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Abstract

This review outlines the effect of disease-causing mutations on proteins’ thermodynamics. Two 

major thermodynamics quantities, which are essential for structural integrity, the folding and 

binding free energy changes caused by missense mutations, are considered. It is emphasized that 

disease effect in case of complex diseases may originate from several mutations over several 

genes, while monogenic diseases are caused by mutation is a single gene. Nevertheless, in both 

cases it is shown that pathogenic mutations cause larger perturbations of the above-mentioned 

thermodynamics quantities as compared with the benign mutations. Recent works demonstrating 

the effect of pathogenic mutations on the above-mentioned thermodynamics quantities, as well on 

structural dynamics and allosteric pathways are reviewed.
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Introduction

With the rapid progress of genomic sequencing and increased number of DNA samples, 

it became clear that almost all human diseases have genetic component, i.e., diseases are 

caused in whole or in part by a change(s) in the DNA sequence of an individual away 

from the normal sequence. Such genetic disorders can be caused by a mutation in one gene 

(monogenic disorder), by mutations in multiple genes (polygenic/complex disorder), or by 

a combination of gene mutations, mutations in their regulatory sequence and environmental 

factors. In the recent years significant progress was made in understanding polygenic and 

other complex human diseases, due in large part to knowledge of the human genome 

sequence and the development of new technologies that allow investigators to associate 

disease phenotypes with genetic loci. However, genetic linkage of complex diseases is 

much more difficult to assess, compared with monogenic diseases, since the outcome is 

a result of many small contributions from numerous variants and also depends on the 
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environment (gene by environment (G × E) interactions) [1]. Thus, although polygenic 

diseases are more common than monogenic disorders, studies of monogenic diseases 

provide an invaluable opportunity to learn about underlying molecular mechanisms, which 

is crucial for developing therapeutic solutions [2]. Furthermore, while many genotypes 

may be associated with a disease, typically the corresponding phenotypes are only few, 

i.e., numerous genotypes result in only several prominent molecular mechanisms causing 

the disease. In this review, we will focus on recent works aiming to reveal the effect 

of pathogenic mutations on thermodynamic properties of the corresponding biological 

macromolecules. By thermodynamical properties, we refer to folding and binding free 

energy changes caused by mutations. Figure 1 illustrates such scenarios.

Thermodynamics and pathogenicity

The outcome of disease-causing mutations on structural integrity of biological 

macromolecules was extensively investigated, both computationally and experimentally 

[3]. Researchers focused on revealing mutations’ plausible effects on protein stability [3], 

protein-protein interactions [4] and networks [5], protein-DNA binding [6], characteristics 

of the active site [7], and many other structural characteristics [8]. However, typically this 

was done for limited number of cases, either a particular disease or a protein family. A more 

comprehensive investigation on the linkage between thermodynamics and pathogenicity 

was reported on a set of thousand mutations and experimentally measured folding and 

binding free energy changes [9]. It was demonstrated that the Pearson correlation coefficient 

between the probability of a mutation to be pathogenic and the probability of the same 

mutation to cause large change of either folding or binding free energies can reach 0.7 

[9]. This result was achieved without discriminating complex from monogenic diseases. 

To eliminate the ambiguity of cases originating from the collective effect of many small 

contributions, we created a database of monogenic diseases, the corresponding protein 

sequences, and list of both pathogenic and benign mutations (supplementary material). 

This resulted in two datasets (available from http://compbio.clemson.edu/lab/downloads/) 

wherein Dataset 1 contains 686 proteins and 1934 pathogenic and 1405 benign mutations 

(only mutations that are classified as pathogenic or benign) and Dataset 2 contains 768 

proteins and 2559 pathogenic and 1763 benign mutations (Dataset 2 includes the likely 

benign and likely pathogenic cases as well). The change of the folding free energy caused 

by mutation was calculated with the leading sequence-based predictors and the ROC curves 

are shown in Figure 2. It can be seen that there is strong correlation between folding free 

energy change and a mutation to be pathogenic. The area under curve (AUC) was observed 

to be 0.71 and Matthew’s correlation coefficient MCC=0.32 for the two datasets when the 

folding free energy values were averaged using all predictors. An improvement of both, the 

AUC (AUC=0.77) and MCC (MCC=0.40) was observed by taking the average of folding 

free energy calculated using SAAFEC-SEQ [10] and INPS-SEQ [11] predictors. It should 

be clarified that the change of the binding free energy was not considered because it would 

introduce ambiguity since for most cases in the dataset, the binding partner(s) is unknown 

or does not exist. Nevertheless, the results indicate strong correlation between folding free 

energy changes and pathogenicity, which will be further strengthen by outlining resent 

works on similar topics.
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Why understanding linkage between pathogenicity and thermodynamics is 

important?

Understanding the molecular mechanisms that cause disease allows researchers to develop 

appropriate treatments [12]. For example, if a mutation affects a particular protein–protein 

interaction, one can target this particular interaction with either appropriate inhibitors (if 

the mutation makes interaction stronger) [13] or with binding enhancers (if the mutation 

makes the binding weaker) [14,15]. Similarly, if a pathogenic mutation affects protein 

conformation, the effect can be mitigated with small molecule which binding to the mutant 

protein restore the wild-type properties [16]. In terms of pharmacogenetics, one wants to 

know the effect of amino acid variants on interaction between the target protein and several 

alternative drugs, thus enabling informative decisions about the suitability of drugs for given 

patients based on their DNA variants [17].

Recent works on folding free energy changes caused by mutations and 

linkage with diseases

Wild type macromolecules are in their most favorable free energy state and therefore 

missense mutations are expected to reduce their stability, although examples of opposite 

do exist [18]. Mutations that shift the equilibrium towards formation of unfolded state are 

the root cause of several diseases ranging from monogenic to complex diseases. It results 

in two kinds of problems; first, loss of function caused by scarcity of folded protein and 

second, formation of supra-molecular assemblies like amyloids that affect series of cellular 

processes. In a recent study by Aledo et al. [19], the authors developed a neutral continuous 

fitness-stability model based on Arrhenius law to study the effect of mutation on protein 

stability, which was validated by performing 137,073,638 mutations in 14,094 proteins. It 

was shown that most of the mutations destabilize protein structure and their destabilizing 

effect of amino acid substitution on protein structure correlates positively with the disease-

causing potential. Another work focused on the mutational landscape (5187 substitutions) 

of cancer-associated human NAD(P) H:quinone oxidoreductase 1 (NQO1) [20] and showed 

that 45% of the mutations affected thermal stability of the protein and 44 % of the mutations 

resulted in loss of function. Experimental thermal studies for 22 naturally occurring mutants 

also indicated protein stability to be one of the major reasons for loss of function of 

NQO1 variants. A recent review article by Gil-Martínez et al. [21] has further outlined 

proteins’ thermodynamic stability to be a pertinent descriptor in case of rare diseases caused 

by missense mutations. In parallel, efforts are being made for development of databases 

documenting diseases resulting from missense mutation that stems from protein stability 

changes [22,23]. Thus, integration of mutational and stability data can aid in development 

of methods and diagnostic of clinical relevance. Thus, recent work reported that misfolded 

organic cation transporter variants can be rescued by chemical chaperone 4-PBA (4-phenyl 

butyric acid) [24]. More details about the usage of chaperones to assist folding of mutant 

proteins associated with rare diseases can be found the review article [21]. These limited 

examples strengthen our claim about the linkage between pathogenicity and macromolecular 

stability and show that the effect is treatable.
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Recent works on binding free energy changes caused by mutations and 

linkage with diseases

Missense mutations at the surface of the corresponding proteins frequently do not affect 

protein stability but may affect macromolecular interactions [25]. While unbound proteins 

might fold to its native functional conformation even in presence of mutation, the affinity 

and specificity with which proteins interacts with other protein/DNA/RNA could be severely 

impaired in presence of mutation leading to diseases like cancer, cardiovascular diseases, 

cystic fibrosis, etc. [26–28]. Specifically, mutation in position located at the core of binding 

interface compared to the rim of interacting surface contributes towards development 

of diseases as they contribute significantly to the binding free energy [29,30]. It has 

been shown in studies that mutations affecting protein-protein interaction are specifically 

condensed at the binding interface and are evolutionary more conserved compared to 

other residues [28,31,32]. Considering the importance of protein-protein interaction, several 

methods have been developed to access binding free energy change caused by mutations 

[33–35]. As mentioned above, revealing the effect of missense mutations on macromolecular 

interactions paves the way for development of treatment of treatment which can restore wild 

type binding affinity and thus to eliminate disease-causing effect.

Recent works on protein dynamics changes caused by mutations and 

linkage with diseases

Proteins are intrinsically dynamic in nature which play key role in regulating their 

function. In the earlier sections, we discussed how mutation can affect the protein 

stability and protein-protein interactions leading to loss of function. Mutations may also 

affect the conformational dynamics of the protein which is linked to their biological 

function. Thus, a mutation V486M in dipeptidyl-peptidase 4 (DPP), a multifunctional 

cell surface glycoprotein, has been shown to disrupt the catalytic activity of inducing 

conformation collapse of the propeller domain, thus inhibiting DPP4 dimerization [36]. 

Another example of mutations affecting protein conformation are germline PTEN tumor-

suppressor variants associated with autism spectrum disorder (ASD) or cancer display 

difference in conformational dynamics and influences protein network differently [37,38].

Recent works on allosteric changes caused by mutations and linkage with 

diseases

Many proteins are allosterically regulated, and this has also been used for disease therapy 

[39,40] specifically with focus on identifying cryptic pockets (allosteric druggable pockets) 

and allosteric drug discovery [41–44]. Allosteric drugs have several advantages over the 

typical orthosteric drugs. First, since allosteric drugs binds at allosteric site, i.e., other 

than the natural substrate site, they don’t compete with natural substrates and therefore, 

are likely to be more successful and less toxic. Second, most of the active site drugs 

are inhibitory in nature as they take up the place of natural substrates; however, the 

allosteric drugs could be both activating and inhibitory in nature [45]. Third, allosteric 

sites are less conserved as opposed to the active/orthosteric sites and therefore, allosteric 
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drugs are more selective in nature[46–48]. Several allosteric drugs have been approved 

for example, Cinacalcet, a G-protein-coupled receptors (GPCR) allosteric modulator has 

been approved for Hyperparathyroidism [49]. Carglumic acid, which binds to carbamoyl 

phosphate synthetase-I is used for treatment of acute hyperammonaemia [50].

Because of the association between allostery, mutation and diseases, current research in 

the area has shifted on identification of mutations that causes allosteric dysregulation and 

causes diseases. In a similar vein, Shen et al. investigated the effect of somatic mutations at 

the allosteric site on cancer-based regulation [51]. The authors studied the effect of 47000 

somatic mutations from 6958 pairwise tumour-normal mismatched pairs distributed across 

cancer types, out of which they predicted 1990 mutations to be deleterious and mapped 

2761 known disease causing mutations of 74 structures. They further identified 20 known 

and 15 novel cancer associated proteins, which might play important role in tumorigenesis. 

A recent study by Tang et al. have elucidated the allosteric mechanism of p53 using four 

mutations (L145Q, P151S, Y220C, and G266R) that leads to loss of function of p53 and 

cancer development by destabilizing the p53-DNA interaction [52]. Mutations at the distal 

sites has also been shown to confer drug resistance [53]. The review article by Lu at al. has 

outlined the reasons that may result in allosteric drug resistance [54]. First, allosteric sites 

are more likely to be mutated because of low evolutionary pressure and second, resistant 

mutations can occur on the allosteric transmission pathway, in addition to allosteric sites. 

A review article by Khamina et al., has outlined the non-canonical allostery in cyclin 

dependent kinases; PKA (Protein Kinase A) and PKG (Protein Kinase G) caused by disease 

related mutations [55]. Disease causing mutations may also amplify the allosteric effect by 

self-associating into amyloid like structures resulting in loss of kinase inhibitory functions 

[55]. Other efforts towards linking allostery and diseases includes development of database 

named AlloMAPS, which consists of data of 46 proteins which are involved in allosteric 

signalling [56].
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Figure 1. 
Schematic representation of variants effects: (a) affecting regulation; (b) resulting in 

unfolded protein: (c) affecting protein-protein binding; and (d) affecting protein dynamics. 

Circles indicate a variant in DNA and in the corresponding proteins. The figure is only for 

illustration of genotype-phenotype relations in case of monogenic disorder.
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Figure 2. 
ROC curve for monogenic disorder database. (a) Dataset 1 containing mutations that are 

listed as pathogenic or benign; (b) Dataset 2 in addition including mutations that are listed as 

likely pathogenic or likely benign.
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