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Abstract
Dynamic manipulation of electromagnetic (EM) waves with multiple degrees of freedom plays an essential role in
enhancing information processing. Currently, an enormous challenge is to realize directional terahertz (THz)
holography. Recently, it was demonstrated that Janus metasurfaces could produce distinct responses to EM waves
from two opposite incident directions, making multiplexed dynamic manipulation of THz waves possible. Herein, we
show that thermally activated THz Janus metasurfaces integrating with phase change materials on the meta-atoms
can produce asymmetric transmission with the designed phase delays. Such reconfigurable Janus metasurfaces can
achieve asymmetric focusing of THz wave and directional THz holography with free-space image projections, and
particularly the information can be manipulated via temperature and incident THz wave direction. This work not only
offers a common strategy for realizing the reconfigurability of Janus metasurfaces, but also shows possible applications
in THz optical information encryption, data storage, and smart windows.

Introduction
In the past decades, metasurfaces have drawn tremendous

attention due to their unprecedented abilities to manipulate
electromagnetic (EM) waves at will1–3. With the develop-
ment of compact and integrated systems, there are
increasing demands on integrating multiple functionalities
into a single metasurface. The wave propagation direction is
a vital wave property and its multiplexing endows the
metasurface with rich functions in two asymmetric channels.
The requirement of asymmetric wave manipulation widely
exists in practical applications such as laser technologies4,5,
antenna radomes6,7, full-duplex communication8,9, etc.
However, most existing multifunctional metasurfaces do
not exploit this design freedom. Although nonreciprocal
devices could be created to realize direction-dependent

manipulation of EM waves by breaking the time-reversal
symmetries using magneto-optic materials10,11, nonlinear
materials12,13, and time-variant materials14,15, the apparatus
used for external control is always complicated and bulky.
Recently, asymmetric but still reciprocal transmission in

opposite propagation directions using symmetry-broken
structures has been reported16, showing unconventional
wavefront tailoring in a direction-determined manner.
The Janus metasurface consisting of a stack of twisted
meta-sheets can act as free-space holographic imagers for
opposite propagation directions. Compared to conven-
tional metasurface holography, the additional freedom
brought by the propagation direction in Janus metasur-
face can further enhance the design space and informa-
tion capacity. Towards practical applications of direction-
dependent metasurfaces, the reconfigurability with the
change of external incentives is highly expected17–21.
However, due to the difficulty in designing and fabricating
the devices integrated with active components, EM
functionalities of the Janus metasurface are always static,
limiting their application prospects22–28.
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The manifold spectrum resources and the compactness
of the system make THz wave promising in applications
such as high-capacity data communication and high-
security EM encryption29–31. Multifunctional THz devices
capable of dynamically reconfiguring the function are
essential for further enhancing the data storage capacity
and expanding application scenarios. Recently, based on
various tunable materials, reconfigurable and program-
mable metasurfaces have achieved the multiplexing of
incident polarization, frequency and angle18,32–35. How-
ever, how to realize direction-dependent and reconfigur-
able THz metasurface is still an untapped area.
Here, we studied the directional THz holography using

a proposed reconfigurable Janus metasurface. The pro-
posed metasurface based on vanadium dioxide (VO2)
shows thermally controlled reconfigurability and incident
direction dependence, thus manifesting four independent
EM functionalities in the whole space. Therefore, in
applications of zoom lenses, such a reconfigurable Janus
metasurface can generate four different focal points
actively controlled by propagation directions or tem-
perature. Moreover, the reconfigurable direction-
dependent meta-hologram capable of generating four
different images is experimentally demonstrated. The
proposed active direction-multiplexing strategy provides a
new solution in optical data storage and encryption
applications where the multiplexing technique is urgently
required to improve system capacity and integration.

Results
Concept design
Figure 1a illustrates the concept of reconfigurable Janus

metasurface. The designed meta-atoms have asymmetric
transmission characteristics for linearly polarized (LP)

waves (e.g., x-polarization). The two spatial phase profiles
for the same-polarized incident wave from two opposite
directions were calculated based on Gerchberg–Saxton
(GS) algorithm. They are realized by combining two kinds
of unidirectional meta-atoms, one for forward and the
other for backward direction, that are rotated to each
other by 90 degrees in the x–y plane. The meta-atoms are
arranged into chessboard-like distributions and selectively
perform the desired wave functionalities depending on the
incident direction. Hence, the metasurface shows two
independent spatial phase profiles for the same polarized
THz wave from the forward and backward incidence.
Moreover, due to the reversible insulator-metal-transition
(IMT) of VO2, the metasurface can dynamically switch its
spatial phase profiles for each incident direction. Thereby,
two different holographic images can be generated before
and after the IMT of VO2 for each incident direction.
The critical step to implementing active Janus meta-

surface is the construction of meta-atoms with both
unidirectional transmission and phase modulation. Here,
we employed the meta-atom with cascaded anisotropic
metallic structures, as shown in Fig. 1b. The three metallic
layers are separated by 10 μm-thick polyimide film and
stacked along the propagation direction. The top and
bottom metallic layers are wire grating structures per-
pendicular to each other. The metallic structures in the
middle layer are crucial to achieving high-efficiency linear
polarization conversion with specific phase delays. A
group of metallic structures with a full 2π phase coverage
and asymmetric transmission was obtained through a
proper choice of geometric structure and parameter
optimization (see more details in Supplementary Section
1). Utilizing the IMT of VO2 film, we achieve thermally
controlled reconfigurability. The VO2 wire grid structure
made from 200 nm-thick VO2 film is patterned on the
sapphire substrate, which is connected vertically to the
metallic grating on the bottom layer.
In our design, we constructed eight different dual-gap

symmetric split-ring resonators (SSRRs) in the middle
layer (the corresponding meta-atoms are named M1-M8),
and the phase spacing between each meta-atom is around
π/4. For simplicity, after rotating the SSRR of M1-M4 by
90° in the x–y plane, M5-M8 are obtained correspond-
ingly, and an additional phase delay of π is added to the
cross-polarized transmission phase. The optimized SSRRs
are shown in Fig. 2a, and the geometric parameters are
listed in Table S1 in Supplementary Materials.
The simulated normalized cross/co-polarized trans-

mittance spectra of the VO2-integrated meta-atoms are
plotted in Fig. 2b, c. On the whole, we discuss transmis-
sion properties of the x-polarized incident waves for both
forward and backward incidences. The results for y-
polarized incidence can be derived according to the
reciprocity theorem (see details in Supplementary

Forward

Backward

a

b Forward

Backward

VO2

z
x

y

Au
PI

Sapphire

Fig. 1 Schematics of the reconfigurable THz Janus metasurface.
a Four holographic images, “N”, “J”, “U”, and “E”, independent of each
other, were reconstructed from four independent phase profiles
which are all encrypted on one metasurface with keys of incident
direction and VO2 state. b Schematic of a VO2-integrated active meta-
atom with cascaded metallic structures
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Material). The cross-transmission amplitudes range from
0.65 to 0.75 for the eight meta-atoms when the VO2 is in
the insulating state (Fig. 2b). After the IMT of VO2 caused
by the temperature rise from 25°C to 85°C, VO2 wire grids
go into the metallic state. Then, the metallic grating on
the bottom layer is shortened by VO2 grids, resulting in a
significant reduction of the cross-polarized transmission
coefficient, as plotted in Fig. 2c. For the forward incidence
(along the z+ direction), the cross-polarized transmission
phase of the designed meta-atoms around 0.99 THz fully
cover the 2π phase range with a step of ~π/4, as shown in
Fig. 2d. For the backward incidence, the cross-polarized
transmission coefficients are closed to zero no matter
whether VO2 is in the insulating or metallic state, as seen
in the bottom figures of Fig. 2b, c.
In the designed meta-atoms, part of the transmitted

wave is converted to its orthogonal polarizations with
respect to the incident wave. The huge linear polarization
conversion efficiency difference for the opposite propa-
gation directions leads to asymmetric transmission. Here,
the forward-to-backward ratio is introduced to evaluate
the performance of the asymmetric transmission. It is

defined as |Tf
yx|

2/|Tb
yx|

2, where Tf
yx is the cross-

transmission coefficient illuminated by the x-polarized
wave from the forward direction while Tb

yx is for the
backward incidence case (along the z− direction). As
shown in Fig. 2d, |Tf

yx|
2/|Tb

yx|
2 for eight meta-atoms are

always >100 at the target frequency when VO2 is in the
insulating state, indicating a remarkable transmission
difference along the opposite directions.

Dynamic Janus meta-lens
Using the meta-atoms featuring asymmetric transmission

and phase manipulation, we construct dynamic Janus
metasurfaces to demonstrate their versatile optical func-
tionalities, including zoom lenses with reconfigurable focal
points and direction-dependent holography at THz fre-
quencies. In the first demonstration, we develop a meta-
surface with a reconfigurable focus for the two incident
directions. The focal point for the forward wave moves in a
cross-section perpendicular to the propagation direction.
For example, before the IMT of VO2, the focal point is
located on the position of L1 (x, y, z)= (−1.50mm, 0,
3.00mm) and is switched to the position of L2 (+1.50mm,
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Fig. 2 Simulated transmission spectra of meta-atoms in THz Janus metasurface. a Schematic diagrams of the eight SSRRs in meta-atoms of M1-
M8. b, c Simulated cross/co-polarized transmission spectra of M1-M4 under the normal incidence of x-polarized THz wave. The VO2 conductivities in
the insulating and metallic states are set to be 1 × 103 S/m (b) and 5 × 105 S/m (c), respectively. The meta-atoms of M5-M8 have the same transmission
amplitude as M1-M4. Hence, only the transmission spectra of M1-M4 are shown here. d Cross-polarized transmission phase of the eight meta-atoms
under the forward incidence of x-polarized THz wave at 0.99 THz when VO2 is in the insulating state. Phase differences between adjacent meta-atoms
are about π/4. The F/B ratio is defined as the ratio of the cross-transmission at forward incidence to that at backward incidence
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0, 3.00mm) after the IMT of VO2. Meanwhile, the focal
distance for the backward wave can be tuned by VO2

conductivity.
The design principle of reconfigurable Janus meta-lens is

schematically shown in Fig. 3a, b. The metasurface com-
prises 60 × 60 meta-atoms, giving an overall size of
6mm× 6mm. Half of the meta-atoms generate the phase
profiles for the forward (yellow) and backward (blue) waves,
respectively, as shown in Fig. 3a, b. The 60 × 60 meta-atoms
are divided into 300 groups, each consisting of 2 × 6 meta-
atoms. The six meta-atoms for the same incidence are
labeled with ‘P1’, ‘P2’, ‘A1’, ‘A2’, ‘A3’, and ‘A4’, respectively. P1
and P2 are passive meta-atoms, as they are without VO2

active elements. The other meta-atoms integrated with VO2

elements are active meta-atoms. The passive meta-atoms
have a slightly higher transmission efficiency over active ones
because the resistive VO2 film is removed (see more details
in Supplementary Section 2). When VO2 is in the metallic
state, the cross-polarized transmittance of the active meta-
atoms is reduced to nearly zero, leaving only P1 and P2 to
manipulate the wavefront of the x-polarized forward wave.

Then, based on the geometric optical principle36, to
focus the incident wave at a focal point of L2 (+1.50 mm,
0, 3.00 mm), the phase shifts provided by meta-atoms of
P1 and P2 should satisfy:

φ x; yð Þ ¼ 2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xL2ð Þ2 þ y� yL2

� �2 þ z2L2

q
� zL2

� �

ð1Þ

where λ is the wavelength of the incident THz wave in the
free space, (x, y) is the position of P1 and P2 at the plane of
z= 0, (xL2 ; yL2 ; zL2 ) is the position of the focal point of L2.
When VO2 returns to the insulating state, the function of
A2 and A4 is to erase the focal point of L2. Their complex
cross-polarized transmission coefficients are designed to
have the same amplitude but a phase shift of π relative to
P1 and P2. Meanwhile, a new focal point of L1 can be
formed arbitrarily using Eq. 1, which is determined by the
secondary field radiations with specific phase profiles
generated by A1 and A3 under the illumination of the
same polarized wave. Following the above strategy, the
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pattern. In the forward incidence of the x-polarized wave, only the meta-atoms with a top-layered pattern perpendicular to the polarization direction
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incidence in each group are denoted as P1', P2', A1', A2', A3', and A4'. c Spatial phase profiles of the metasurface and numerically simulated electric field
distributions for the y-LP transmitted THz wave, which is obtained based on the Rayleigh-Sommerfeld diffraction integral formula
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active Janus meta-lens can switch the focal point
transversely for the forward wave. A similar approach is
adopted to achieve an adjustable focal length for the
backward wave (see detailed description in Supplemen-
tary Section 3).
Figure 3c illustrates phase profiles of the metasurface in

two opposite incident directions before (top panels) and
after (bottom panels) the IMT of VO2. In the phase
profiles of Fig. 3c, the meta-atoms with zero cross-
transmission are colored white. Based on the Rayleigh-
Sommerfeld diffraction integral formula37 (see details in
Methods), we numerically calculated the THz diffracted
field distributions on the xOz plane. In the calculation, the
transmission amplitude of the meta-atoms contributing to
the focal point is set to 1. The results at 0.99 THz are
shown in Fig. 3c. For the forward incidence, the focal
point moves along the x-direction with the phase change
of VO2, verifying that two independent phase profiles are
well multiplexed on a metasurface. For the backward
incidence, another two profile phases are combined into
the metasurface, which determines the longitudinal shift
of the focal length.
In the following, we fabricated the designed metasurface

(see Methods for fabrication process), and Fig. 4a shows
the microscopic image of the fabricated sample. We
characterized the sample using the THz spectral imaging
system (Fig. 4b) under x-polarized incidence (see Methods
for details). Figure 4c–e illustrates the measured y-
polarized field distributions of the sample at 1.01 THz at
different temperatures. When the sample is at room
temperature of 25 °C, and the sample is illuminated from
the forward incident wave, the synergy of the active and
passive meta-atoms results in the generation of a hyper-
boloidal phase profile to focus the output y-polarized
wave at the designed position.
As shown in Fig. 4c, the y-polarized field distributions at

the plane of z= 3.00 mm prove that the focal spot is at
(−1.49 mm, 0, 3.00 mm). We draw the x-directional cut of
the measured focal spot profiles to compare the experi-
mental and numerical results. The experimental and
numerical values are normalized with their maximum
values. In our experiment, the metasurface can focus the
forward wave at (−1.49 mm, 0 mm, 3.00 mm) at 25 °C and
the focal point moves to (+1.38 mm, 0mm, 3.00 mm)
when the temperature increases to 85 °C, showing good
agreement with the numerical calculation. However, the
normalized E-field amplitude experimentally obtained at
85 °C is distinctly smaller than the calculated values,
mainly because A2 (A4) is not completely switched off
when VO2 goes into the metallic state. In that case, only a
portion of the THz wave leaks out and coherently cancels
out the diffracted fields generated by P1 (P2) at the focal
point of L1 (see detailed theoretical analysis in Supple-
mentary Section 5).

We measured the transmitted (y-LP) electric field dis-
tributions for the backward waves by moving the sample
along the z-direction. As shown in Fig. 4d, the red dash
lines depict the trajectories of the full-width at half-
maximum (FWHM) as a function of distance along the z-
direction. As the sample is heated from 25 °C to 85 °C, the
focal length of the sample changes from −8.0 mm to
−3.5 mm, while the corresponding theoretical values are
−7.0 mm and −3.0 mm, respectively (Fig. 4e). Figure 4e
depicts the measured and calculated normalized (y-LP)
field distributions on the xOz plane. Since the depth of
focus is on the order of millimeters, the slight deviation
between the experiments and numerical results is within
the uncertainty of measurement.

Dynamic Janus meta-holograms
In the following, we designed a reconfigurable Janus

metasurface capable of producing direction-dependent
and temperature-dependent holographic images. Similar
to the first demonstration, the meta-atoms for the forward
and backward incidences are arranged in a chessboard
pattern. The phase distributions of these meta-atoms
required for the holographic images are calculated based
on the GS algorithm. To realize the switching of holo-
graphic images, we divide the meta-atoms into groups and
arrange the active and passive meta-atoms in a specific
rule similar to the meta-lens (see details in Supplementary
Section 3).
As an illustrative example of the active Janus meta-

hologram, the imaging targets are set to four letters in the
four independent projecting channels. We performed a
full-wave simulation to achieve the diffracted fields of the
designed metasurface. The VO2 conductivity before and
after the IMT are 1 × 103 S/m and 5 × 105 S/m, respec-
tively. The simulated y-LP field distribution at the plane of
z= ±2.10 mm at f= 1.00 THz is plotted in Fig. 5. To verify
its functionality, we fabricated the metasurface consisting
of 60 × 60 meta-atoms with a total size of 6 mm × 6mm.
Figure 5 illustrates the measured y-LP transmission

field distribution at the observation plane when the
1.00 THz wave is incident from the two opposite direc-
tions. The slight difference in the working frequency
between meta-lens and meta-hologram is mainly attrib-
uted to the fabrication error in the thickness of the
polyimide layer. The distance between the observation
plane and the metasurface is 2.20 mm for both the for-
ward and backward incidences. In Fig. 5a, when the
metasurface is illuminated from the front, the holo-
graphic image can switch from “E” to “U” as the meta-
surface is heated from 25 °C to 85 °C. When the
metasurface is illuminated from the back, the generated
holographic images can be reversibly switched between
“N” and “J”, as illustrated in Fig. 5b. Therefore,
the direction multiplexing and reconfigurability of the
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meta-hologram are experimentally demonstrated. The
simulated images show good accordance with the
experimental results. The slight deviation between the
experimental and simulated results can be attributed to
layer misalignments and imperfections in the fabrication
process. There is a slight difference between the simu-
lated and the numerically calculated images (see Sup-
plementary Materials for details), probably because the
VO2 loss in the active meta-atoms and the coupling
interactions between the adjacent meta-atoms distort the
amplitude and phase distribution from the designed one.

Information encryption
Information encryption can be achieved by splitting a

secret among multiple shareholders, for example,
dividing the target image into several parts, so the
eavesdropping of a single channel will not leak true
information about the shared secret. The proposed
metasurface, capable of generating different and inde-
pendent holographic images, can be applied to infor-
mation encryption. Herein, we demonstrated the
effectiveness of the security-sharing function based on
our proposed metasurface. As shown in Fig. 6a, a
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“peace” emoji is to be stored in the reconfigurable Janus
metasurface as the secret, and the emoji is decomposed
into four different emojis, i.e., “pleasure”, “sorrow”, “
grievance,” and “anger”. These emojis are encrypted to
different channels of the same metasurface. Figure 6b
shows the holographic images of the four emojis
decrypted from the proposed metasurface with keys of
the incident direction and temperature. In that case, the
eavesdropping of a single channel will not leak the true
secret of the “peace” emoji. Instead, only the misleading
information is wiretapped if the data in the total four
channels are not decrypted simultaneously. From this
perspective, the proposed metasurface can significantly
improve information security.

Discussion
In our demonstration, the meta-lens show rich varifocal

properties. Hence, it offers many potential applications in
THz imaging, such as extending the depth of field38,39.
The multiplexing demonstrated in our meta-hologram is
essential to enhancing the capacity of the holographic
plate. The holographic targets are not limited to what has
been demonstrated herein, and the additional degrees of
freedom enabled by the direction and temperature could
further enhance information security because the eaves-
dropping of the information should be done at physical
levels with multiple independent channels.
The thermal switching time in our experiment is on the

order of minutes. Introducing the electrical or optical

ExperimentSimulation ExperimentSimulation

1 ×
 10

3 S
/m

1 ×
 10

3 S
/m

5 ×
 10

5 S
/m

5 ×
 10

5 S
/m

85 °C
25 °C

85 °C
25 °C

Backward

Forward

a b

Fig. 5 Holographic images generated from the reconfigurable Janus metasurface. a, b Simulated and measured field distributions at 25 °C and
85 °C, respectively, for the forward (a) and backward (b) incident waves. Simulated field distributions are obtained at VO2 conductivities of 1 × 103 and
5 × 105 S/m, respectively

Peace Pleasure Sorrow Grievance Anger

Key1 Holographic image Key2 Holographic image

Key3 Holographic image Key4 Holographic image

a

b

Fig. 6 Security-sharing function based on the reconfigurable Janus metasurface. a Emoji of “peace” stored in the metasurface as the secret, and
it can be decomposed into four other emojis of “pleasure,” “sorrow,” “grievance,” and “anger”. b Holographic images of the four emojis decrypted
from the metasurface with keys of the incident direction and temperature
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switching methods will significantly improve the switch-
ing speed40–42. Besides, the transmission efficiency of the
reconfigurable Janus metasurface can be further opti-
mized through removing the sapphire substrate or
replacing it with the flexible substrates with low refractive
index43–45. Recently, the electrical addressability and non-
volatile memory effect of metasurface based on phase
change material have been reported19,41,46–50. If the above
functions are introduced into the Janus metasurface, the
meta-lens and meta-holography can be reconfigured more
flexibly. In that case, the information capacity and appli-
cation scenarios will increase dramatically. Moreover, the
reconfigurable Janus metasurface may be realized by other
tunable materials, such as liquid crystal34,51,52, germanium
antimony telluride (GST)53–55 or hydrogenated/dehy-
drogenated magnesium32,56. A similar reconfigurable
direction-dependent metasurface can be developed based
on the proposed scheme and fulfill multiple functional-
ities in other frequency bands.
In summary, we proposed a thermally active Janus meta-

surface scheme in which the propagation direction of THz
waves can be multiplxed, and the functionality for each
direction can be reconfigured. For proof-of-concept
demonstrations, we designed and fabricated reconfigurable
THz Janus meta-devices, including asymmetric meta-lens
and directional holographic imager. The experimental
results demonstrate their different THz functionalities can
be switched by changing the incidence direction and tem-
perature. The metasurface shows numerous potential
applications such as optical information encryption, data
storage, wireless communication, and holography.

Materials and methods
Device fabrication
A 200-nm-thick VO2 film was grown on (0001)-sap-

phire substrate by pulse laser deposition57. Then, a posi-
tive photoresist film (AZ1500) was spin-coated on the
sample, and the wire grid pattern was formed by ultra-
violet photolithography. The pattern was transferred to
the VO2 film via reactive ion etching with a CF4 gas flow
rate of 40 sccm and a radio frequency power of 100W.
Next, the bottom-layered pattern was imprinted onto the
photoresist film (AZ1500) after the second ultraviolet
photolithography. The 10-nm-thick titanium and 200-
nm-thick gold films were sputtered on the sample by
magnetron sputtering, and the bottom-layered gold
structures were formed after the lift-off process. Then, the
polyimide solution with a viscosity of 3600 cp was spin-
coated on the sample, followed by baking the sample at
90 °C, 120 °C, 180 °C, 220 °C and 250 °C for 0.25, 0.5, 0.5,
0.5 and 2.5 h, respectively. The above processes are
repeated to form other layers of gold structures and
another polyimide layer. A detailed flow chart of the
fabrication process is illustrated in Fig. S4.

THz imaging measurement
The diffracted E-field of the proposed Janus metasurface

was measured using a self-built THz spectral imaging
system (see details in Supplementary Section 9). THz
pulsed radiation was generated in the LiNbO3 crystal
based on the optical rectification effect, and the colli-
mated wave was incident on the metasurface. The meta-
surface was fixed on a holder with a 5 mm radius hole to
allow the transmission of the THz wave. The resistive
heating rods under the holder were used to heat the
sample with a temperature controlled by a proportional-
integral-derivative (PID) controller. The transmitted THz
field distribution was detected by the GaP crystal and a
commercial near-infrared charge coupled device (iXon
Ultra 888, Oxford Instruments.). A THz polarizer
(PW005, PureWavePolarizers Ltd.) was put in front of the
metasurface to ensure the incident THz wave was x-
polarized. A THz polarizer was also put in front of the
GaP crystal for detecting the y-polarized component of
the transmitted wave. The transmitted THz field dis-
tribution at different z-position was captured by moving
the metasurface longitudinally to adjust its distance to the
GaP crystal. In the measurement, the entire THz beam
path is enclosed in a dry-air purged box (see Fig. S11) to
diminish the attenuation of THz waves.

Numerical analysis of field distribution
The Rayleigh-Sommerfeld diffraction integral formula

was used to calculate the field distribution diffracted by
the metasurface

E ξ; η; z0ð Þ ¼ � i
λ

Z Z
Objðx; y; 0Þ expðik r � r0j jÞ

r � r0j j cosδdxdy

ð2Þ
where Obj(x, y, 0) is the complex transmission coefficient
of the reconfigurable metasurface, k and λ are the
wavevector and wavelength in free space, respectively.
The item r � r0j j denotes the distance between (ξ, η, z0)
and (x, y, 0). cos(δ) is the inclination factor, and it can be
denoted by cos(δ) ≈ z0 / |r− r0| ≈ 1 under the paraxial
approximation. The diagram of Rayleigh-Sommerfeld
diffraction on the metasurface is plotted in Fig. S12.
Because the proposed metasurface is a phase-only
modulator, it can be simplified as follows,

E ξ; η; z0ð Þ ¼ � i
λ

Z Z
expðiφðx; yÞÞ expðik r � r0j jÞ

r � r0j j dxdy

ð3Þ
where φðx; yÞ is the phase distribution of the reconfigur-
able Janus metasurface.
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