 

Additional studies are needed to validate our results. Our study is also the first to document 

associations of MICA SNP, rs2596542, with CRC risk. The association with rs2596542 
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confirmed our hypothesis that rs2596542-T associated with lower sMICA levels was also 

associated with a lower CRC risk.

The strengths of this population-based study include the prospective design with over 20 

years of follow-up, adjudicated CRC incidence, the large community-based sample of White 

and Black individuals, and the availability of protein levels and genetic variants in the same 

study. Our study may have some limitations. First, the possibility of protein degradation 

during long-term storage cannot be excluded. However, the blood samples were frozen right 

after their collection and have never been thawed reducing the possibility of degradation. In 

addition, ARIC samples stored for different time showed similar performance as indicated 

by the similar coefficient of variation (CV) for the split samples collected at Visit 2 and 

Visit 5 (2011–13) (CV = 6% at Visit 2 and 7% at Visit 5). Second, SomaScan provide 

relative quantification instead of absolute quantification, but SomaScan measurements are 

able to detect very low protein levels (36,68). Third, in our study, there are no participants 

diagnosed before age of 50; therefore, we cannot compare associations in early-onset 

and late-onset CRC. Last, in our study, we have low effect allele frequencies for some 

pre-selected SNPs. This would limit the power for detecting association as well as effect 

modification.

In conclusion, rs2596542-T was associated with a lower risk of CRC in our cohort. 

While sMICA and sMICB levels were not associated with CRC risk overall, lower 

sMICA was statistically significantly associated with a decreased CRC risk in males. 

Further studies are warranted to validate our findings and examine these associations in 

larger or pooled prospective studies. These findings are important to elucidate the role of 

immunosurveillance in CRC development, and potentially could lead to novel interception 

strategies.
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Abbreviations used:

ARIC Atherosclerosis Risk in Communities

CRC Colorectal cancer

MICA Major histocompatibility complex class I chain-related protein A

MICB Major histocompatibility complex class I chain-related protein B

sMICA Soluble-MICA

sMICB Soluble-MICB

NKG2D Natural-killer group 2, member D

NK Natural killer

SNP Single nucleotide polymorphism

BMI Body mass index

PC Principal component

eGFR Estimated glomerular filtration rate

CRP C-reactive protein

B2M Beta-2 microglobulin

SD Standard deviation

CI Confidence interval

HR Hazard ratio

RFU Relative fluorescent unit
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Figure 1. Study population.
The gray boxes show the participants excluded from the study.

Wang et al. Page 17

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 18

Ta
b

le
 1

.

B
as

el
in

e 
ch

ar
ac

te
ri

st
ic

s 
ac

ro
ss

 q
ua

rt
ile

s 
of

 s
M

IC
A

/s
M

IC
B

 le
ve

ls
a  

of
 1

0,
83

4 
pa

rt
ic

ip
an

ts
 in

 th
e 

A
R

IC
 s

tu
dy

 a
t V

is
it 

2 
(1

99
0–

19
92

)

sM
IC

A
 le

ve
l q

ua
rt

ile
s

sM
IC

B
 le

ve
l q

ua
rt

ile
s

Q
1 

(N
 =

 
2,

70
8)

Q
2 

(N
 =

 
2,

70
8)

Q
3 

(N
 =

 
2,

71
1)

Q
4 

(N
 =

 
2,

70
7)

p-
va

lu
e

Q
1 

(N
 =

2,
70

6)
Q

2 
(N

 =
 

2,
70

8)
Q

3 
(N

 =
 

2,
71

2)
Q

4 
(N

 =
 

2,
70

8)
p-

va
lu

e

R
an

ge
 o

f 
sM

IC
A

/s
M

IC
B

 le
ve

ls
6.

49
 –

 7
.6

8
7.

69
 –

 8
.0

0
8.

01
 –

 8
.3

1
8.

32
 –

 1
1.

13
7.

14
 –

 8
.3

9
8.

40
 –

 8
.6

3
8.

64
 –

 8
.9

2
8.

93
 –

 1
2.

16

D
em

og
ra

ph
ic

A
ge

, y
ea

rs
 (

SD
)

56
.7

 (
5.

7)
56

.5
 (

5.
7)

57
.0

 (
5.

8)
57

.6
 (

5.
6)

<
0.

00
01

56
.2

 (
5.

6)
56

.9
 (

5.
6)

57
.1

 (
5.

7)
57

.6
 (

5.
8)

<
0.

00
01

M
al

e 
(%

)
44

.9
43

.7
46

.3
46

.0
0.

21
39

.2
44

.0
47

.9
49

.8
<

0.
00

01

W
hi

te
 (

%
)

69
.0

73
.6

78
.6

81
.5

<
0.

00
01

61
.8

74
.2

82
.5

84
.3

<
0.

00
01

E
du

ca
tio

n 
(%

)

 
L

es
s 

th
an

 h
ig

h 
sc

ho
ol

22
.8

21
.9

20
.6

22
.7

0.
34

24
.3

22
.3

19
.1

22
.3

0.
00

05
 

H
ig

h 
sc

ho
ol

 e
qu

iv
al

en
t

40
.8

42
.3

42
.5

42
.4

39
.7

42
.2

43
.7

42
.4

 
G

re
at

er
 th

an
 h

ig
h 

sc
ho

ol
36

.3
35

.8
36

.9
34

.9
35

.9
35

.5
37

.2
35

.3

L
if

es
ty

le
/M

ed
ic

al
 f

ac
to

rs

B
M

I,
 k

g/
m

2  
(S

D
)

27
.9

 (
5.

3)
27

.8
 (

5.
2)

28
.0

 (
5.

4)
28

.2
 (

5.
5)

0.
01

28
.3

 (
5.

4)
28

.2
 (

5.
5)

27
.6

 (
5.

2)
27

.8
 (

5.
3)

<
0.

00
01

Sm
ok

in
g 

st
at

us

 
C

ur
re

nt
 s

m
ok

er
23

.4
24

.7
22

.4
18

.9

<
0.

00
01

25
.8

23
.1

20
.8

19
.8

<
0.

00
01

 
Fo

rm
er

 s
m

ok
er

37
.6

37
.6

37
.7

38
.8

33
.3

36
.8

39
.6

42
.0

 
N

ev
er

 s
m

ok
er

39
.0

37
.7

39
.9

42
.4

41
.0

40
.1

39
.7

38
.3

Pa
ck

-y
ea

rs
 o

f 
sm

ok
in

g 
am

on
g 

cu
rr

en
t a

nd
 f

or
m

er
 s

m
ok

er
s,

 p
ac

k-
ye

ar
s 

(S
D

)
27

.5
3 

(2
2.

26
)

27
.9

7 
(2

2.
05

)
29

.1
2 

(2
0.

98
)

29
.6

8 
(2

3.
10

)
0.

03
28

.7
 (

21
.8

)
27

.0
 (

20
.7

)
28

.9
 (

22
.3

)
29

.6
 (

23
.5

)
0.

01
01

D
ia

be
te

s 
(%

)
13

.3
12

.3
15

.6
19

.6
<

0.
00

01
14

.8
14

.2
15

.2
16

.6
0.

08

A
sp

ir
in

 u
se

 in
 th

e 
pa

st
 tw

o 
w

ee
ks

 
(%

)
50

.3
50

.0
52

.3
51

.3
0.

29
49

.1
50

.9
52

.7
51

.3
0.

06

E
ve

r 
us

er
s 

of
 h

or
m

on
e 

re
pl

ac
em

en
t 

th
er

ap
y 

am
on

g 
fe

m
al

es
 (

%
)

44
.5

49
.1

44
.6

41
.1

0.
00

02
45

.3
45

.2
46

.0
42

.9
0.

39

eG
FR

, m
L

/m
in

/1
.7

3 
m

2  
(S

D
)

99
.2

 (
16

.4
)

99
.3

 (
16

.4
)

98
.2

 (
16

.4
)

96
.3

 (
16

.9
)

<
0.

00
01

99
.8

 (
16

.2
)

99
.2

 (
15

.9
)

98
.1

 (
16

.1
)

95
.8

 (
17

.8
)

<
0.

00
01

C
R

P,
 m

g/
L

 (
SD

)
4.

4 
(8

.3
)

4.
4 

(6
.8

)
4.

3 
(6

.9
)

4.
5 

(7
.9

)
0.

72
4.

6 
(7

.5
)

4.
3 

(7
.5

)
4.

4 
(7

.7
)

4.
5 

(7
.1

)
0.

26

B
2M

, m
g/

L
 (

SD
)

1.
9 

(1
.5

)
1.

9 
(1

.2
)

2.
0 

(1
.0

)
2.

1 
(1

.3
)

<
0.

00
01

1.
9 

(0
.6

)
1.

9 
(0

.7
)

2.
0 

(1
.3

)
2.

1 
(1

.9
)

<
0.

00
01

a sM
IC

A
 a

nd
 s

M
IC

B
 le

ve
ls

 w
er

e 
lo

g2
 tr

an
sf

or
m

ed
 a

nd
 w

er
e 

m
ea

su
re

d 
in

 r
el

at
iv

e 
fl

uo
re

sc
en

t u
ni

ts
 (

R
FU

).

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 19

Ta
b

le
 2

.

A
ss

oc
ia

tio
ns

 o
f 

pr
e-

se
le

ct
ed

 S
N

Ps
 w

ith
 V

is
it 

2 
sM

IC
A

 a
nd

 s
M

IC
B

 le
ve

ls
a  

an
d 

w
ith

 C
R

C
 r

is
k,

 A
R

IC
 (

19
90

–2
01

5)

SN
P

S
R

ef
er

en
ce

/E
ff

ec
t 

al
le

le

A
ss

oc
ia

ti
on

 w
it

h 
sM

IC
A

 o
r 

sM
IC

B
A

ss
oc

ia
ti

on
 w

it
h 

C
R

C

sM
IC

A
 o

r 
sM

IC
B

R
ac

e 
gr

ou
p

R
eg

re
ss

io
n 

co
ef

fi
ci

en
t 

(9
5%

 C
I)

b
M

et
a-

an
al

ys
is

 
R

eg
re

ss
io

n 
co

ef
fi

ci
en

t
P

-v
al

ue
H

R
 (

95
%

 C
I)

a
M

et
a-

an
al

ys
is

 H
R

F
D

R
 P

-
va

lu
ec

rs
10

51
79

2
G

/A
sM

IC
A

W
hi

te
−

0.
50

 (
−

0.
52

, −
0.

49
)

−
0.

51
 (

−
0.

52
, −

0.
40

)
<

0.
00

01
0.

86
 (

0.
67

, 1
.1

1)
0.

82
 (

0.
66

, 1
.0

1)
0.

13
B

la
ck

−
0.

53
 (

−
0.

55
, −

0.
50

)
0.

71
 (

0.
48

, 1
.0

6)

rs
11

31
89

6d
G

/A
sM

IC
A

W
hi

te
−

0.
10

 (
−

0.
12

, −
0.

08
)

--
--

1.
06

 (
0.

83
, 1

.3
7)

1.
06

 (
0.

85
, 1

.3
1)

0.
71

B
la

ck
0.

23
 (

0.
19

, 0
.2

6)
1.

02
 (

0.
68

, 1
.5

4)

rs
10

63
63

5
G

/A
sM

IA
W

hi
te

−
0.

39
 (

−
0.

41
, −

0.
38

)
−

0.
39

 (
−

0.
40

, −
0.

38
)

<
0.

00
01

0.
93

 (
0.

74
, 1

.1
6)

0.
87

 (
0.

72
, 1

.0
6)

0.
24

B
la

ck
−

0.
39

 (
−

0.
42

, −
0.

35
)

0.
72

 (
0.

49
, 1

.0
7)

rs
25

16
44

8
T

/C
sM

IC
A

W
hi

te
−

0.
48

 (
−

0.
50

, −
0.

47
)

−
0.

42
 (

−
0.

54
, −

0.
30

)
<

0.
00

01
0.

90
 (

0.
72

, 1
.1

3)
0.

85
 (

0.
70

, 1
.0

3)
0.

19
B

la
ck

−
0.

36
 (

−
0.

40
, −

0.
33

)
0.

72
 (

0.
49

, 1
.0

7)

rs
37

63
28

8
G

/A
sM

IC
A

W
hi

te
−

0.
37

 (
−

0.
40

, −
0.

33
)

−
0.

31
 (

−
0.

46
, −

0.
15

)
<

0.
00

01
0.

93
 (

0.
60

, 1
.4

2)
0.

92
 (

0.
61

, 1
.4

1)
0.

71
B

la
ck

−
0.

21
 (

−
0.

36
, −

0.
06

)
0.

78
 (

0.
10

, 5
.8

1)

rs
25

96
54

2
C

/T
sM

IC
A

W
hi

te
−

0.
39

 (
−

0.
41

, −
0.

37
)

−
0.

40
 (

−
0.

41
, −

0.
38

)
<

0.
00

01
0.

72
 (

0.
56

, 0
.9

2)
0.

75
 (

0.
61

, 0
.9

2)
0.

04
B

la
ck

−
0.

41
 (

−
0.

44
, −

0.
38

)
0.

82
 (

0.
55

, 1
.1

8)

rs
23

95
02

9
T

/G

sM
IC

A
W

hi
te

−
0.

36
 (

−
0.

41
, −

0.
31

)
−

0.
36

 (
−

0.
41

, −
0.

31
)

<
0.

00
01

W
hi

te
: 0

.4
3 

(0
.1

8,
 1

.0
3)

B
la

ck
: u

nk
no

w
n

un
kn

ow
n

0.
13

B
la

ck
−

0.
35

 (
−

0.
58

, −
0.

12
)

sM
IC

B
W

hi
te

0.
81

 (
0.

76
, 0

.8
6)

0.
70

 (
0.

43
, 0

.9
6)

<
0.

00
01

B
la

ck
0.

54
 (

0.
33

, 0
.7

5)

a sM
IC

A
 a

nd
 s

M
IC

B
 le

ve
ls

 w
er

e 
m

ea
su

re
d 

in
 r

el
at

iv
e 

fl
uo

re
sc

en
t u

ni
ts

 (
R

FU
).

b R
eg

re
ss

io
n 

co
ef

fi
ci

en
t a

nd
 H

R
 p

er
 1

 e
ff

ec
t a

lle
le

 a
nd

 m
od

el
 a

dj
us

te
d 

fo
r 

ag
e,

 s
ex

, a
nc

es
tr

y 
m

ar
ke

rs
, s

tu
dy

 c
en

te
r, 

ed
uc

at
io

n,
 B

M
I,

 h
or

m
on

e 
re

pl
ac

em
en

t t
he

ra
py

 (
in

 w
om

en
),

 a
sp

ir
in

 u
se

, s
m

ok
in

g 
st

at
us

, 
pa

ck
-y

ea
rs

 o
f 

sm
ok

in
g,

 d
ia

be
te

s 
st

at
us

, a
nd

 e
G

FR
.

c Fa
ls

e 
di

sc
ov

er
y 

ra
te

 (
FD

R
) 

p-
va

lu
e 

w
as

 c
al

cu
la

te
d 

as
 th

e 
m

ul
tip

le
 te

st
in

g 
of

 th
e 

se
ve

n 
pr

e-
se

le
ct

ed
 S

N
Ps

.

d T
he

 r
ac

e-
sp

ec
if

ic
 e

st
im

at
es

 f
or

 th
e 

as
so

ci
at

io
n 

be
tw

ee
n 

rs
11

31
89

6 
an

d 
sM

IC
A

 le
ve

ls
 w

er
e 

no
t m

et
a-

an
al

yz
ed

 b
ec

au
se

 th
e 

ra
ce

-s
pe

ci
fi

c 
es

tim
at

es
 w

er
e 

in
 o

pp
os

ite
 d

ir
ec

tio
ns

.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

Table 3.

Cox Regression for the associations of Visit 2 sMICA and sMICB levels (continuous variables per 1 relative 

fluorescent unit (RFU) decrease) with CRC risk in all participants and stratified by sex, race, or diabetes 

status; ARIC (1990–2015)

N of incident CRC cases Total person-years
HR (95% CI)a

sMICA level sMICB level

All participants

312 199,821 0.83 (0.66, 1.05) 1.10 (0.87, 1.39)

Stratified by sex

Male 161 83,933 0.68 (0.49, 0.96) 0.98 (0.72, 1.33)

Female 151 115,888 0.99 (0.71, 1.38) 1.29 (0.90, 1.85)

P-interaction 0.08 0.17

Stratified by race

White 221 153,954 0.84 (0.64, 1.12) 1.20 (0.91, 1.58)

Black 91 45,867 0.80 (0.51, 1.25) 0.87 (0.55, 1.36)

P-interaction 0.97 0.37

Stratified by diabetes status

Yes 59 25,983 0.79 (0.48, 1.31) 0.83 (0.53, 1.31)

No 253 173,838 0.83 (0.64, 1.08) 1.20 (0.91, 1.58)

P-interaction 0.86 0.18

a
Model was adjusted for age, sex, joint terms for race and study center (Black participants from Mississippi; Black participants from any of 

the other field centers; White participants from Maryland or North Carolina; and White participants from Minnesota), education, BMI, hormone 
replacement therapy (in women), aspirin use, smoking, pack-years of smoking, diabetes status, and eGFR.
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