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Abstract 

Background  Molecular subtypes predict prognosis in muscle-invasive bladder cancer (MIBC) and are explored as 
predictive markers. To provide a common base for molecular subtyping and facilitate clinical applications, a consensus 
classification has been developed. However, methods to determine consensus molecular subtypes require validation, 
particularly when FFPE specimens are used. Here, we aimed to evaluate two gene expression analysis methods on 
FFPE samples and to compare reduced gene sets to classify tumors into molecular subtypes.

Methods  RNA was isolated from FFPE blocks of 15 MIBC patients. Massive analysis of 3’ cDNA ends (MACE) and the 
HTG transcriptome panel (HTP) were used to retrieve gene expression. We used normalized, log2-transformed data to 
call consensus and TCGA subtypes with the consensusMIBC package for R using all available genes, a 68-gene panel 
(ESSEN1), and a 48-gene panel (ESSEN2).

Results  Fifteen MACE-samples and 14 HTP-samples were available for molecular subtyping. The 14 samples were 
classified as Ba/Sq in 7 (50%), LumP in 2 (14.3%), LumU in 1 (7.1%), LumNS in 1 (7.1%), stroma-rich in 2 (14.3%) and 
NE-like in 1 (7.1%) case based on MACE- or HTP-derived transcriptome data. Consensus subtypes were concordant 
in 71% (10/14) of cases when comparing MACE with HTP data. Four cases with aberrant subtypes had a stroma-rich 
molecular subtype with either method. The overlap of the molecular consensus subtypes with the reduced ESSEN1 
and ESSEN2 panels were 86% and 100%, respectively, with HTP data and 86% with MACE data.

Conclusion  Determination of consensus molecular subtypes of MIBC from FFPE samples is feasible using various 
RNA sequencing methods. Inconsistent classification mainly involves the stroma-rich molecular subtype, which may 
be the consequence of sample heterogeneity with (stroma)-cell sampling bias and highlights the limitations of bulk 
RNA-based subclassification. Classification is still reliable when analysis is reduced to selected genes.
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Background
Sequencing techniques have advanced, leading to broad 
genomic analyses of bladder cancer cohorts and ena-
bling molecular subtyping. Subtyping of muscle-invasive 
urothelial bladder cancer (MIBC) categorizes heteroge-
nous cancers with similar molecular and biological char-
acteristics, which has significantly contributed to our 
knowledge in the recent years [1]. Several groups have 
simultaneously worked on molecular subtyping of dif-
ferent bladder cancer datasets coming to a description of 
two main types (luminal and basal), that can further be 
subclassified into 3–10 subtypes [2–8]. Different nomen-
clatures, definitions, and numbers of molecular subtypes 
had hindered further prospective validation, and clinical 
translation until the description of a consensus classifica-
tion. The molecular consensus classification used pooled 
mRNA expression profiles of 1750 fresh frozen and for-
malin-fixed, paraffin-embedded (FFPE) MIBC samples 
and identified six molecular classes: luminal papillary 
(LumP), luminal nonspecified (LumNS), luminal unstable 
(LumU), stroma-rich, basal/squamous (Ba/Sq), and neu-
roendocrine-like (NE-like) [3].

The aim of classifying cancer in subgroups is to identify 
tumors that share similar prognosis and response to vari-
ous therapies. In several reports molecular subtypes have 
been described as predictors of response to chemother-
apy and immunotherapy [5, 9–12]. However, the results 
are conflicting, and to date, the evidence is insufficient 
to use molecular subtyping or other gene expression 
signatures for the treatment decisions in patients with 
urothelial carcinoma. To facilitate the implementation of 
molecular subtyping into daily clinical routine, gene sets 
have been reduced to allow quantification with quanti-
tative RT-qPCR, NanoString or immunohistochemistry 
panels [13–20].

Many molecular profiling studies and molecular sub-
typing in The Cancer Genome Atlas (TCGA) are based 
on fresh frozen tissue, which allows high quality tran-
scriptomic analyses based on RNA sequencing. However, 
fresh frozen samples are rarely available in clinical prac-
tice and for retrospective research projects. The use FFPE 
tissue is the gold-standard for pathological analyses and 
long-term storage in hospitals. The paraffin material is 
usually archived for 10 and more years, allowing corre-
lation with long-term patient outcome. The disadvantage 
of FFPE tissue is that the RNA is highly degraded by fixa-
tion and storage, leading to sequencing artifacts and lim-
iting detection of transcripts [21, 22]. However, advances 
in sequencing techniques also enable molecular profiling 
of FFPE specimen [23–25].

In this study, we tested and compared the feasibility of 
two RNA sequencing methods with FFPE tissues from 
MIBCs to determine uniform molecular subtyping. In 

addition, we used two reduced predefined gene sets to 
determine molecular subtypes and compared results with 
the comprehensive transcriptome data.

Methods
Patients and samples
Tumor samples were provided by the University Can-
cer Center Frankfurt (UCT). Written informed consent 
was obtained from all patients. The study was approved 
by the institutional review boards of the UCT and the 
ethical committee at the University Hospital Frankfurt 
(project-number: SUG-6–2018, UCT-53–2021), and con-
ducted according to local and national regulations and to 
the Declaration of Helsinki. Fifteen FFPE samples from 
MIBC patients were obtained from the Dr. Senckenberg 
Institute of Pathology.

Immunohistochemistry (IHC)
Samples were stained for CK5/6 (Clone: D5/16 B4; Dako 
/Agilent, Santa Clara, CA, USA) and GATA3 (Clone: 
L50-823; Cell Marque, Rocklin, CA, USA)  as described 
before [19].

RNA‑isolation
For each RNA isolation, a 1-mm punch was taken from 
FFPE blocks of an annotated, representative tumor 
area with at least 50% tumor content. RNA was either 
extracted using the truXTRAC FFPE total NA Kit (Cova-
ris, Woburn, MA, USA) or by GenXPro GmbH.

HTG transcriptome panel (HTP)
The mRNA expression was determined using the HTP 
(HTG Molecular Diagnostics, Tuscon, AZ, USA) as 
describes before [19, 26]. Briefly, target capture was done 
by the HTG EdgeSeq chemistry with nuclease protection 
probes on a 96-well plate. Processed samples were used 
to set up PCR reactions with specially designed primers, 
referred to as “tags”. These tags share common sequences 
that are complementary to 5’-end and 3’-end “wing” 
sequences of the probes and common adaptors required 
for cluster generation on an Illumina sequencing plat-
form. In addition, each tag contains a unique barcode 
that is used for sample identification and multiplexing. 
The library was prepared using a PCR with OneTaq (New 
England Biolabs, Ipswich, MA, USA) and EdgeSeq PCR 
tag primers (HTG Molecular Diagnostics). Sequenc-
ing was performed on the Illumina NextSeq 550 sys-
tem (Illumina, San Diego, CA, USA) in accordance with 
manufacturer’s recommendations but also including two 
HTG custom sequencing primers. The sequencing data 
on mRNA expression of target genes were imported into 
HTG EdgeSeq Parser software for alignment of FASTQ 
files to the to the probe list and quantification of the 
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reads. The HTG EdgeSeq Reveal Application was utilized 
to quality check and normalize data. Gene counts were 
normalized using CPM and median normalization and 
log2-transformed for further analysis.

MACE Seq
Massive Analysis of cDNA (MACE) is a 3’mRNA 
sequencing method based on the analysis of Illumina 
reads derived from fragments that originate from 3’ 
mRNA ends [24, 27]. Samples were prepared by GenX-
Pro GmbH (Frankfurt, Germany) using the MACE-
Kit V2 according to the manual of the manufacturer 
(GenXPro GmbH). RNA was fragmented and polyade-
nylated mRNA was enriched by poly-A specific reverse 
transcription, a specific adapter was integrated at the 5’ 
ends, and the products were amplified by competitive 
PCR and sequenced on an Illumina NextSeq 500 instru-
ment. Duplicate reads as determined by the implemented 
unique molecular identifiers (TrueQuant IDs) were 
removed from the raw dataset. Low quality sequence-
bases were removed by the software Cutadapt (https://​
github.​com/​marce​lm/​cutad​apt/) and poly(A)-tails were 
clipped by an in-house Python-Script. The reads were 
mapped to the human genome (hg38) and transcripts 
were quantified by HTSeq [28].

Molecular subtyping
Molecular consensus classes of MIBC were assigned 
using the consensusMIBC package for R for the nearest-
centroid transcriptomic classifier (https://​github.​com/​cit-​
bioin​fo/​conse​nsusM​IBC), TCGA classes were assigned 
using the BLCAsubtyping package (https://​github.​com/​
cit-​bioin​fo/​BLCAs​ubtyp​ing) as described by Kamoun 
et  al. [3]. The minimal threshold for best Pearson’s cor-
relation was set to 0.2. Normalized and log2-transformed 
gene expression values were used. Retrieved data include 
the consensus class, the Pearson’s correlation coefficient 
between each sample and each consensus class, the p-val-
ues associated to the Pearson’s correlation of the samples 
with the nearest centroid (correlation p-value) and the 
separation level.

For comparison, we used the included example data set 
of the TCGA bladder cancer cohort, which was created 
from fresh tumor specimen [2].

We reduced the gene set input according to two pro-
posed panels for bladder cancer subtyping (Table S1 
– S2) [16, 20]. The “ESSEN1”-panel is a 68-gene set cov-
ering tumor and stromal signatures [16]. The above panel 
was further optimized and condensed to a set of 48 genes 
(called “ESSEN2” in the present study) [20].

The heatmap was constructed with the open-source 
Morpheus software (https://​softw​are.​broad​insti​tute.​org/​
morph​eus/) using log2-transformed normalized gene 

expression values. For hierarchical clustering we used 
Pearson’s correlation metric with complete linkage.

Results
Obtained sequencing data used for molecular classification
Characteristics of the patients included in the study are 
shown in Table 1.

With MACE, 22,729 of 29,716 transcripts were mapped 
to HUGO Gene Nomenclature Committee (HGNC) 
symbols. With the HTP, 19,399 mRNA transcripts 
were detected. 16,645 genes had the same HGNC sym-
bol, and 6084 and 2754 genes were detected with either 
MACE or HTP only, respectively. One HTP sample failed 
quality control (after sequencing) because of minimal 
expression variability as determined by median log2 for 
negative control probes. The median time from sample 
collection (time of surgery) to analysis was 5 years (range 
3–10 years); seven samples were < 5 years and eight sam-
ples were ≥ 5 years. There was no significant correlation 
between the age of the samples and the overall degree of 
separation, nor was the association of the Pearson cor-
relation coefficients of the samples with the nearest cen-
troid (correlation p-value), for either method (Figure S1).

Comparison of classification values 
between FFPE‑sequencing methods and TCGA‑data
We used MACE-, HTP- as well as TCGA-transcriptome 
data to assign molecular consensus subtypes. We ana-
lyzed the data and compared the output information. The 
association of the Pearson’s correlation coefficients of the 
samples with the nearest centroid (correlation p-value) 
was < 0.0001 for all samples with either method. How-
ever, we noticed significantly higher median correlation 
p-values for subtype calls resulting from HTP vs. MACE 
vs. TCGA data (Figure S2).

Table 1  Characteristics of 15 urothelial muscle-invasive bladder 
cancer patients included in the paired comparison

IQR inter quartile range

Variable Study cohort (n = 15)

Median age, years (IQR): 66 (57.5–72.5)

Gender – no. (%) male 12 (80%)

female 3 (20%)

pathological tumor stage at 
cystectomy – no. (%)

pT2 2 (13%)

pT3 10 (67%)

pT4 3 (20%)

Source of specimen – no. (%) TURB 2 (13%)

Cystectomy 13 (87%)

https://github.com/marcelm/cutadapt/
https://github.com/marcelm/cutadapt/
https://github.com/cit-bioinfo/consensusMIBC
https://github.com/cit-bioinfo/consensusMIBC
https://github.com/cit-bioinfo/BLCAsubtyping
https://github.com/cit-bioinfo/BLCAsubtyping
https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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Figure  1 shows the correlation plots as radar-charts 
for each consensus class for the 406 TCGA, 14 HTP and 
15 MACE samples. Using the MACE data resulted in 
higher correlation values of the sample to the centroids 
of the six consensus classes, which was only statistically 
significant for the Ba/Sq subtype (p(Wilcoxon) = 0.0092). 
With the HTP data, NE-like and Ba/Sq subtype had the 
highest median separation levels of 0.67 and 0.79, like 
the TCGA data. Using the MACE data, the stroma-rich 
subtype had the highest median separation level of 0.71. 
Based on MACE data, the NE-like subtype had a very low 
separation level of 0.03. However, this was only based on 
a single sample. With the HTP and MACE data LumNS 
subtype and with the TCGA data LumNS and LumU had 
rather low separation levels, which might be due to other 
luminal groups.

Molecular and histological subtypes and IHC‑status 
of patients
Samples were classified as Ba/Sq in 7 (50%), LumP in 
2 (14.3%), LumU in 1 (7.1%), LumNS in 1 (7.1%), NE-
like in 1 (7.1%) and stroma-rich in 2 (14.3%) cases with 
HTP data. And classified as Ba/Sq in 8 (53.3%), LumP 

in 2 (13.3%), LumU in 1 (6.7%), LumNS in 1 (6.7%), NE-
like in 1 (6.7%) and stroma-rich in 2 (13.3%) cases with 
MACE data (Table  2). Concordance of the consensus 
classification was 71% (10/14). Two cases (48 and 46) 
classified as stroma-rich using MACE data were Ba/Sq 
(48) and LumNS (46) with HTP data. Two cases (49 and 
20) classified as stroma-rich with HTP data were Ba/Sq 
(49) and LumNS (20) with MACE data. Thus, all four 
discordant cases had a stroma-rich subtype involved 
with either method. Those cases showed a usual (NOS) 
histological subtype and no or only low CK5/6 protein 
expression. An example of one discordant case is shown 
in Fig. 2. Importantly, LumU and LumP subtypes were 
concordant in 100% and displayed the expected match-
ing histological subtypes (NOS) and protein expression 
(CK5/6 negative, GATA3 positive). One NE-like case 
showed neuroendocrine histological subtype and was 
negative for CK5/6 and GATA3 IHC. The Ba/Sq was 
concordant in 86% (6/7) and displayed squamous his-
tological subtype in four cases (57%), NOS in two cases 
(29%), and lymphoepithelial histological subtype in one 
case, which has been described to be associated with 
Ba/Sq molecular subtype [29].

Fig. 1  Radar-charts for each consensus class for TCGA, HTP and MACE data. The data are generated from the consensus classifier. Blue lines indicate 
the Pearson’s correlation coefficient between each sample and each consensus class. Red lines and values indicate the median Pearson’s correlation 
between samples and each consensus class. The median separation level gives a measure of how a sample is representative of its consensus class 
and is calculated as follows: (correlation to nearest centroid—correlation to second nearest centroid) / median difference of sample-to-centroid 
correlation
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Reduction of gene set for molecular subtyping
We used two previously described gene sets, that were 
developed for molecular subtyping of MIBC, named 
ESSEN1 and ESSEN2 in the present study [16, 20].

With HTP data, samples were classified as Ba/Sq in 6 
(42.8%) and 7 (50%), LumP in 3 (21.4%) and 2 (14.3%), 
LumU in 1 (7.1%) and 1 (7.1%), LumNS in 0 and 1 
(7.1%), NE-like in 1 (7.1%) and 1 (7.1%), stroma-rich 

in 3 (21.4%) and 2 (14.3%) cases using ESSEN1 and 
ESSEN2 gene sets, respectively. Using MACE data, 
samples were classified as Ba/Sq in 5 (35.7%) and 8 
(57.1%), LumP in 2 (14.3%) and 1 (7.1%), LumU in 1 
(7.1%) and 2 (14.3%), LumNS in 1 (7.1%) and 2 (14.3%), 
NE-like in 1 (7.1%) and 0 and stroma-rich in 3 (21.4%) 
and 2 (14.3%) cases using ESSEN1 and ESSEN2 gene 
sets, respectively (Figure S3).

Table 2  Molecular subtype, histological subtype and immunohistochemical expression of CK5/6 and GATA3 for each patient

IHC Immunohistochemistry, pos positive (at least 10% of tumor cells show clear protein expression), neg negative, NOS not otherwise specified, N/A not available for 
evaluation

ID MACE
consensus

HTP
consensus

MACE TCGA​ HTP TCGA​ CK5/6 IHC GATA3 IHC Histological subtype

41 Ba/Sq Ba/Sq Basal squamous Basal squamous pos pos Squamous

21 LumU LumU Luminal Luminal papillary neg pos NOS

7 LumP LumP Luminal papillary Luminal papillary neg pos NOS

32 Ba/Sq Ba/Sq Luminal infiltrated Basal squamous pos pos Squamous

26 NE-like NE-like Neuronal Neuronal neg neg Neuroendocrine

49 Ba/Sq Stroma-rich Basal squamous Basal squamous neg neg NOS

48 Stroma-rich Ba/Sq Luminal infiltrated Basal squamous neg pos NOS

45 Ba/Sq Ba/Sq Basal squamous Basal squamous pos pos Squamous

44 Ba/Sq Ba/Sq Basal squamous Basal squamous neg neg Lymphoepithelial

8 Ba/Sq Ba/Sq Basal squamous Basal squamous neg pos NOS

42 LumP LumP Luminal papillary Luminal papillary neg pos NOS

17 Ba/Sq N/A Basal squamous N/A pos pos NOS

9 Ba/Sq Ba/Sq Basal squamous Basal squamous pos N/A Squamous

46 Stroma-rich LumNS Luminal infiltrated Luminal neg pos NOS

20 LumNS Stroma-rich Luminal infiltrated Lumina infiltrated neg pos NOS

Fig. 2  Case 46, which was classified as stroma-rich with the MACE data and LumNS with the HTP data, shown in the HE-overview with tumor 
annotations for cores for the construction of TMAs and RNA-Isolation (A). Further images show HE-staining (B), positive GATA3-IHC (C) and negative 
CK5/6-IHC (D), 200x
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Compared to the comprehensive transcriptomic 
data, the reduction in gene sets resulted in a signifi-
cant increase of the correlation p-values associated to 
the correlation of the samples with the nearest cen-
troids (Figure S4). The median correlation p-value was 
still < 0.0001. One sample (44) could not be classified 
with the MACE data and was excluded for the further 
analyses because the correlation p-value was above 
the set threshold of 0.2. Of note, this sample showed 
a lymphoepithelial histological phenotype, and the 
heavy infiltration of immune cells might have hindered 
correct classification.

The Pearson’s correlations coefficient for sam-
ples and each consensus class stratified for the called 
consensus classes are included in the supplementary 
material.

For the ESSEN1 panel, consensus molecular subtypes 
were concordant using the HTP data in 86% (12/14). 
One sample (46) changed from LumNS to LumP and 
one sample (32) changed from Ba/Sq to stroma-rich. 
Using the MACE data, concordance was 86% (12/14). 
One sample (32) changed from Ba/Sq to LumNS and 
one sample (8) from Ba/Sq to stroma-rich (Fig. 3).

For the ESSEN2 panel concordance of the consensus 
molecular subtypes was 100% (14/14) with the HTP 
data (Fig.  3). Using the MACE data with the ESSEN2 
panel, concordance was 86% (12/14). One sample (7) 
changed from LumP to LumU. Of note, one sample 
(26) with NE-like molecular subtype, that also showed 
neuroendocrine histological subtype and was negative 
for immunohistochemical CK5/6 and GATA3 expres-
sion, was misclassified by the ESSEN2 panel when 
using the consensus (but not TCGA classification) 
with the MACE (but not HTP) sequencing data as Ba/
Sq. This sample also showed very low separation level 
when using all genes from the MACE data as input.

The overlap between subtypes according to the 
TCGA classification was 86% with the ESSEN1 and 
93% with the ESSEN2 panel using the HTP data 
(Fig.  3B). With the MACE data the overlap was 86% 
(12/14) with the ESSEN2 panel and 64% with the 
ESSEN1 panel (two samples changed within luminal 
subtypes and three samples had discordant subtypes 
between basal/squamous and luminal subtypes).

Discussion
Molecular analyses of bladder cancer specimens are 
emerging and provide elementary information to address 
bladder cancer research questions. One of the major 
goals of bladder cancer research is to identify subtypes 
with different sensitivity to systemic therapies such as 
chemotherapy, immune-checkpoint inhibition, and fur-
ther targeted treatments. Although molecular subtype 
classification of bladder cancer has not yet been incorpo-
rated into therapeutic decision making, robust methods 
are important to achieve progress in clinical translation 
and validation and to improve reproducibility. FFPE sam-
ples represent snapshots of the histology and biological 
information of a tumor at the time of collection, while the 
patient is being treated and outcome data can be gener-
ated. It is important to use the information, that is always 
collected and stored as FFPE and to overcome limitations 
of degraded RNA.

In this study, we used FFPE-isolated RNA to deter-
mine molecular consensus subtypes using two different 
sequencing techniques. The overall agreement between 
molecular subtypes was high for both techniques, 
although different RNA, library preparation and sequenc-
ing facilities were used. We validated two reduced gene 
sets to determine molecular subtypes with high accuracy, 
that can be used as a panel-based method at lower cost, 
which is an important step to introduce subtyping into 
routine practice.

Efforts are being made to methodologically simplify 
subtype classification by using reduced gene sets to 
enable its implementation in clinical practice. Strati-
fying patients will be important to select patients, 
that respond to chemo- or immunotherapy to reduce 
unnecessary toxicities and costs, as soon as prospec-
tive and validated evidence is provided. In a previous 
study, a 47-gene panel (BASE47) was proposed for the 
discrimination between luminal and basal subtypes 
using the NanoString platform [14]. Recently, the 
ESSEN1 (n = 68) and ESSEN2 (n = 48) gene panels were 
developed to discriminate between 5–6 gene expres-
sion-based molecular subtypes according to different 
classification systems (e.g. TCGA, Consensus, Lund 
etc.) by using the qRT-PCR method on fresh frozen 
samples and the NanoString technique on FFPE sam-
ples, respectively [16, 20]. These reduced gene sets still 

(See figure on next page.)
Fig. 3  Heatmap showing the molecular subtypes according to the consensus classification (A) and the TCGA classification (B) for each sample as 
identified by all genes vs. different gene sets (all, ESSEN1, ESSEN2) and assay methods (HTP, MACE). C: Gene expression heatmap of MACE data and 
the ESSEN1 panel. D: Gene expression heatmap of the ESSEN2 panel with molecular consensus classes assigned using the HTP data. The heatmap 
was constructed with the open-source Morpheus software (https://​softw​are.​broad​insti​tute.​org/​morph​eus/) using log2-transformed normalized 
gene expression values. Hierarchical clustering was performed with Pearson’s correlation metric with complete linkage. Heatmaps also indicate 
the IHC-expression of CK5/6 and GATA3. Colors of genes correlate to the signature names. CIS: carcinoma in situ; ECM: extracellular matrix; EMT: 
epithelial-to-mesenchymal transition; SM: smooth muscle

https://software.broadinstitute.org/morpheus/
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Fig. 3  (See legend on previous page.)
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allowed the classifier to designate molecular consensus 
molecular subtypes in all except for one case, which 
had a lymphoepithelial histological subtype. Our results 
show high accuracy of 85%-100% of both reduced pan-
els to call consensus molecular subtypes, compared to 
the comprehensive transcriptomic data. Discordant 
subtypes were observed between the stroma-rich and 
the Ba/Sq or the LumNS subtype and between the dif-
ferent luminal subtypes. Divergent subtype calls can 
be the result of either differences in gene expression or 
the composition of genes used for calculation. Accord-
ing to our data, the reduced ESSEN2 panel showed an 
even higher overlap with the comprehensive transcrip-
tome data than the ESSEN1 panel. Thus, the selection 
of genes might be more important for the classification 
than just the quantity.

So far as no use-case for the application of molecu-
lar subtypes exists, a comprehensive gene expression 
analysis provides additional information on further 
genes and enables the analysis of additional immune or 
stroma signatures, which could find application as pre-
dictive markers [30–32].

Limitations include the small number of samples. 
With only one sample for some of the subtypes gen-
eral conclusions on which method is superior cannot 
be drawn. Furthermore, we did not perform a direct 
comparison between FFPE and fresh tissue. Our study 
lacks the comparison of HTP and MACE to further 
sequencing techniques used in previous molecular 
subtyping studies, like Illumina RNA seq or Affyme-
trix. Most importantly, sequencing was not performed 
with the exact same RNA, but RNA from neighboring 
tumor areas. Thus, discordant results can be the result 
of slight differences in tumor and stroma cell content or 
differences in deeper tissue layers not represented on 
the slide. However, this issue might reflect the hetero-
geneity of bladder cancer itself. This becomes particu-
larly evident with the stroma-rich molecular subtype, 
since it was present in all divergent classified samples 
and highlights problems affecting bulk-RNA sequenc-
ing of bladder cancer samples in general. Molecular 
subtyping is performed on RNA derived from tissue 
(cores) of biopsy specimens representing only a fraction 
of the tumor. The subtype determined from the isolated 
RNA might not be the only and/or predominant sub-
type of a tumor, which is known to be heterogenous, 
especially in bladder cancer [17, 33]. Furthermore, the 
subtype assigned depends on the cellular components, 
of which the RNA is extracted and the proportion of 
stromal content will influence, if a tumor is called as 
stroma-rich or infiltrated [17, 31, 34, 35].

Conclusion
The consensus molecular subtypes represent a robust 
classification and can be determined based on compre-
hensive or selected FFPE transcriptome data. Using the 
data of matching pairs, the agreement of subtypes was 
high, but differences were observed when the stroma-rich 
molecular subtype was involved. Based on our results, it 
seems important to further unravel the heterogeneity of 
bladder cancer and the influence of stromal components 
on molecular subtypes to reduce sampling bias and allow 
more accurate assignment.
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