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Abstract
Purpose  Rapid and easy detection of spermatogonial stem/progenitor cells (SSPCs) is crucial for clinicians dealing with 
male infertility caused by prepubertal testicular damage. Deep learning (DL) methods may offer visual tools for tracking 
SSPCs on testicular strips of prepubertal animal models. The purpose of this study is to detect and count the seminiferous 
tubules and SSPCs in newborn mouse testis sections using a DL method.
Methods  Testicular sections of the C57BL/6-type newborn mice were obtained and enumerated. Odd-numbered sections 
were stained with hematoxylin and eosin (H&E), and even-numbered sections were immune labeled (IL) with SSPC specific 
marker, SALL4. Seminiferous tubule and SSPC datasets were created using odd-numbered sections. SALL4-labeled sections 
were used as positive control. The YOLO object detection model based on DL was used to detect seminiferous tubules and 
stem cells.
Results  Test scores of the DL model in seminiferous tubules were obtained as 0.98 mAP, 0.93 precision, 0.96 recall, and 
0.94 f1-score. The SSPC test scores were obtained as 0.88 mAP, 0.80 precision, 0.93 recall, and 0.82 f1-score.
Conclusion  Seminiferous tubules and SSPCs on prepubertal testicles were detected with a high sensitivity by preventing 
human-induced errors. Thus, the first step was taken for a system that automates the detection and counting process of these 
cells in the infertility clinic.

Keywords  Spermatogonial stem/progenitor cells · Testis · YOLO object detection · Deep learning · Computer vision

Introduction

The cancer treatments including chemo-radiotherapy 
applications result in permanent infertility in near to half 
of male childhood cancer survivors [1, 2]. Spermatogonial 
stem/progenitor cells (SSPC) are the only germ cell group 
in testes before puberty since the spermatogenesis is not 
initiated yet [3]. Because they constitute the only option 
for fertility preservation, there are several experimental 
methods developed for in vitro spermatogenesis or cryo-
preservation on testicular biopsies collected before gon-
adotoxic cancer treatment [1, 4, 5]. It is crucial to detect-
ing and counting the number of SSCPs in testicular biopsy 
quickly by an automated method in order to determine fur-
ther application on tissue or determining their therapeutic 
potential for infertility caused by testicular damage before 
puberty. Spermatogonial stem/progenitor cells are the pool 
of Asingle, Apaired, and Aaligned spermatogonia that reside on 
the basal membranes of seminiferous tubules and prolifer-
ated until puberty [6]. PLZF, THY-1, and SALL4 are the 
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specific markers of SSPCs and used in immunolabeling 
for detection of SSPC pool [7, 8]. To eliminate the quan-
tification under microscope by human eye on immunola-
beled sections might be beneficial for decreasing possible 
mistakes in laboratories. The preservation of the SSPCs 
presents the only tool for the cancer patients to open the 
road to have their biological children in the future. It is 
relatively easy to identify seminiferous tubules in a mouse 
testis section. However, SSPCs are found in low numbers 
within a complex niche environment with Sertoli cells that 
are morphologically significant and bigger sustentacular 
cells [9]. Consequently, it can be challenging, expensive, 
and prone to human error to detect SSPCs.

Artificial intelligence–based medical applications can 
be utilized in diagnosis and treatment protocols. These 
applications include data mining, medical expert systems, 
machine learning (ML), and image processing techniques 
[10–12]. There are several studies in the literature focused 
mainly on seminiferous tubules, multi-site segmentation, 
and multiple cell segmentation [13–16], different types 
of segmentation, and automatized classification models 
for staging H&E-stained seminiferous tubules on mouse 
[13, 14, 17], rat [16], and human [18, 19] testicular sec-
tions. A DL model provided the classification of normal 
and abnormal mouse seminiferous tubules at 98% accuracy 
[15]. Neural network-based automatized systems demon-
strated varying accuracy on detecting sperm morphology 
classification [20], segmentation of internal and external 
parts of sperms [21], and detection and analysis of differ-
ent parts of human sperms [22].

Several DL techniques provided high accuracy for detec-
tion of spermatogenic cells in seminiferous tubules of adult 
rodent models and also human samples (Table 1). However, 
prepubertal testicular tissues where the spermatogenesis has 
not been initiated yet are not examined by using AI that 
would contribute to an efficient tool for detection and quan-
tification of germ stem cells in cancer patients to diagnose 
and treat male infertility. In this study, we hypothesized to 
develop a bioengineering system that allows the detection of 
seminiferous tubules and rapid, safe, and easy quantification 
of SSPCs by using DL. To test the hypothesis, we obtained, 
digitized, and labeled paraffin sections from C57BL/6 neo-
natal male mice testes and built DL models. Our study dem-
onstrated promising results to prevent human-induced errors 
while providing high sensitivity and rapid detection of semi-
niferous tubules and SSPCs.

Methods

Experimental design

The study is planned as an observational, interdisciplinary, 
experimental study. Dependent variables are SSPC and sem-
iniferous tubule numbers; independent variables are manual 
counts and AI-based image analysis outputs related to SSPCs 
and seminiferous tubules. All experiments were carried out 
on sections obtained from testicular blocks of 3 newborn 
C57BL/6 male mice (6 testes), which was used within the 
scope of Hacettepe University Animal Experiments Local 

Table 1   The applications of DL methods in reproductive system tissues and cells

Dataset Goals Methods Results Ref

Mouse testis Seminiferous tubules classification • SAE with hyperlayer Accuracy: 98% [15]
Seminiferous tubules segmentation
Multi-cell segmentation
Multi-region segmentation

• ResNet
• FCNN

Accuracy: 94.40%, 91.26%, 93.47% [13]

Seminiferous tubules segmentation
Spermatogenic cells and multi-concentric-layer 

segmentation

• ResNet
• U-Net

Accuracy: 91.20%, 92.95%, 91.08% [14]

Seminiferous tubules segmentation
Multi-cell segmentation

• SED-Net Pixel accuracy: 93.0%, intersection over union: 
87.8%

[17]

Rat testis Identifying spermatogenic stages in seminifer-
ous tubules

• U-Net Accuracy: 98.4% [16]

Human testis Determining Johnsen scoring using AI • ANN Precision, 96.29% [18]
Automatic annotation of IHC images • HBNN mAP, 76.0% [19]

Sperm Classification • CNN Accuracy: 94% [20]
Segmentation of internal and external parts of 

sperm
• CNN
• K-means

Dice similarity coefficient: 90.4% (head), 77.3% 
(acrosome), 78.8% (nucleus)

[21]

Detection and analysis of different parts of 
human sperms

• CNN Accuracy: 76.77% (acrosome),
77% (head),
91.33% (vacuole)

[22]
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Ethics Committee document dated 04.09.2018 and num-
bered 52338575-96 received for the project number TYL-
2018-17531. The program codes used in this study can be 
accessed from the GitHub repository.

Histological techniques

Testes obtained from C57BL/6-type neonatal mice were fixed 
by immersion in Bouin’s fixative, dehydrated in graded series 
of ethanol cleared in xylene in a vacuum tissue processor 
(Leica, Germany) and embedded in paraffin in embedding 
station (Leica, Germany). Serial sections of 3-μm thickness 
were taken in the sliding microtome (Leica, Germany). The 
sections were deparaffinized in the drying oven at 60 °C over-
night and then rehydrated with a graded series of alcohols. 
Consecutive serial sections were stained with H&E [4] or IL 
for SSPCs. For immune labeling briefly [23], heat-induced 
antigen retrieval method was applied in a pressure cooker 
within the citrate buffer solution (pH = 6.5) (Abcam, USA) 
for 5–10 min. After the sections were washed, a protein block 
was performed with goat serum at room temperature for 10 
min (Abcam, USA). The sections were incubated with rat 
anti-mouse SALL4 (ab29112, Abcam, UK) primary antibody 
at 1:200 dilution for 15–30 min at RT in humidity chamber. 
DAB chromogen was applied to sections that were incubated 
for 15 min with goat anti-rat IgG-HRP-conjugated secondary 
antibody (Abcam, USA) at room temperature. After the DAB 
chromogen was dropped, the labeling was followed under the 
bright field microscope for 5–7 min. Tissues, which were not 
treated with primary antibody, were used as negative control. 
Nuclear staining was performed with hematoxylin for 30 s. 
Sections were washed with phosphate buffer saline (pH: 7.4), 
dehydrated with graded alcohols, and coverslipped by using 
an entellan mounting medium (Merck, USA).

Dataset preparation

Testis micrographs were obtained by using a light micro-
scope with a digital camera attachment (Leica DM 6000 
DM, Germany). These micrographs were digitized using the 
image analysis system (LASv3 Leica, Germany) with 3264 
× 2448 and 1920 × 1940 resolutions.

Two datasets, namely the seminiferous tubule dataset and 
the SSPCs dataset, were created with these micrographs to 
use in this study. Accurately identifying the quantity of SSPCs 
by using H&E-stained micrographs only is not viable. There-
fore, to identify SSPCs on an H&E-stained micrograph, we 
referred to the IL micrograph that corresponds to the same 
region on the consecutive section and expected that the two 
sections are quite similar. Note that we labeled only the 
H&E-stained micrographs for both seminiferous tubules and 
SSPCs to create our datasets. We obtained consecutive sec-
tions from different blocks and enumerated them block-wise. 

The odd-numbered sections were stained with H&E, while the 
even-numbered ones were IL. For instance, when we obtained 
six sections from a block, sections were enumerated from 1 to 
6. After having stained or IL the section, we had six consecu-
tive sections as 1:H&E → 2:IL → 3:H&E → 4:IL → 5:H&E 
→ 6:IL. In this example, labeling of H&E-stained sections 
1, 3, and 5 was done by using immune-labeled sections 2, 4, 
and 6, respectively. In total, we had 35 odd-numbered and 20 
even-numbered sections to use for creating the labeled semi-
niferous tubule and the SSPCs datasets, respectively. In case 
the immune labeling of section 4 does not produce desired 
results and cannot be used to label section 3, section 2 is used 
to label section 3. That is, we are using section 2 to label both 
sections 1 and 3. This makes the method fault tolerant. That 
means, we can still label H&E-stained sections even though, 
at most, half the immune labeling fails.

For the seminiferous tubule dataset, 909 micrographs 
were obtained from 35 sections. The total size of these 
micrographs was 10.3 gigabytes. For the SSPC dataset, 1114 
micrographs were obtained from 20 sections. The total size 
of these micrographs was 11.5 gigabytes. The micrographs 
were resized (416 × 416) and labeled with the Labellmg 
program [24].

Deep learning method

Seminiferous tubules and SSPCs were detected with the 
YOLOv5 object detection model using photos with 3264 × 
2448 and 1920 × 1940 pixel dimensions, respectively. All 
photos were obtained with 630 × magnification. The YOLO 
model was created using the Python programming language 
and trained on the Google Cloud.

Figure 1 shows the workflow used to detect seminifer-
ous tubules. Sections from C57BL/6-type newborn mice 
were stained with H&E (Fig. 1a). Micrographs with 3264 
× 2448 and 1920 × 1940 resolutions were obtained from 
these sections by using a light microscope (Fig. 1b). These 
micrographs constitute the raw dataset. Tubules on these 
raw images were labeled with the LabelImg program to 
prepare the dataset to be used in evaluations (Fig. 1c). The 
labeled dataset is split into train and test sets by using an 
80/20% split ratio, and, to further increase the size and 
diversity of the dataset, data augmentation was applied to 
the training data by using the Roboflow application [25]. 
The data augmentation process includes flip, 90- and 
45° rotation, 50% crop, 50% grayscale, 25% brightness 
enhancement, 40% saturation, and mosaic actions. After 
the augmentation, a dataset consisting of 14,092 images 
was obtained. The dataset’s size was 484 megabytes in 
total. Then, a YOLO object detection model was trained 
and tested (Fig. 1d). Finally, the detection of the seminifer-
ous tubules was performed, and the results were obtained 
(Fig. 1e).
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Fig. 1   The detection process of seminiferous tubules. a C57BL/6-
type neonatal male mice testes sections. b Patches were obtained 
from sections by light microscopy. c Seminiferous tubules with an 
average width of 55 μm and a height of 58 μm were labeled with the 

LabelImg program, and a labeled dataset was created. d A DL model 
was trained and tested. e Detected seminiferous tubules on micro-
graphs were shown

Fig. 2   The detection process of SSPCs. a C57BL/6-type neonatal 
male mice testes consecutive sections. b Patches were obtained from 
sections by light microscopy. c, d Spermatogonial stem/progenitor 
cells were labeled on H&E-stained sections by referencing immuno-

labeled serial sections. Labeling was done using the LabelImg pro-
gram, and a prepared dataset was created. e Training and testing 
phases were applied in the DL method using the training and test 
datasets. f Detected SSPCs on micrographs were shown
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Figure 2 shows the workflow used to detect SSPCs. Sec-
tions from C57BL/6-type newborn mice were either stained 
with H&E or IL. More concretely, once a section was H&E 
stained, its consecutive section was IL (Fig. 2a). Micro-
graphs with 3264 × 2448 and 1920 × 1940 resolutions were 
obtained from these sections by light microscope (Fig. 2b). 
SSPCs in H&E-stained micrographs were identified by ref-
erencing the immune-labeled micrographs (Fig. 2c) and 
then labeled using the LabelImg program to obtain the pre-
pared dataset (Fig. 2d). The labeled dataset is split into train 
and test sets by using a 60/40% split ratio, and, to further 
increase the size and diversity of the dataset, data augmen-
tation was applied to the training data similar to the semi-
niferous tubule dataset. After the augmentation, the SSPCs 
dataset consisted of 13,964 micrographs and was 415 mega-
bytes. Then, a YOLO object detection model was trained 
and tested (Fig. 2e). The experiment has been initiated by 
manually counting and labeling of SSPCs on H&E-stained 
sections in accordance with SALL4 immune labeling and 
further subsequent comparison of outputs of all the manual 
counting with that of our novel DL-based detection system. 
The obtained accuracy percentage (mAP success rate) of 
the developed DL model (Fig. 2f) is completely based on 
a sequential comparison of detected cells by system with 
manually labeled cells by experts.

Results

Detection of seminiferous tubules

To detect seminiferous tubules, a DL model was trained 
with the labeled seminiferous tubule dataset. A threshold 
value of 65% was determined for the optimum plotting of 
the determinations. The detection process was completed 
in 5 iterations. The final mAP (mean average precision) 
score was 98%. Then, we tested our DL model with the 
labeled test dataset. We considered four metrics in our 
tests, namely mAP, recall, precision and f1-scores. The 
results are presented in Table 2. We obtained 0.98 mAP, 
0.93 precision, 0.96 recall, and 0.94 f1-score as results 
from our tests.

Some examples regarding seminiferous tubule detection 
are shown in Figs. 3 and 4. The detected tubules are marked 
with boxes that surround them. Numerical values given on 
top of the boxes show the mAP scores of the detection. Fig-
ure 3 shows some examples on which all suitable seminifer-
ous tubules were detected correctly.

Occasionally, a part of a seminiferous tubule may not 
be seen on the micrograph. Yet, it is detected by the DL 
model. Examples of such tubules are marked with white 
stars on Fig. 4a. The DL model we use tends to recognize 
objects in principle. Therefore, the model somehow com-
pletes the circular shape and returns a correctly detected 
tubule. Unfortunately, our model was not able to detect 
a small number of tubules on some micrographs. To our 
understanding, a suitable seminiferous tubule should be 
nearly round shape circular, has clear borders, and at a 
specific size (56 μm width, 58 μm height). We do not 
expect to detect tubules that do not fit in this description. 
In Fig. 4, we also show such a seminiferous tubule within 
boxes drawn with white dashed lines. Failure to detect a 
seminiferous tubule may have occurred due to their shape 

Table 2   Test scores for seminiferous tubule detection

Seminiferous tubule detection test scores

mAP Recall Precision F1-Score

0.98 0.96 0.93 0.94

Fig. 3   Examples of micrographs 
on which all suitable seminifer-
ous tubules were identified by 
the model were given. a, b × 
630, H&E
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and size. For example, a seminiferous tubule in Fig. 4b 
may have been missed due to its unclear borders.

Detection of spermatogonial stem/progenitor cells

To detect SSPCs, a DL model was trained with the labeled 
SSPC dataset. A threshold value of 65% was determined for the 
optimum plotting of the determinations. The detection process 
was completed in 109 iterations. The final mAP (mean average 
precision) score was 88%. Then, we tested our DL model with 
the labeled test dataset. In SSPC detection, we considered four 
metrics in our tests, namely mAP, recall, precision, and f1-scores. 
The results are seen in Table 3. We obtained 0.88 mAP, 0.80 
precision, 0.83 recall, and 0.82 f1-score as results from our tests.

The detected cells are marked with boxes that surround 
them as seen in Fig. 5. Numerical values given on top of the 
boxes show the mAP scores of the detection.

Discussion

The spermatogenesis cycle, which proceeds similarly in 
rodents and humans, is a process that starts with spermato-
gonial stem cells and ends with spermatozoa and is regulated 
by many different gene expressions [26]. We used neonatal 
mice as animal models in this study. This system might pro-
vide a solution for rapid determination of fertility status of 
prepubertal cancer patients when used in humans. In our study, 
sections were obtained by staining C57BL/6-type neonatal 
mouse testis containing A, In and B spermatogonia (early stage 
including stages I–IV) with H&E, and datasets were created. 
Deep learning models were trained using seminiferous tubules 
and immune-labeled SSPC datasets. They are used to detect 
seminiferous tubules and SSPCs in H&E-stained sections. 
The seminiferous tubule dataset was created with micrographs 

Fig. 4   A seminiferous tubule, 
which is detected in half in 
the micrograph and cannot 
be detected when it should 
be detected, is shown. a Half 
seminiferous tubule marked 
with a white star detected with a 
mAP of 0.79 on the left side of 
the micrograph. b Seminiferous 
tubule that cannot be detected 
on micrograph is marked with a 
dashed line because its border is 
uncertain. a, b × 630, H&E

Table 3   Test scores for SSPC detection

SSPC detection test scores

mAP Recall Precision F-1 score

0.88 0.83 0.80 0.82

Fig. 5   Sample micrographs with 
SSPCs detected by the model 
are given. a, b × 630, H&E
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obtained from 35 and 14,092 images. The DL model detected 
seminiferous tubules with a 98% mAP score. The SSPC dataset 
was created with 20 sections and 13,964 images. The model 
detected stem cells with an 88% mAP score.

There are several AI studies that we can directly compare 
with our work [13–17]. Kao and McMillan classified seminif-
erous tubules from mouse testis sections using stacked auto-
encoders [15]. In the study, sections were stained with H&E. 
The dataset consisted of 10,542 tubule image patches, and they 
achieved 98% classification accuracy. Xu et al. used ResNet and 
a fully convolutional neural network for seminiferous tubule, 
multi-cell and multi-zone segmentation to determine spermato-
genesis staging on H&E-stained sections in 28 mice [13]. The 
ResNet model achieved accuracy scores of 94.40% and 91.26% 
for seminiferous tubule segmentation and multi-cell segmen-
tation including SSPCs, respectively. Xu et al. used ResNet 
and U-net to perform seminiferous tubule and spermatogenic 
cell segmentation by using H&E-stained 40 adult mouse testis 
sections in another study [14]. They achieved accuracy scores 
of 91.20% and 92.95%, respectively. Liang et al. developed a 
tubule and multi-cell segmentation model using two separate 
datasets created from mouse testis sections [17]. They used 12 
slices for datasets for the segmentation of tubules, spermato-
cytes, spermatogonia, round spermatids, and Sertoli cells. Their 
DL model was able to segment with 93% mean pixel accuracy. 
Creasy et al. used U-Net to determine spermatogenic stages of 
H&E-stained testis sections obtained from rats at different ages 
[16]. They achieved 98.4% accuracy. Sziva et al. performed a 
mathematically based histomorphometric image analysis study 
on images obtained from 22 different 4-week-old rat testis sec-
tions with different vitamin D levels induced [27]. They used 
H&E and immunohistochemically stained slides from paraffin-
embedded sections in this study. With this model used, they 
detected the seminiferous tubules in the sections. They also 
detected seminiferous tubules containing elongated sperma-
tids. They observed the receptor expressions in the sections 
where immunochemical staining was performed. The model 
used in this study is mathematically based and not an AI-based 
approach as in our study. In addition, the study focused on the 
detection of seminiferous tubule and seminiferous tubule sec-
tions, and SSPCs were not detected as in our study. Detection of 
seminiferous tubules containing only elongated spermatids may 
be similar to our study. However, in our study, we presented a 
more complete approach by detecting both seminiferous tubule 
and SSPCs with the innovative DL model, YOLO.

When the number of sections used and the accuracy rates 
obtained from the experiments are compared, our study 
presents similar values and characteristics to those in the 
literature [13–17]. However, our main contribution is two-
fold. First, our study uses mouse testis sections only in the 
early stages (stages I–V) of spermatogenesis. This makes 
the detection of SSPCs especially hard due to the under-
developed forms of the cells. In this study, neonatal mice 

simulate prepubertal cancer patients. In children, the biopsy 
that can be taken is in lower amount than adults since their 
testicular size and the morbidity of the surgical procedure 
are higher. Therefore, the success, accuracy, reliability, and 
especially the quick response of the system are very impor-
tant for translation to clinical use in prepubertal patients. 
When we look at the related work, they typically work with 
the cells from mid-stages (stages VI–VIII). Some studies 
[16, 17] try to find a balance and to classify early stages as 
well. However, their dataset, i.e., sections contain mostly the 
mid-stage sections; for instance, roughly 40% and 42% of 
the used sections from early stages of the spermatogenesis 
in [16] and [17], respectively. Liang et al. leaves annotating 
cell types in the early stages to a future work [17]. Second, 
to the best of our knowledge, our study is the first to use 
an object detection model to identify cells or tubules while 
all other related works use segmentation models. There are 
several practical advantages of the object detection model 
over segmentation. First, labeling images is relatively easy 
as it involves only drawing boxes, while this task may be as 
tedious as drawing an amorphous region in segmentation. 
Second, the YOLO object detection model we used is proved 
to be a faster method [28]. Third, the object detection model 
may complete circular shapes that are not seen well in an 
image and return a correctly detected tubule.

The study has several limitations. The DL model we used 
to detect SSPCs is 10–16% less effective on average as com-
pared to seminiferous tubule detection. Due to the nature of 
the prepubertal organ structure, there are small number of 
SSPCs in newborn-mice testicular samples used. On the other 
hand, our findings are reliable since the statistical relevance 
and parametric distribution of the samples were confirmed 
and our data is accurate on a challenging small amount of 
testicular tissue that presents only scarcely distributed, small 
amount of stem cells as target object. Also, our results are 
limited to an animal model, which cannot accurately make 
exact simulation of human conditions since our assay does 
not contain any human testicular sample due to ethical rea-
sons. The size and content of SSPC subpopulations have 
some differences in mice and humans. The proportion of 
SSCs to SSPCs and to total germ cells is lower in mice when 
compared to humans. The undifferentiated spermatogonia 
(Asingle, Apaired, Aaligned) makes up 0.3% of germ cells in mice; 
however, in humans, the proportion of undifferentiated cells 
(Apale, Adark) reaches up to 22% [29] . Since the cellular mor-
phology differs in the subpopulations, the accuracy of the 
newly generated DL-based detection system should further be 
tested in testicular sections of human prepubertal male cancer 
patients. On the other hand, because the testicular anatomy 
and tubular morphology of prepubertal humans and mice are 
similar as having a tortuous structure, containing Sertoli cells 
and SSPCs lying on basement membrane in tubules, our DL 
model is likely be suitable for use in human samples. The 
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study is limited to identification of seminiferous tubules and 
SSPCs. Thus, we did not include the identification of Sertoli 
cells. Sertoli cells are clearly distinguished in both H&E-
stained and SALL4-immune-labeled seminiferous tubule 
sections from the small rounded SSPCs with their pyramidal 
morphology and huge size [30]. The smaller-sized germ cells 
consist of SSPCs only at this neonatal stage [9], lying on 
the basement membrane adjacent to or penetrating on the 
recesses of giant sustentacular Sertoli cells. Since the detec-
tion of the SSPCs that are harmed in cancer therapies was 
aimed, we did not need to include extra Sertoli cell labeling 
and quantification in our training set-up.

We have performed a preliminary study with a high per-
centage of accuracy with the SSPC dataset validated by 
immunohistochemistry. Our study aimed at detecting the tes-
ticular seminiferous tubules and SSPCs in prepubertal mice 
tissues, and we obtained 98% mAP in the detection of semi-
niferous tubules and 88% mAP in the detection of SSPCs. 
Some studies differentiate epithelial and stromal regions of 
human ovarian tissue and classify ovarian cancer using CNN 
[31, 32]. In these studies, H&E-stained sections were used, 
and 90.2% and 78.29% accuracy rates were obtained, respec-
tively. CNN was used in studies where the classification and 
morphological analysis of sperms were made [20–22]. A 
94% accuracy rate was obtained from the sperm classifica-
tion study [20]. In the study in which sperms acrosomes, 
heads, and vacuoles were classified, the accuracy rates were 
76.77%, 77%, and 91.33%, respectively [22]. In the study 
where the internal and external parts of the sperm were 
segmented, 90.4%, 77.3%, and 78.8% dice similarity coef-
ficients were obtained for the head, acrosome, and nucleus, 
respectively [21]. In the study by Ito et al., a DL model was 
created for Johnsen score classification. While 82.6% preci-
sion value was obtained with × 400 magnification images, 
99.5% precision value was obtained with expansion image 
dataset. In the study, H&E-stained human testis tissue sec-
tions were used [18]. In the study for automatic detection of 
different cell types on immunohistochemistry images, human 
testis cross-section images were used, and the trained model 
achieved a confidence score of 96.3% [19]. In these stud-
ies, using human tissues and cells close to testicular tissue, 
similar rates were obtained with the mAP rates we obtained 
in the detection of seminiferous tubules and SSPCs. Thus, 
we were able to academically validate the usability of the AI 
system in testicular tissues and germ stem/progenitor cells.

Conclusion

Spermatogonial stem/progenitor cells are few in number and 
difficult to detect. In this paper, the detection of seminifer-
ous tubules and SSPCs with high sensitivity in 6-day-old 
mouse testis sections using the DL model was performed.

Our contribution has three facets. First, we created a 
labeled dataset of mouse testis sections, which we could 
use for further research. Second, we detected SSPCs on 
H&E-stained images with high sensitivity and removed the 
SALL4 marking step from the workflow, which is expen-
sive and requires time and expertise. Third, we proved 
that SSPC detection can be automated, and human-induced 
errors in manual counting can be prevented. This auto-
mated AI-based SSPC content assessment method might 
be inserted in certain checkpoints before and/or after cry-
opreservation of biopsied testicular tissue from patients 
in clinics. And the evaluation results may shape the fur-
ther application to the tissue including in vitro culture for 
increasing the pool of SSPCs or direct transplantation at 
adult ages after the gonadotoxic treatment finishes.
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