Skip to main content
. 2023 May 22;14:1205144. doi: 10.3389/fphar.2023.1205144

TABLE 3.

Performance compared with 7 baseline methods on TL-HGBI dataset.

Methods AURP AUC F1 Acc Rec Spe Pre
BNNR 0.4502 ± 0.002 0.9065 ± 0.001 0.4640 ± 0.003 0.9462 ± 0.000 0.5098 ± 0.020 0.9671 ± 0.015 0.4261 ± 0.004
DRHGCN 0.4824 ± 0.000 0.9295 ± 0.032 0.4723 ± 0.016 0.9442 ± 0.035 0.5459 ± 0.004 0.9633 ± 0.000 0.4161 ± 0.000
DRWBNCF 0.3432 ± 0.001 0.8927 ± 0.004 0.4013 ± 0.000 0.9306 ± 0.002 0.5090 ± 0.002 0.9508 ± 0.030 0.3314 ± 0.001
LAGCN 0.4970 ± 0.004 0.9155 ± 0.005 0.4586 ± 0.007 0.9413 ± 0.002 0.5440 ± 0.033 0.9603 ± 0.000 0.3968 ± 0.001
NIMCGCN 0.1532 ± 0.003 0.7490 ± 0.018 0.2317 ± 0.020 0.9012 ± 0.000 0.3265 ± 0.005 0.9287 ± 0.001 0.1802 ± 0.006
DDA-SKF 0.2266 ± 0.015 0.8608 ± 0.007 0.3136 ± 0.000 0.9071 ± 0.001 0.4646 ± 0.003 0.9283 ± 0.002 0.2368 ± 0.003
REDDA 0.4243 ± 0.000 0.9225 ± 0.001 0.4493 ± 0.013 0.9406 ± 0.001 0.5308 ± 0.002 0.9602 ± 0.025 0.3898 ± 0.010
LBMFF 0.5261 ± 0.003 0.9160 ± 0.000 0.4821 ± 0.002 0.9429 ± 0.003 0.5898 ± 0.002 0.9596 ± 0.005 0.4078 ± 0.007

The best results are in bold faces and the second-best results are underlined.