
Article https://doi.org/10.1038/s41467-023-39031-1

Improvement of cryo-EM maps by
simultaneous local and non-local deep
learning

Jiahua He 1, Tao Li1 & Sheng-You Huang 1

Cryo-EM has emerged as the most important technique for structure deter-
mination of macromolecular complexes. However, raw cryo-EM maps often
exhibit loss of contrast at high resolution and heterogeneity over the entire
map. As such, various post-processing methods have been proposed to
improve cryo-EMmaps. Nevertheless, it is still challenging to improve both the
quality and interpretability of EMmaps. Addressing the challenge,wepresent a
three-dimensional Swin-Conv-UNet-based deep learning framework to
improve cryo-EMmaps, named EMReady, by not only implementing both local
and non-local modeling modules in a multiscale UNet architecture but also
simultaneously minimizing the local smooth L1 distance and maximizing the
non-local structural similarity between processed experimental and simulated
target maps in the loss function. EMReady was extensively evaluated on
diverse test sets of 110 primary cryo-EM maps and 25 pairs of half-maps at
3.0–6.0 Å resolutions, and compared with five state-of-the-art map post-
processing methods. It is shown that EMReady can not only robustly enhance
the quality of cryo-EM maps in terms of map-model correlations, but also
improve the interpretability of themaps in automatic de novomodel building.

Cryogenic electron microscopy (cryo-EM) has become one of the
standard techniques for structure determination of large biological
complexes in structural biology1–5, owing to its advances in hardware6

and image processing algorithms7–15. The goal of cryo-EM is to obtain
the atomicmodels ofmacromolecular complexes from the EMdensity
maps, where the quality of EM maps is critical16–27. However, due to
some inherent impacts from sources like molecular motions, hetero-
geneity, and imperfect imaging, raw cryo-EM maps often face loss of
contrast at high-resolution and would not be immediately ready for
accurate structure determination. To address this problem, various
approaches have been developed to improve the map quality by
sharpening or modifying the density during the post-processing step
of cryo-EM workflow28–36.

Traditional approaches for map sharpening can be roughly
grouped into two categories, global approaches and local approaches.
Global sharpening approaches normally determine a single B-factor

across an EMmap and apply the same density correction to the whole
map. phenix.auto_sharpen29 is such a global sharpening method26

based on the optimization of details and connectivity of sharpened
maps. Similar B-factor correction algorithm is also adopted by RELION
post-processing30. Local sharpening approaches take heterogeneity in
cryo-EM maps into account and adopt local density-dependent cor-
rection during map sharpening. LocScale31 is a general procedure for
local sharpening of cryo-EMdensitymaps basedonprior knowledgeof
an atomic reference structure. LocalDeblur algorithm32 employs a
Wiener restoration approach that performs local deblurring with a
strength proportional to an estimation of the local resolution37. Den-
sity modification33,34 maximizes a combined likelihood function that
incorporates both the plausibility of the map and the agreement with
experimental values. LocSpiral35 employs the spiral phase transfor-
mation to factorize the volume and locally enhances high-resolution
features of cryo-EM maps. All these sharpening algorithms have
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achieved great successes in post-processing cryo-EM maps. However,
there exist drawbacks in current approaches. Namely, global shar-
pening approaches may result in over-sharpened and under-
sharpened regions because of different signal to noise ratios in EM
maps, and some local sharpening approaches rely on the use of a priori
information about the target map like masks to distinguish the mac-
romolecule from the noise, estimation of the local resolution of the
map, and/or structural information of atomic models.

Addressing the limitations in traditional sharpening approaches,
deep learning-based methods have recently been proposed for auto-
matic cryo-EM volume post-processing to improve the interpretability
of cryo-EM maps. Deep cryo-EM Map Enhancer (DeepEMhancer)38,
which is a fully automatic deep learning-based methods, mimics the
local sharpening effect of the LocScale algorithm. EM-GAN39 is another
deep learning-based method that uses a three-dimensional generative
adversarial network (GAN) for generating an improved-resolution EM
map from an experimental EM map. In spite of their good perfor-
mances on some experimental cryo-EM maps, both DeepEMhancer
and EM-GAN face their respective challenges. DeepEMhancermight be
limited by the accuracy or noise of experimental cryo-EM maps in the
training set as it uses atomic model-guided optimized experimental
maps as the targetmaps during the training. EM-GAN tries tominimize
the mean difference between the voxels from the generator network
and those in the simulated maps, which may miss the structural cor-
relation between two groups of voxels in terms of density contrast.

To overcome the shortcomings of existing approaches, we here
present a three-dimensional deep learning framework to improve the
interpretability of cryo-EM maps by simultaneous local and non-local
deep learning, which is referred to as EMReady, aiming tomake the EM
map ready for atomic structure determination. EMReady adopts the
three-dimensional (3D) Swin-Conv-UNet-based network architecture
(SCUNet)40, which combines the advantages of conventional residual

convolution for local modeling, swin (shifted window) transformer for
non-local modeling, and multiscale UNet for further enhancement of
local and non-local modeling. The swin transformer41 is an efficient
transformer that combines self-attention of non-overlapping local
windows and non-local cross-window connection by shifted window
partitioning. With the SCUNet architecture, EMReady is capable of
capturing the non-local features within each input density slice of size
48 Å × 48Å× 48Å. The local and non-local modeling of EMReady is
implemented not only in the network architecture but also in the
training process. Specifically, our network is trained by simultaneously
minimizing the local smooth L1 distance andmaximizing the non-local
structural similarity (SSIM) between processed experimental and
simulated target maps. Compared with the simple smooth L1 loss,
incorporating the SSIM loss in the training process can effectively
prevent the network from possible overfitting. During the training of
EMReady, we use the simulated cryo-EM maps from their associated
structures from the Protein Data Bank (PDB)4 instead of LocScale-
processed experimental cryo-EM maps as the target maps, which can
avoid the impact of noise in the experimental maps. EMReady is
extensively evaluated ondiverse test sets of primary EMmaps andhalf-
maps. It is shown that EMReady is able tonot only robustly enhance the
quality of cryo-EMmaps in terms of various map quality metrics42, but
also lead to better structure models built by phenix.map_to_model17–19

and MAINMAST20, demonstrating the improvement of EMReady in
both the quality and interpretability of cryo-EM maps.

Results
Overview of EMReady
Figure 1 shows an overview of the EMReady workflow. The SCUNet
adopted by EMReady consists of three encoder, one bottleneck, and
three decoder swin-conv (SC) blocks with skip connections. A non-
redundant set of 460 experimental cryo-EMmaps is obtained from the
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Fig. 1 | Overview of the EMReady deep learning framework. a Preparation of the
training data. EM density maps and their associated PDB models are downloaded
from the EMDB and PDB, respectively. Target maps are simulated from the PDB
models. The experimental maps and simulated maps are then cut into pairs of
experimental boxes and simulated boxes. b The training procedure of EMReady. In
each training round, an experimental box is input to the deep learning model, and
the processed box is compared with its corresponding simulated box. A combi-
nation of local smooth L1 loss and non-local SSIM loss is used to optimize the deep

learning model through backpropagations. c The schematic of the SCUNet archi-
tecture used in EMReady. A given input EM density box will go through a UNet-like
encoder-decoder network, where swin-conv (SC) blocks are used as the main
building block. Swin transformer (SwinT) for non-local modeling and residual
convolution (RConv) for local modeling are implemented in parallel in each SC
block. d The map processing workflow of EMReady. For a given input EM density
map, EMReady first cuts it into boxes. All the boxes are processed by the trained
deep learning model in (c), and then re-assembled to the output processed map.
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Electron Microscopy Data Bank (EMDB)5, of which 280 maps are used
as the training set, 70maps are used as the validation set, and the other
110maps are used for testing. The corresponding atomic structures of
the 350EMmaps are taken from the ProteinDataBank (PDB)4. Thegrid
size of themaps is unified to 1.0 Åby a cubic interpolation. For training,
experimental maps and simulated maps from the corresponding PDB
structures are cut into pairs of experimental volume slices and simu-
lated slices of size 48 × 48 × 48. During the training, an experimental
volume slice is processed by the network and the comparison between
the processed slice and the simulated slice is carried out. The differ-
ences between processed slices and simulated slices measured by a
combined loss function of smooth L1 loss and SSIM loss are used to
iteratively optimize the network through backpropagations. During
the evaluation, a given cryo-EM density map is cut into small slices and
each slice is processed by EMReady. Then, the output processed slices
are re-assembled into the final density map.

Evaluations on primary maps
We first evaluate the performance of EMReady on the test set of pri-
mary cryo-EM maps through the deposited map-model Fourier shell
correlation (FSC) calculated by phenix.mtriage43. Here, the primary
map indicates the final reconstruction result deposited in the EMDB
that is usually post-processed, as opposed to the case of half-maps. It
should be noticed that by default we calculate the unmasked FSC in
this work, unless otherwise specified. Table 1 lists the unmasked map-
model FSC-0.5 (FSC05) for the test set of 110 deposited primary cryo-
EM maps. For comparisons, the table also shows the corresponding
results for the deposited maps and the maps processed by
DeepEMhancer38 and phenix.auto_sharpen29. Only 100 out of 110maps
were successfully processed by DeepEMhancer. It can be seen from
Fig. 2a, b that the maps processed by EMReady obtained significantly
better FSC-0.5 compared to the deposited primary maps. On average,
EMReady achieved a map-model FSC-0.5 of 3.57Å, which is sig-
nificantly improved from 4.83 Å for the deposited maps, 4.18 Å for the
DeepEMhancer-processed maps, and 4.82 Å for the phenix.-
auto_sharpen-processed maps. The detailed map-model FSC-0.5
values for each test case are listed in Supplementary Data 1.

Another important metric of map quality is the Q-score, which
measures the resolvability of individual atoms in a cryo-EMmap44. The
Q-score can also be an indicator of map quality as its averaged value
over the entire model correlates well with the reported resolution of
the map. Here, the Q-score is calculated using the PDB structure built
into themap.We report the averageQ-scores of protein atoms foreach
of the maps in the test set. The average Q-scores for the entire test set
are listed in Table 1. It can be seen fromFig. 2c that themaps processed
by EMReady obtained a significantly higher average Q-score than the

Table 1 | Map quality on the test set of 110 deposited pri-
mary maps

Method FSC-0.5 (Å) Q-score CC_box CC_mask CC_peaks

deposited 4.83 0.494 0.716 0.788 0.614

DeepEMhancer 4.18 0.425 0.676 0.682 0.627

phenix.auto_sharpen 4.82 0.492 0.675 0.764 0.575

EMReady 3.57 0.542 0.855 0.798 0.753

The numbers in bold fonts indicate the best performances for the corresponding metrics.
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Fig. 2 | Comparison of the unmasked map-model FSC-0.5 and Q-score on the
test set of 110 deposited primarymaps. a, c Box-whisker plots of unmasked FSC-
0.5 (a) and Q-score (c) for the deposited, DeepEMhancer-processed, phenix.-
auto_sharpen-processed, and EMReady-processed maps (n = 110 individual test
cases). The center line is themedian, the cross is themean, lower and upper hinges
represent the first and third quartile, the whiskers stretch to 1.5 times the

interquartile range from the corresponding hinge, and the outliers are plotted as
diamonds. Dashed lines stand for the average values of deposited primary maps.
b, d Comparison of unmasked FSC-0.5 (b) and Q-score (d) between the deposited
and processed maps on each test case. Source data are provided as a Source
Data file.
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deposited maps and the maps processed by other methods. Specifi-
cally, EMReady achieved an average Q-score of 0.542, which is sig-
nificantly higher than 0.494 for the deposited maps, 0.425 for
DeepEMhancer, and 0.492 for phenix.auto_sharpen. As shown in
Fig. 2d, EMReady improved the Q-scores for 96 out of 110 deposited
maps on the test set. Specific Q-scores for each of the test cases are
listed in Supplementary Data 1.

It should be noted that the Q-score as well as the map-model FSC
are indirectly optimized during the training of EMReady on the simu-
lated maps that are derived from PDB structures through a Gaussian
forward model. Therefore, the improvement in Q-score and map-
model FSC by EMReady here may be expected and would not be the
best indicator for the improvement inmap quality. Nevertheless, given
that our test cases are independent from the training set under the
threshold of <30% sequence identity, the Q-score andmap-model FSC
here would still be valuable metrics to measure the robustness and
general applicability of EMReady across maps.

We furthermeasure the performance of EMReady in terms of the
correlation coefficient (CC) values between model-map density and

experimental map density43. Three different CCmetrics are reported,
including CC_box, CC_mask, and CC_peaks. The measured CC values
are listed in Table 1. As shown from Fig. 3a, c, e, EMReady yielded
significant improvements on the deposited maps for all the CC
values. The average CC_box, CC_mask, and CC_peaks values for the
processed maps by EMReady are 0.855, 0.798, and 0.753, respec-
tively, which are significantly higher than 0.716, 0.788, and 0.614 for
the deposited maps. DeepEMhancer and phenix.auto_sharpen can-
not improve the CC values on these deposited primary maps. As
observed in Fig. 3b, d, f, compared to the deposited primary maps,
the maps processed by EMReady give better CC_box, CC_mask and
CC_peaks values. Specifically, EMReady has increased the CC_box
values for 105 out of 110 maps, increased the CC_mask values for 75
out of 110maps, and increased the CC_peaks values for 101 out of 110
maps. The detailed CC values for each of the 110 tested primarymaps
are listed in Supplementary Data 1.

Figure 4a shows a comparison between the deposited and
EMReady-processed maps for EMD-22216, which is the mitochondrial
calcium uniporter (MCU) holocomplex in low-calcium blocking state
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Fig. 3 | Comparison of the CC values on the test set of 110 deposited primary
maps. a, c, eBox-whisker plots ofCC_box (a), CC_mask (c), andCC_peaks (e) for the
deposited, DeepEMhancer-processed, phenix.auto_sharpen-processed, and
EMReady-processed maps (n = 110 individual test cases). The center line is the
median, the cross is the mean, lower and upper hinges represent the first and third

quartile, the whiskers stretch to 1.5 times the interquartile range from the corre-
sponding hinge, and the outliers are plotted as diamonds. Dashed lines stand for
the averageCCvalues of depositedprimarymaps.b,d, fComparisonofCC_box (b),
CC_mask (d), and CC_peaks (f) between the deposited and processedmaps on each
test case. Source data are provided as a Source Data file.
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(PDB ID: 6XJX). The left panel of Fig. 4a shows the comparison at a
lower contour level. It can be seen from the figure that the trans-
membrane domain of MCU is buried in the lipid nanodisc in the
deposited map. However, EMReady effectively improves the contrast
of the region between the macromolecule and the lipid nanodisc,
making the lipid region almost invisible in the processed map. In
addition, EMReady also effectively reduces the background noise
around the macromolecule. In order to reveal the improvement in the
high-density regions of EM maps, we further compare the deposited
and processed maps at a higher contour level. As shown in the right
panel of Fig. 4a, the high-density regions in the processed map by
EMReady perfectly fit the helical backbone traces of the PDB model,
while the deposited map cannot provide such details. Correspond-
ingly, the processed map by EMReady achieved an improved

unmasked FSC-0.5 and Q-score of 4.08Å and 0.411, respectively,
compared with 7.28 Å and 0.375 by the deposited primary map. The
EMReady-processed map also yields improved CC_box and CC_peaks
values of 0.863 and 0.731, respectively, which are significantly higher
than 0.668 and 0.484 for the deposited map.

Figure 4b shows the example of EMD-22131, a 3.3 Å cryo-EM map
of the human CDK-activating kinase (PDB ID: 6XD3). For this case,
although EMD-22131 already has a good quality with an unmasked FSC-
0.5 of 4.06Å and a Q-score of 0.603, EMReady can further improve its
quality and achieved a significantly better FSC-0.5 and Q-score of
2.42 Å and 0.668, respectively. Correspondingly, the CC_box,
CC_mask, and CC_peaks of EMD-22131 are increased from0.717, 0.808,
and 0.674 for the deposited map to 0.912, 0.861, and 0.862 for the
EMReady-processed map, respectively. In addition, the background
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Fig. 4 | Examples of the improved EMmaps by EMReady. The deposited primary
maps are colored in blue, the EMReady-processed maps are in red, and the PDB
structures are in green. a EMD-22216 (associated PDB ID: 6XJX) at 4.6 Å resolution,
where the Left panel is for lower contour level and the Right panel is for higher
contour level. b EMD-22131 (associated PDB ID: 6XD3) at 3.3 Å resolution. The
enlarged views at the center compare the density regions around a ligand (Che-
mical ID: V0G). cMap-model Fourier shell correlation versus the inverse resolution

for EMD-22216.dMap-model Fourier shell correlation versus the inverse resolution
for EMD-22131. e EMD-10213 (associated PDB ID: 6SJ7) at 3.5 Å resolution, of which
two different β-sheet regions are shown in the top and bottom rows, respectively.
f EMD-0257 (associated PDB ID: 6HRA) at 3.7 Å resolution, where the left panel is for
the averagemapof twohalf-maps and the right panel is for the EMReady-processed
map. Source data are provided as a Source Data file.
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noises in the deposited map are suppressed by EMReady, and the
density signals for the macromolecule are enhanced. As observed in
the enlarged view of Fig. 4b, the density signal for a ligand (Chemical
ID: V0G) in the map is also improved by EMReady. The curves of
unmasked map-model FSC versus the inverse resolution also demon-
strate the improvement of the EMReady-processed map over the
deposited map (Fig. 4c, d).

Figure 4e focuses two β-sheet regions of EMD-10213 that is asso-
ciated with the structure of the human DDB1-DDA1-DCAF15 E3 ubi-
quitin ligase bound to RBM39 and Indisulam (PDB ID: 6SJ7). It can be
seen from the figure that EMReady can improve the map density for
the β-sheet region, not only by connecting the disconnected density
fragments, but also by splitting an integrated region for a β-sheet into
strips for individual β-strands. At the level of the entiremap, EMReady
improves the unmasked FSC-0.5 from 3.62 Å to 3.36 Å and improves
the Q-score from 0.555 to 0.580. In addition, the EMReady-processed
map achieved the CC_box, CC_mask, and CC_peaks values of 0.886,
0.824, and 0.792, respectively, which are significantly higher than
0.832, 0.798, and 0.693 for the deposited map.

In addition, we also give several examples of side-chains to show
the improvement relative to the deposited map obtained by EMReady
compared to other post-processing approaches including Dee-
pEMhancer and phenix.auto_sharpen (Supplementary Fig. 1). As can be
seen from the figure, EMReady provides improvements in both
main-chain and side-chain densities for helices and sheets from
maps of varied resolutions, compared to DeepEMhancer and
phenix.auto_sharpen.

Besides the default EMReady model with a grid size of 1.0 Å, we
also developed another EMReady model at 0.5 Å grid size to accom-
modate those cryo-EMmaps with a small voxel size of <1.0 Å. Namely,
during the training and evaluation of the 0.5 Å EMReady model, the
grid size of themaps is unified to 0.5 Å. The EMReadymodel with 0.5 Å
grid size is evaluated on a subset of 17 experimental maps that have a
voxel size ofbelow 1.0 Å. It is shown that overall themaps processedby
EMReady at a grid size of 0.5 Å can also achieve significant improve-
ments in terms of unmasked FSC-0.5,Q-scores, andCC values from the
deposited maps (Supplementary Data 2). These results demonstrate
the robustness and general applicability of EMReady.

Evaluations on half-maps
In addition to primary cryo-EMmaps, half-maps, which have nominally
independent errors, are required as the input for most of the post-
processingmethods. Therefore, we further evaluated the performance
of EMReady on a test set of 25 pairs of half-maps. The results are listed
in Table 2 and shown in Figs. 5 and 6. We used the average map of two
half-maps as the input of EMReady and also for the evaluation of half-
maps. For comparison, the table and figures also give the unmasked
map-model FSC-0.5 values of the average map of two half-maps and
the maps processed by five other post-processing approaches
including DeepEMhancer, LocScale, LocSpiral, phenix.auto_sharpen,
and phenix.resolve_cryo_em (density modification). The evaluation

results for eachof the test cases canbe found in SupplementaryData 3.
It can be seen from Table 2 that EMReady significantly improved the
unmasked map-model FSC-0.5 of the half-maps and performed the
best among the six post-processing methods (Fig. 5a). EMReady
improved the unmasked FSC-0.5 for all of the 25 maps (Fig. 5b). On
average, EMReady achieved an FSC-0.5 of 4.07 Å, comparedwith 5.17 Å
for averaged half-maps.

Besides FSC-0.5, the Q-scores of EMReady-processed half-maps
are also considerably improved (Fig. 5c). EMReady achieved an
improved average Q-score of 0.491, which is higher than 0.399 for the
averaged half-maps, 0.394 for DeepEMhancer, 0.409 for LocScale,
0.418 for LocSpiral, 0.476 for phenix.auto_sharpen, and 0.456 for
phenix.resolve_cryo_em (density modification). Specifically, EMReady
increased the Q-scores for 23 out of the total of 25 pairs of half-maps,
as shown in Fig. 5d.

Furthermore, EMReady can also improve the CC_box, CC_mask,
and CC_peaks values of averaged half-maps (Table 2). The processed
maps by EMReady achieved the average CC_box, CC_mask, and
CC_peaks values of 0.873, 0.794, and 0.760, respectively, which are
significantly improved from only 0.763, 0.729, and 0.626 by the
averaged half-maps andwere also higher than those achieved by other
post-processing approaches (Fig. 6a, c, e). As shown in Fig. 6b, d, f, the
majority of the processed half-maps by EMReady obtained improved
CC values. Specifically, out of the 25 pairs of half-maps, EMReady
improved the CC_box for 22 maps, improved the CC_mask for 20
maps, and improved the CC_peaks for 24 maps.

Figure 4f shows an example of how EMReady improves the quality
of half-maps. It can be seen from the figure that although the backbone
traces of α-helices can be clearly seen in the original averaged half-
maps of EMD-0257, few density signals of side chains can be observed.
However, after being processed by EMReady, the density map shows
legible density signals for side-chains. In addition, the improved side-
chain signals have correct orientations and suitable sizes. Quantita-
tively, EMReady improved the unmasked map-model FSC-0.5 and
Q-score for the averaged half-maps from 4.32 Å and 0.369 to 3.28 Å
and 0.519, respectively. In addition, the CC_box, CC_mask, and
CC_peaks were also considerably improved from 0.709, 0.736, and
0.573 to 0.919, 0.849, and 0.844.

In the above evaluations, we have demonstrated that the EMReady-
processed maps obtained an increased similarity to a gaussian forward
model derived from the PDB structure. However, this might not be the
true underlying signal that is observed in cryo-EM45. Therefore, to
evaluate how EMReady truly improves the quality of the reconstruction
itself, we conducted an additional experiment. Specifically, for each case
in the test set of 25 pairs of half-maps, we applied EMReady to one of the
two half-maps and calculated the unmasked FSC between one pro-
cessed half-map and the other unprocessed half-map. The evaluation
results are shown in Supplementary Fig. 2a, b. It can be seen from the
figure that the FSC-0.5 values between one processed half-map and the
other unprocessed half-map are significantly improved. On average, the
FSC-0.5 between half-maps is improved from 5.60Å for the unpro-
cessed half-maps to 5.22Å using EMReady-processed half-map #1 and
5.18Å using EMReady-processed half-map #2. These results suggest that
EMReady indeed captures the true underlying signal from the half-map
and injects it to the output processed map. As illustrated in Supple-
mentary Fig. 2c, EMReady captures clear traces of the β-sheets from
both half-maps of EMD-0071. The FSC curves between one processed
half-map and the other unprocessed half-map are continuously
enhanced by EMReady over a long range of inverse resolutions, com-
pared with the case between two unprocessed half-maps (Supplemen-
tary Fig. 2d). Accordingly, EMReady achieves improved FSC-0.5 values of
4.95Å and 4.88Å for the half-maps with the processed half-map #1 and
half-map #2, respectively, compared with 5.55Å between the unpro-
cessed half-maps. The detailed experiment results are listed in Supple-
mentary Data 4.

Table 2 | Map quality on the test set of 25 pairs of half-maps

Method FSC-0.5 (Å) Q-score CC_box CC_mask CC_peaks

half-maps 5.17 0.399 0.763 0.729 0.626

DeepEMhancer 4.71 0.394 0.722 0.716 0.680

LocScale 5.04 0.409 0.685 0.686 0.688

LocSpiral 4.89 0.418 0.755 0.743 0.636

phenix.auto_sharpen 5.18 0.476 0.727 0.773 0.625

phenix.resolve_cryo_em 4.61 0.456 0.474 0.672 0.458

EMReady 4.07 0.491 0.873 0.794 0.760

The results of half-maps are calculated on the averaged map of two half-maps. The numbers in
bold fonts indicate the best performances for the corresponding metrics.
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Improvement in map interpretability
As the ultimate goal of cryo-EM is to determine the atomicmodel from
the EM map, the true improvement in processed maps should be
reflected in the improvement in the built models, that is, the
improvement in map interpretability. Therefore, we further evaluate
the performance of EMReady in terms of de novomodel building on a
test set of 682 chains of cryo-EM primary maps. Specifically, we use
phenix.map_to_model17–19 to automatically build the atomic models
from themap regions segmented within 4.0 Å fromeach of the chains.
The built models are compared with the deposited PDB structures
through phenix.chain_comparison. Twometrics, residue coverage and
sequence match percentages, are reported as the measure of model
quality. The evaluation results on the test set are shown inFig. 7a, b and
listed in Supplementary Table 1. For comparison, the figures also dis-
play the corresponding results of deposited maps, DeepEMhancer-
processed, and phenix.auto_sharpen-processed maps. The evaluation
results for each test case can be found in Supplementary Data 5. It can
be seen from the figure that EMReady significantly improved the
residue coverage of built atomic models and gave an average value of
79.7%, which is significantly higher than 64.2% for the depositedmaps,
58.1% for DeepEMhancer, and 64.3% for phenix.auto_sharpen. Similar
trends can also be found in the sequence match percentages of built
models. The atomic models built from the EMReady-processed maps
achieved a much higher sequence match of 50.4%, compared with
31.9% for the deposited models, 34.6% for DeepEMhancer, and 32.9%
for phenix.auto_sharpen.

Supplementary Fig. 3a compares the atomicmodels built from the
deposited map and from the EMReady-processed map (PDB ID: 5LZP,
chain L). As indicated by the arrows, the deposited map (EMD-4128)
suffers from heterogeneity in density signals, thus results in skipped
backbone traces and promiscuous side-chain assignment. In contrast,
the corresponding weak signals are significantly enhanced in the
EMReady-processed map. Therefore, the EMReady-processed map
leads to a bettermodel built by phenix.map_to_model in both accurate
backbone tracing and side-chain assignment. Specifically, the atomic
model built from the EMReady-processed map achieved a residue
coverage of 97.7% and a sequence match of 98.6%, compared with a
residue coverage of 51.8% and a sequence match of 41.7% for the
deposited map. Supplementary Fig. 3b gives another example for the
chain h of EMD-10045 (PDB ID: 6RWX). Compared to the deposited
map, the EMReady-processed map also significantly improved the
continuity of density volume (indicated by an arrow), the side-chain
packing and thereby the interpretability. The model built by phe-
nix.map_to_model from the EMReady-processed map achieved a resi-
due coverage of 95.5% and a sequence match of 89.3%, respectively,
compared with only 72.3% and 60.2% for the deposited map.

To evaluate the general applicability of EMReady in improving
map interpretability, we have also used another modeling algorithm,
MAINMAST20, to build the atomic models from the deposited, Dee-
pEMhancer, phenix.auto_sharpen, and EMReady-processed maps on
the test set of 385protein chains. As shown in Fig. 7c, d, theMAINMAST
models built on the EMReady-processed maps yielded a significantly
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improved coverage of 85.6%, compared with 73.9% for the deposited
maps, 72.1% for DeepEMhancer, and 74.0% for phenix.auto_sharpen
(Supplementary Table 1). The improvement ofmap interpretability can
also be observed in sequence match. Specifically, EMReady obtained
an average sequencematchvalueof 33.8%,which is significantly higher
than 15.2% for depositedmaps, 14.6% for DeepEMhancer, and 15.4% for
phenix.auto_sharpen (Supplementary Table 1). The evaluation results
for each of the chains can be found in Supplementary Data 6. These
results again demonstrate the improvement of map interpretability by
EMReady.

Evaluation against higher-resolution structures and maps
Using the map-associated PDB structures as the reference structures,
we have demonstrated the better quality of EMReady-processedmaps
than deposited maps. However, if the quality of a cryo-EMmap is low,
the associated PDB structure may contain errors, which would

introduce biases into the evaluation results. Therefore, to further
evaluate the robustness of EMReady, we used EMReady to process
lower-resolution cryo-EM maps and then evaluated the EMReady-
processed maps against higher-resolution PDB structures and maps.

The example of a cryo-EM map at 3.1 Å resolution for human
apoferritin (EMD-20028) is shown in Fig. 8a, b. The reference PDB
structure is built into a 1.8 Å EMmap (EMD-20026) based on the X-ray
structure of human apoferritin at 1.52Å resolution (PDB ID: 3AJO)44,46.
Since the voxel size of EMD-20028 is 0.65 Å, the EMReady model with
0.5 Å grid size is applied instead of the primary 1.0Å model. As shown
in Fig. 8a, the values of Fourier shell correlation between the map and
the reference model are consistently improved by EMReady over a
long range of inverse resolutions. It can be seen from Fig. 8b that the
EMReady-processed map shows more high-resolution details in both
backbone regions and side-chain regions than the original 3.1 Å map.
Quantitatively, the unmasked map-model FSC-0.5 and Q-score
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between the map and the reference structure was considerably
improved from 6.26 Å and 0.624 to 2.00Å and 0.747, respectively. In
addition, the CC_box, CC_mask, and CC_peaks of EMReady-processed
map were 0.881, 0.828, and 0.839, respectively, which are higher than
0.720, 0.824, and 0.686 by the deposited map, respectively.

Similar improvement trends can also be observed on another
cryo-EM map of human γ-secretase, EMD-2677 at 4.5 Å resolution
(Fig. 8c, d). Here, the reference PDB structure is built from a cryo-EM
map at 3.4 Å resolution (EMD-3061, associated PDB ID: 5A63). It can be
seen from the figures that EMReady significantly improved the quality
of the lower-resolution cryo-EM map, and the values of Fourier cor-
relation between the map and the reference model were also con-
sistently improved by EMReady. Correspondingly, the unmasked FSC-
0.5 and Q-score are improved by EMReady from 7.54Å and 0.277 to
4.72 Å and 0.297, respectively. The EMReady-processed map also
achieved higher CC_box, CC_mask, and CC_peaks of 0.824, 0.668, and
0.686, respectively, compared to 0.504, 0.628, and 0.311 for the
deposited map.

In addition to the evaluations against higher-resolution PDB
structures, we also assessed our EMReady-processed maps using
higher-resolution cryo-EM maps as the references. Specifically, we
investigated the unmasked map-map FSCs of a lower-resolution map
before and after applying EMReady against its corresponding higher-
resolutionmap. Themap-mapFSCs are calculated byphenix.mtriage43.
As shown in Supplementary Fig. 4a, b, the map-map FSC curves of
EMD-20028 against EMD-20026 and EMD-2677 against EMD-3061
before and after applying EMReady are similar to their map-model
counterparts (Fig. 8a, c). These results further confirm the improve-
ment of the map quality in the EMReady-processed maps.

Moreover, we also tested EMReady on a much lower resolution
map of human γ-secretase, EMD-2678 at 5.4 Å resolution, which was
reconstructed from a small number of 37310 particles. As a compar-
ison, its corresponding 3.4 Å map EMD-3061 was reconstructed from
159549 particles. It is shown that the Fourier correlation of EMD-2678
against EMD-3061 is also improved over a very long range of inverse
resolutions (Supplementary Fig. 4c). Comparing the above three cases
also reveals that the map improvement by EMReady may to some
extent depend on the resolution (Supplementary Fig. 4a–c). Such
trend can be partially attributed to the fact that EMReady tends to be
more confident tomodify the densities in amapwith higher resolution
and reliable density information. In contrast, if a map has a low reso-
lution like the case of EMD-2678, EMReady will try to maintain the
original density signals in the map (Supplementary Fig. 4d). These
results suggest that EMReady is reliable and robust in processing the
maps with different resolutions, instead of just learning the simple
mapping from experimental maps to simulated maps.

Validation of density modifications by EMReady
Unlike traditional map sharpening methods that aim at optimizing
the resolution-dependentweighting of the amplitude components of
Fourier coefficients in the Fourier representation of cryo-EM maps,
EMReady directly modifies the input map in real space and would
change the phases and amplitudes. Therefore, it is of pivotal
importance to evaluate whether the density modifications by
EMReady are reliable. However, a direct validation for the density
modification is impossible because the absolute ground-truth maps/
models are not available in real-world scenarios. Instead, we have
adopted an indirect validation way by extensively examining the
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reasonability of the density modification in the processed maps by
EMReady in various cases.

The first case is the primary map of EMD-0257 at 3.7 Å resolution
in which the N and A cytoplasmic domains of KdpB are more flexible
and thus have a lower resolution than the transmembrane helices in
the deposited map (Supplementary Fig. 5a). Here, the local resolution
of the depositedmap is calculated byMonoRes37. To evaluate whether
thedensitymodificationby EMReady is reliable,wecalculated the local
correlations of the deposited map (Supplementary Fig. 5b) and the
EMReady-processedmap (Supplementary Fig. 5c) against the PDBmap
simulated from the associated structure (PDB ID: 6HRA) (Supple-
mentary Fig. 5d). Here, a higher correlation means a better similarity
with the simulated PDB map, and a lower correlation stands for a
higher difference from the PDBmap. Several notable properties can be
observed from the figures. First, the regions with the lowest correla-
tion (i.e., the highest difference) between the EMReady-processedmap
and the simulated PDB map tend to be located in the low resolution/
flexible KdpB parts, whereas the regions with a higher correlation (i.e.,
a better similarity) between the EMReady-processed map and the
simulated PDB map tend to be located in the higher resolution/more
reliable transmembrane part (Supplementary Fig. 5c). These trends are
consistent with those in the deposited map (Supplementary Fig. 5b).
Second, two notable features can be seen by comparing the EMReady-
processed map (Supplementary Fig. 5c) and the deposited maps
(Supplementary Fig. 5a, b). One feature is that EMReady improves the
local correlation (i.e., give a better similarity) with the simulated PDB
map in the more reliable transmembrane region with local resolutions
of about 3–6Å, but remains a low-density correlation with the PDB
map in the flexible KdpB parts with local resolutions of >6Å. In other
words, EMReady tends to modify the density towards the PDB struc-
ture for the higher resolution/more reliable regions, but does not try to
overfit the density towards the lower resolution/more flexible parts,
which arewanted in termsofmap reliability. This phenomenonmaybe
understood because EMReady is trained on the cases with 3–6Å
resolutions and thus tends to let the lower-resolution regions remain
intact. The other feature is that EMReady succeeds in suppressing the

noises of lipid solvents around the protein without removing the
protein density signals or adding artifacts fromnoises (Supplementary
Fig. 5c). These results demonstrate the reasonability of the density
modification by EMReady. Correspondingly, the EMReady-processed
map achieved improved FSC-0.5, Q-score, CC_box, CC_mask, and
CC_peaks of respectively 2.90 Å, 0.573, 0.900, 0.844, and 0.837,
compared with 4.33 Å, 0.506, 0.697, 0.827, and 0.572 of the
deposited map.

The second case is EMD-5447, for which the particles were
selected from very noisy micrographs using an external reference and
thus might have resulted in an overfitted reconstruction47,48. Supple-
mentary Fig. 5e compares the deposited map and the EMReady-
processed map of EMD-5447. It can be seen from the figure that
EMReady almostdoes nomodification to themap. Suchfindingmaybe
partially due to that the density patterns in this overfitted recon-
struction are not similar to those seen in the training set of EMReady.
This is encouraging because EMReady does not overfit an improperly
reconstructed map towards structure-like patterns.

We further evaluated the impact of noises in input EM density
map on the output of EMReady. Specifically, the simulated map of a
PDB structure (PDB ID: 6O0H) was created at the reported resolution
using a grid step of 1.0 Å. After normalizing the simulated map to the
range of 0.0–1.0, the Gaussian noise with a standard deviation of 1/6
was added using Xmipp49. Then, EMReady was used to process the
noisy simulatedmap. As shown in Supplementary Fig. 6a, EMReady did
not misinterpret the noises as the signals and successfully recovered
the density volume of the simulated map by suppressing the noises in
the noisy map. The unmasked map-map FSC curves of the noisy map
and the EMReady-processed map against the simulated map are dis-
played in Supplementary Fig. 6b. It can be seen from the figure that
compared with the noisy map, the unmasked map-map FSC of the
EMReady-processedmap is consistently improvedover a long range of
inverse resolutions. Similar trend is also witnessed in the unmasked
map-model FSC curves (Supplementary Fig. 6c). It isworthmentioning
that this is just an extreme example to illustrate how EMReady deals
with very noisy cryo-EM maps, while we have demonstrated that
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deposited maps (blue) and EMReady-processed maps (red). The higher-resolution
reference PDBstructures are colored in green. Source data are provided as a Source
Data file.
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EMReady is also capable of handling the real noises observed in
experimental cryo-EM maps (Fig. 4a, b and Supplementary Fig. 4d).

We then investigated the behavior of EMReady on realistic noises.
Displayed in Supplementary Fig. 6d is the same example as that in
Fig. 4a but at much lower contour thresholds. It can be seen from the
figure that the noises introduced by the lipid nanodiscs are well sup-
pressed and only appear in the EMReady-processed map at very low
thresholds. More importantly, one can see that the noises processed
by EMReady do not seem to add significant structural artifacts to the
density ofmacromolecule, comparedwith those in the depositedmap.

Finally, we examined the density modification of EMReady on a
map with pure noise. Following the same procedure as the previous
experiment, Xmipp was used to add the Gaussian white noise with a
standard deviation of 1/6 to an empty grid. As shown in Supplementary
Fig. 6e, EMReady successfully suppressed the Gaussian white noise,
which can only present at very low contour levels compared to the
typical contour level required to enclose the macromolecule in
EMReady-processed experimental maps (e.g., threshold of 2.0 in Sup-
plementary Fig. 6d). Moreover, despite some agglomeration of noise,
the resulting EMReady-processed map maintained the overall form of
Gaussian noise. Although we notice that the agglomeration of noise
may lead to some structural patterns (Supplementary Fig. 6e), the
density values for structured noises are extremely low in the EMReady-
processed map compared to those for the underlying macromolecule
(Supplementary Fig. 6a, d). For example, structured noises can be seen
at density thresholds of 0.05 and 0.1, which approximately correspond
to density values of respectively 1/6 and 1/3 in the original noise map
(calculated by rescaling the EMReady-processed map to have an equal
standard deviation). These findings suggest that EMReady successfully
recognizes the texture of noises, and thus produces an output with
minimal artifacts. Nevertheless, it should be emphasized that low
density values are risky and should be carefully handled by potential
users when interpreting the EMReady-processed map.

The findings on the above cases demonstrate the robustness and
reliability of the density modification by EMReady. Namely, the mod-
ification of EMReady is based on the local quality and resolvability of a
map. Specifically, in addition to efficiently suppressing the back-
ground noise in a map, EMReady modifies the density map based on
both global resolution and local environment. On one hand, EMReady
is effective to add high-resolution details for higher-resolution or rigid
regions. On the other hand, EMReady would not forcibly overfit the
density signals towards the PDB structure for the lower-resolution or
intrinsically flexible regions that lack adequate and valid structural
context.

Ablation experiments
There are two major differences between EMReady and similar deep
learning methods: One is the extraction of non-local features within
the size of the input density slices (48 Å × 48Å × 48Å) by learning
strategies including SCUNet with swin transformer as well as the SSIM
loss; The other is the use of simulated map as the learning target. To
investigate how the non-local components of our deep learning fra-
mework affect the performance of EMReady, we conducted extensive
ablation experiments of our EMReady framework. Specifically, we
trained a total of four additional ablation models of EMReady,
including two EMReady models with different input box sizes, one
EMReady model using the local UNet++50 network, and one EMReady
model without using the non-local SSIM loss.

We first calculated the unmasked FSC-0.5, Q-score, and CC values
of these ablation models on the test set of primary maps and on the
test set of half-maps. The detailed ablation results on each test case of
the test set of 110 primary maps and the test set of 25 half-maps are
listed in Supplementary Data 7 and 8, respectively. The average eva-
luation results are presented in Supplementary Table 2. As shown in
the table, the performance of the model without using SSIM loss is

significantly worse than the baseline model on both test sets in terms
of different evaluation metrics. This suggests that the proposed non-
local SSIM loss is important for improving the accuracy of our
EMReady model. Moreover, the UNet++ model also performed sig-
nificantly worse than the baseline model in terms of FSC-0.5 and
Q-score on both test sets, as shown in Supplementary Fig. 7. These
results demonstrate that the performance of EMReady indeed benefits
from the non-local components in our deep learning framework,
though the non-locality of EMReady is limited to the size of input
density slices of 48 Å × 48Å × 48Å. To investigate the impact of input
box size on EMReady,we compared the results of the EMReadymodels
with different input box sizes. It is found that using a larger input box is
beneficial for the performance of EMReady. As the range of non-
locality in EMReady is directly proportional to the size of input density
box, the better performance with a larger input box can be attributed
to its longer range of non-locality. These ablation results highlight the
necessity of including SSIM loss, adopting SCUNet architecture, and
using a large input box in EMReady.

We further compared the learning curves of the baseline model
with the UNet++ model and the model trained without SSIM loss
(Supplementary Fig. 8a–d). The detailed loss values are listed in Sup-
plementary Data 9. It can be seen from the figure that the baseline
model has lower smooth L1 loss and SSIM loss, comparedwith the local
UNet++ model. Moreover, the smooth L1 loss of the model trained
without SSIM is significantly lower than that of the baselinemodel and
the UNet++ model on both the training and validation set. This means
that the model trained without SSIM loss tends to yield an overfitted
result with local distance as low as possible to its learning target while
ignoring the important structural correlation in the density signals,
thus resulting aworseperformance comparedwith the baselinemodel
on the independent testing set. Supplementary Fig. 8e displays an
example of how the SSIM loss prevents the model from overfitting on
the primary map of EMD-11231 at 4.3 Å resolution. The baseline model
achieved better FSC-0.5 and Q-score of 4.07 Å and 0.483, compared
with 4.31 Å and0.467 by theUNet++model, and 4.11 Å and0.453by the
model without SSIM loss. In addition, one can also see that compared
with themapsprocessedby thebaselinemodel and theUNet++model,
the density volume for a part of the Nqo12 subunit was mistakenly
filtered out after being processed by the model trained without SSIM
loss. This suggests that incorporating the SSIM loss into the training
process can effectively avoid such mis-modification that is caused by
ignoring structural correlation in the overfitted model.

The direct ablation experiment of the simulated PDB maps for
EMReady is difficult because EMReady cannot take the LocScale-
processedmaps that have been used by DeepEMhancer as the training
set, because LocScale is only designed for unfiltered and unsharpened
maps only. DeepEMhancer also cannot be trained on the training set of
primary maps that are used by EMReady, because DeepEMhancer is
designed to use half-maps for training. Nevertheless, the importance
of the simulated maps may be roughly indicated by the difference
between the results of EMReady and LocScale on the test set of 25 pairs
of half-maps. Comparing Table 2 and Supplementary Table 2 reveals
that the use of the simulated maps seems to have the most impact on
the improvement of EMReady, suggesting the necessity of using
simulated maps instead of LocScale-processed maps. However, as we
discussed above, simply using the simulated maps with a smooth L1
loss is problematic because it will result in overfitting. Only using the
simulated maps with a combination of smooth L1 loss and SSIM loss
can effectively prevent the training from overfitting, and thus obtain a
robust and reliablemodel, which is just another important point of our
EMReady method.

Discussion
In this study, we propose EMReady, a powerful deep learning frame-
work to improve the interpretability of cryo-EMmapsbasedon a three-
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dimensional Swin-Conv-UNet architecture. EMReady addresses the
critical challenges of loss of contrast and heterogeneity in cryo-EM
maps using twofold local and non-local strategies. First, in the network
architecture, EMReady adopts a swin convolutional block to incorpo-
rate the local modeling ability of residual convolutional layer and non-
local modeling ability of swin transformer. The implemented multi-
scale UNet can further enhance the local and non-local modeling
ability. Second, in the loss function, EMReady not only measures the
local difference through the smooth L1 distance, but also considers the
non-local correlation effect through the SSIM between the processed
experimental and simulated targetmaps. Compared with training with
simple smooth L1 loss, incorporating SSIM loss in the training process
can effectively prevent EMReady from possible overfitting.

Despite the powerfulness of non-local modeling in EMReady, it
should be noted that the non-local range of EMReady is not global but
have a limited distance because of the high memory cost of swin
transformer during the training of EMReady. Namely, the size of input
density box (48 Å × 48Å × 48Å in this study), which defines the non-
local modeling range of EMReady, is strongly limited by the total
memoryofGPUsduring the training, though the running of the trained
EMReady model is not memory expensive and can be accommodated
on a GPU with a memory as low as 8GB. It is expected that the non-
local modeling capability of EMReady can be further improved with
more advanced GPUs with higher memory.

In addition to the local and non-local design in the network
architecture, another important contribution to the performance of
EMReady is the use of the simulated maps as the target maps during
the training process. Although EMReady is benefited from the pure
density signals in simulated maps, the simulated maps should be used
with caution. First, the PDB structure may contain poorly modeled
regions and thus introduce possible biases to the simulated maps.
Addressing this issue, strict criteria of model quality and model-map
correlation should be used when collecting the training cases, as we
havedone for EMReady. Second, our simulatedmap is calculated using
a uniform resolution over the entire structure (Eq. 1),which ignores the
heterogeneity in real experimental maps. Although we have shown
that such discordance would not lead to an overfitting of EMReady, it
may to some extent cause a sub-optimal performance of the trained
model. It is expected that the deep learning model would be further
improved if we take the structure and map heterogeneity into con-
sideration, e.g., calculating the simulated map according to the
B-factor of each atom, which will be left to our future study. Third,
some special structure components like ligands, glycans, post-
translational modification, and lipids may not be necessarily mod-
eled in the PDB structures by their authors or have too few samples in
the PDB structures. As such, the density information for such com-
ponents may not be efficiently learned from the corresponding
simulated maps.

Although EMReady has been trained on primary maps that are
usually masked and/or sharpened, it is able to improve both raw half-
maps and processed primary maps, whereas existing amplitude-
reweighting-based sharpening methods are often designed to only
process unmasked and unsharpened half-maps. Therefore, EMReady
can be used to further improve the results of other post-processing
methods through de-noising and density modification. However,
unlike traditional sharpening methods which only modify the Fourier
amplitude, EMReady directly modifies the map density in real space
and would change both the phases and amplitudes. Therefore,
although we have shown that the density modifications by EMReady
are reliable on most of the test cases, users should still pay special
attentions when analyzing the results of EMReady.

In addition, comparison of the EMReady results on unprocessed
half-maps and post-processed primary maps reveals that EMReady
performs better on the post-processed primary maps than on the
unprocessed half-maps (Supplementary Fig. 9). Specifically, the

average unmasked FSC-0.5 and Q-score for EMReady-processed pri-
mary maps are 3.81 Å and 0.536, compared to 4.07 Å and 0.491 for
EMReady-processed half-maps, respectively. These results can be
understood because EMReady is trained on post-processed primary
maps. It is expected that EMReady can be further improved through
training on unprocessed half-maps when more and more half-maps
become available for their PDB structures. Before then, for the best
performance of EMReady on unprocessed raw half-maps, users may
try to apply a global B-factor-based sharpeningmethod like RELION or
phenix.auto_sharpen before applying EMReady.

Finally, it should be noted that despite the superior performance
of EMReady, users should not solely rely on the EMReady-processed
mapwhen building amodel from a cryo-EMmap. Asmentioned above,
EMReady may not be able to properly handle some special structure
components like small ligand, glycan, post-translational modification,
lipid, etc. because they are under-represented in the training set. For
those uncommon structures like ligands and glycans, EMReady may
not be able to give significant density improvement (Supplementary
Fig. 10a). For lipidmolecules, EMReady tends to filter out their density
signals (Supplementary Fig. 10b). In addition, for those density regions
with extremely weak signals, EMReady may mis-recognize them as
background noises and would suppress their density signals (Supple-
mentary Fig. 10c), leading to incorrect modeling (Supplementary
Data 5). Therefore, it is recommended that users try different post-
processing methods and examine their modeling results by orthogo-
nal ways. All in all, given the accuracy and robustness of EMReady in
improving the quality and interpretability of cryo-EM maps, it is
anticipated that EMReady will serve as a valuable tool for improving
experimentally solved cryo-EM maps and thus help determine the
atomic structures.

Methods
Network architecture
We use a Swin-Conv-UNet (SCUNet)40 architecture to post-process
cryo-EM density maps. Figure 1c shows the schematic of our deep
learning architecture. EMReady consists of three encoder, one bot-
tleneck, and three decoder swin-conv (SC) blocks with skip connec-
tions between encoders and decoders. Each SC block includes a swin
transformer (SwinT) block for non-local modeling41 paralleled to a
residual convolution (RConv) block for local modeling. The window
size of the swin transformer is set to 3. The 3D convolution layer with
kernel size and stride of 2 is used as down-sampling, and the 3D
transposed convolution layer with kernel size and stride of 2 is used as
up-sampling. The details of the network architecture can be found in
Supplementary Data 10. The inputs of our network are density slices of
size 48 × 48 × 48 with a grid interval of 1.0Å. The outputs of our net-
work are processed density slices of the same size.

Data collection
In order to train and evaluate our EMReady framework, we have col-
lected a non-redundant dataset of EM maps from the EMDB. All the
single-particle EM entries at 3.0–6.0 Å resolutions that have associated
PDB models are downloaded from the EMDB and PDB. Any EM map
and its corresponding PDB structure that meet the following criteria
are removed: (i) containing backbone atoms only, (ii) including
unknown residues (UNK), (iii) including missing chain, (iv) having
nonorthogonal map axis, and (v) resolution is not given by the FSC-
0.143 cut-off. To ensure efficient training, we further exclude those
entries with CC_mask values less than 0.75. The CC_mask values are
calculated through the comparison between the deposited EM map
and PDB model using phenix.map_model_cc. To remove the redun-
dancy, the remaining cases are clustered using a greedy algorithm.
Twomodels are considered to be similar if any chain in the first model
has >30% sequence identity with any chain in the second model. The
one with the largest number of similar cases is chosen as the
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representative of the corresponding cluster, and then the cases in the
cluster are removed. This procedure is repeated until all the cases are
clustered. The final non-redundant set consists of the representatives
of each cluster. A total of 436 pairs of EM maps and associated PDB
structures with resolutions ranging from 3.0Å to 6.0 Å are retained.
Out of the total of 436 cases, 86 are randomly selected as the test set,
280 are randomly selected as the training set, and the remaining 70
maps are used as the validation set (Supplementary Data 11).

The initial test set consists of high-quality pairs of maps and PDB
models with CC_mask values no less than 0.75. We then further collect
a supplemental test set of entries with CC_mask values between 0.50
and 0.75. Greedy algorithm is also used to remove redundancy in the
supplemental set using 30% as the sequence identity cut-off. More-
over, we also exclude the cases in the supplemental set that have >30%
sequence identitywith any case in the abovedataset of 436 cases. After
adding 24 cases from the supplemental set, the final test set consists of
110 pairs of maps and structure models, as listed in Supplementary
Data 1. As for half-maps, a subset of 25 pairs of half-maps is used, after
excluding the cases in the test set that have no corresponding half-
maps or have severe mismatch between the map and PDB structure
(Supplementary Data 3). For individual chains, the density region
within 4.0 Å of each protein or nucleic acid chain is segmented out of
the whole primary map. Chains that have mismatch between atomic
structure anddensity volumeare excluded. The resulted set consists of
682 pairs of chains and density maps (Supplementary Data 5).

Data preprocessing
During training, validation and testing, the grid size of experimental
cryo-EMmaps is unified to 1.0 Å by applying a cubic interpolation. The
negative values for the map density are clipped at zero. The input
density boxes of EMReady are of size 48 × 48 × 48 and the output
processed boxes are of the same size. In our previous work of
EMNUSS51, we normalized the density values in each input box to the
range 0.0–1.0 by the maximum density value of each box. However,
such local normalization is not suitable for the present task since it will
introduce heterogeneity in the density amplitude for output maps.
Thus, a global normalization strategy is adopted in the present study.
Namely, we normalize the density values in each experimental map to
the range 0–1.0 by the 99.999-percentile density value of each map.
For each experimental EM density map in the training set, the target
map is simulated from its associated PDB structure. For each experi-
mental EM density map in the training set, the target density map is
simulated from its associated PDB structure with a grid interval of
1.0 Å. Namely, given a PDB structure ofM atoms, the simulated density
value ρ on grid point x is calculated by the following formula

ρðxÞ=
XM

i

θZie
�k∣x�ri ∣

2 ð1Þ

where Zi and ri are the atomic number and the position vector of the
i-th heavy atom (i = 1, 2,…, M), respectively. The value of k depends
on the reported resolution R of the experimental map52, i.e.,
k = ðπ=ð1:2 +0:6RÞÞ2, and the scaling factor θ is defined as θ= ðk=πÞ1:5.

Data augmentation is adopted in the training procedure. Specifi-
cally, the EM density maps and their corresponding simulated maps
are first chunked into pairs of overlapping boxes of size 60 × 60 × 60
with strides of 30 voxels. The inputs of training are augmented by
random 90° rotations, and by randomly cropping a 48 × 48 × 48 box
from each 60 × 60 × 60 box. To ensure effective training, non-positive
boxes are excluded from training. For evaluation, the input EMdensity
map is cut into overlapping boxes of size 48× 48 × 48with strides of 12
voxels, which are then fed into the trained EMReady network. Finally,
the output boxes are re-assembled into the final processed map by
averaging the overlapping parts.

Network training
The network is implemented through Pytorch1.8.1 + cuda11.1. Two
different loss functions are adopted to calculate the difference
between predicted volume slices and target slices. One is the smooth
L1 loss, which calculates the local difference in the density values
between predicted slices and target slices. The smooth L1 loss uses a
squared term if the absolute element-wise error falls below 1.0 and an
L1 term otherwise. The smooth L1 loss between a predicted slice X and
its corresponding target slice Y is described by the following formula,

SmoothL1LossðX ,Y Þ=
XN

i = 1

XN

j = 1

XN

k = 1

li,j,k
N3 ð2Þ

whereN is the slice size (N = 48 in this study), and li,j,k is the Smooth L1
distance between X and Y at position (i, j, k) described as follows,

li,j,k =
0:5ðXi,j,k � Y i,j,kÞ2, if ∣Xi,j,k � Y i,j,k ∣<1:0
∣Xi,j,k � Y i,j,k ∣� 0:5, otherwise

(
ð3Þ

The other is SSIM loss which measures the non-local correlation
between a predicted slice and its target slice according to their con-
trast and structure similarity. The contrast of a given slice is measured
by its standard deviation of density values. Therefore, the contrast
similarity c(X, Y) of a pair of predicted slice and corresponding target
slice can be described using the following equation,

c X ,Yð Þ= 2σXσY

σ2
X + σ2

Y
ð4Þ

where σX and σY are the standard deviations for the predicted slice X
and target slice Y, respectively. The structure similarity is the cosine
similarity between two normalized slices as follows,

s X ,Yð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N3 � 1

p X � μX

σX

 !
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N3 � 1

p Y � μY

σY

 !
=

σXY

σXσY
ð5Þ

where μX and μY are the mean density values for X and Y, respectively,
and σXY is the covariance between X and Y. Finally, the SSIM loss is
simply given as follows,

SSIMLoss X ,Yð Þ= 1� cðX ,Y Þ× sðX ,Y Þ= 1� 2σXY + ε
σ2
X + σ2

Y + ε
ð6Þ

where ε is set to be a small constant (ε = 10−6 in this study) to prevent
dividing by zero. We simply use the sum of Smooth L1 loss and SSIM
loss as the total loss in the training. Adam optimizer is adopted to
minimize the loss. Our networks are trained with 108 boxes employed
in one batch. The initial learning rate is set to 5 × 10−4, and will be
reduced to 1/2 of its current value if the average loss on the training set
does not decrease for every 4 continuous epochs. The training pro-
cedure will be stopped at 300 epochs, or when the learning rate
reaches a minimum value of 1 × 10−5. We have carefully considered
various hyperparameters and different settings to optimize the per-
formance of our EMReady method, including using a smaller batch
size, and using regularization techniques like dropout and weight
decay. However, as shown in the evaluation results in Supplementary
Data 12 and 13 and in the training and validation loss curves in Sup-
plementary Fig. 11 (Supplementary Data 14), compared to the baseline
model, the models trained with other settings exhibit more or less
underfitting. Besides, using a smaller batch size requires a drastically
increased computation time to converge. The final choices of hyper-
parameter used in baseline model were based on empirical observa-
tions and computational efficiency. The network model with the least
loss on the validation set is used in the evaluation. During training, we
use four NVIDIA A100 GPU cards of 40GB VRAM, which can afford a
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batch size of 108. During the evaluation, one A100GPU card can afford
a batch size of 180, but other GPU cards with at least 8 GB VRAM can
also be used to run EMReady by reducing the batch size. As a com-
parison, the maximum batch size to run DeepEMhancer prediction on
one A100 GPU card is about 51.

Comparison with related methods
EMReady is compared with DeepEMhancer38 and phenix.auto_sharpen29

on the test set of 110 primary EM maps. It is worth mentioning that
errors are reported by DeepEMhancer when processing 10 primary
maps, and thus no results are given by DeepEMhancer on thesemaps. In
terms of map interpretability, we compare EMReady with Dee-
pEMhancer and phenix.auto_sharpen on 682 chains segmented from
the test set of 110 primary maps. EMReady is compared with
DeepEMhancer38, LocScale31, LocSpiral35, phenix.auto_sharpen29, and
phenix.resolve_cryo_em (density modification)33,34 on 25 pairs of half
maps. It should be noted that there are three DeepEMhancer models:
“tightTarget”, “wideTarget” and “highRes”. As different models are
specialized for different situations, we report the combinatorial results
of DeepEMhancer, where the DeepEMhancer “highRes” model is used
on the maps with reported resolutions of <4Å, and the default “tight-
Target” model is used on the other cases, unless otherwise specified.
The detailed results for all of the three DeepEMhancer models are listed
in Supplementary Data. In addition, the masked maps we provide for
LocScale are generated from the atomic structures using the same
method of DeepEMhancer38.

Evaluations of EMReady
Theperformanceof EMReady is exhaustively evaluated on the test sets
of 110 primary maps, 25 pairs of half-maps, and 682 chains. The
unmasked map-model Fourier shell correlation (FSC) is calculated for
deposited and processedmaps using phenix.mtriage43. The resolution
at which the map-model FSC falls to one half (i.e., FSC-0.5) is used as a
metric to measure the relative accuracy of the map42. Besides the FSC-
0.5, we also use the MapQ plugin in UCSF Chimera53 to measure the
resolvability of density maps, i.e., Q-score44. Q-score measures the
correlation betweenmap density at eachmodeled atom and reference
Gaussian density function. In addition, the correlation in real space can
also be used to assess the quality of cryo-EM maps, which can be
measured by the correlation coefficients (CC). Three CC values are
calculated by phenix.map_model_cc43 for a given pair of map and
model: CC_box, CC_mask, and CC_peaks. The CC_box uses the entire
map, the CC_mask uses the map values inside a mask calculated
around the macromolecule, and the CC_peaks compares the map
regions with the highest density values.

Furthermore, we also evaluated the role of EMReady in map
interpretability through structural modeling. To avoid introducing the
impact of human intervention, two automatic de novomodel building
tools, phenix.map_to_model17–19 and MAINMAST20, are used to build
the structure models from the deposited maps and processed maps.
The individual density patch for each chain is segmented out from the
whole map using a distance cut-off of 4.0 Å. The entire set of 682
chains alone with their corresponding density patches are used in the
evaluation of map interpretability for phenix.map_to_model. However,
for MAINMAST that was designed to model full-length protein chains,
only 385 protein chains without any gap in the PDB model are used in
evaluation (Supplementary Data 6). The default parameters are pro-
vided for the main-chain tracing subprogram of MAINMAST. The
density thresholds are optimally chosen for the deposited maps and
processed maps. Specifically, a combination of threshold values
(author recommended contour level × 0.25, 0.50, 0.75, and 1.00) is
used for the deposited map. The same combination of density
thresholds is also applied for the map processed by phenix.-
auto_sharpen, after shifting its density values to have equal mean and
standard deviation values with the deposited map. The combinations

of density thresholds are chosen as [0.05, 0.10, 0.15, and 0.20] for
DeepEMhancer-processed maps and as [0.5, 1.0, 1.5 and 2.0] for
EMReady-processed maps. For each path generated by MAINMAST,
112 Cα models are generated with the parameter combinations
described in the original paper of MAINMAST. The one with the
highest threading score among all models is chosen as the final model
for the given protein chain.

Two metrics calculated by phenix.chain_comparison are used to
evaluate the accuracy of an atomic model built by phenix.map_to_-
model or MAINMAST: residue coverage and sequence match. The
residue coverage is the fraction of the residues in onemodel matching
the residues in another model within 3.0Å regardless of their residue
types. The Cα atom is used to represent the position of a residue for
protein, and the P atom for nucleic acid. The sequence match is the
percentage of the matched sequence with the same residue types in
the target structure reproduced by the query model.

In addition, according to the Nyquist theorem, to obtain a struc-
ture model below 2.0Å resolution, the cryo-EM reconstruction should
have a grid size of 1.0 Å or smaller. With the improvement of new EM
hardware and/or image processing technique, more and more
high-resolution cryo-EM maps with a voxel size of <1.0Å have
been achieved, resulting in atomic-resolution protein structure
determination54. If such maps are compulsively interpolated to a grid
size of 1.0 Å, they will suffer from a loss in map information and/or
quality. Therefore, we have also developed an EMReady model with a
grid size of 0.5 Å to accommodate those maps with a voxel size of
below 1.0 Å. Nevertheless, since cryo-EMmaps at 3.0–6.0Å resolutions
often have a voxel size of above 1.0 Å, the primary 1.0 Å EMReady
model is used as the defaultmodel inour evaluations, unless otherwise
specified.

To conduct ablation experiments of EMReady, we trained four
additional models including one EMReady model with input box size
of 24 × 24 × 24, one EMReadymodel with input box size of 32 × 32 × 32,
one EMReady model using the local UNet++ network50, and one
EMReady model without using SSIM loss. All the training hyperpara-
meters (except for the changed one) were set to be same as those for
the baseline EMReady model. Different from the baseline model, we
used 4 as the window size of the swin transformer for the model of
32 × 32 × 32 input because the box sizemust be divisible by 8 times the
window size.

Calculation of local correlation map between maps
To assess the density modifications by EMReady, we evaluated the
local correlation distribution of the deposited primary map and the
EMReady-processedmapof EMD-0257 relative to a simulatedmap that
is generated from its associated PDB structure (PDB ID: 6HRA) using
Eq. (1). The deposited map is interpolated to match the grid size of
1.0 Å of the EMReady-processedmap and the simulatedmap. For each
grid point with a positive density value on the deposited map or
EMReady-processedmap,weextracted a pair of small boxeswith a size
of 7 × 7 × 7 centered on that grid point from themap and the simulated
map. We then calculated the Pearson’s correlation between the two
boxes to represent the local correlation at that point.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at [http://
huanglab.phys.hust.edu.cn/EMReady/data/] or from the correspond-
ing author upon request. The Source Data underlying Figs. 2–4c, d,
5–7, 8a, c, Tables 1, 2, Supplementary Figs. 2a, b, d, 4a–c, 6b, c, 7, 8a–d,
9, 11, and Supplementary Tables 1, 2 are provided as Source Data file.
All published data sets used in this paper were taken from the EMDB
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and PDB. A full list with links of the EMDB and PDB accession codes
used in this study is available in Supplementary Data 15. Source data
are provided with this paper.

Code availability
The EMReady package and associated data are freely available for
academic or non-commercial users at http://huanglab.phys.hust.edu.
cn/EMReady/.
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