Skip to main content
. 2023 Apr 13;13(6):3760–3775. doi: 10.21037/qims-22-1181

Table 5. Comparison of multi-group model results for PET quantitative parameters of tumor lesions based on 8%PET images.

Group PET quantitative parameters of tumor lesions
SNR CNR SUVmean SUVmax
3D Unet-15s 33.81 (24.79, 45.52) 9.94 (5.63, 13.72) 3.78 (3.06, 4.86) 6.57 (4.54, 9.61)*
P2P-15s 20.45 (15.08, 29.24)* 3.97 (1.06, 6.91)* 3.03 (2.62, 3.99)* 4.72 (3.70, 6.27)*
8%PET 16.38 (10.78, 19.90) 3.19 (2.18, 4.82) 4.25 (3.62, 5.34) 10.81 (7.44, 16.41)
s-PET 34.82 (24.92, 51.82) 9.68 (5.90, 13.95) 3.93 (3.23, 4.86) 7.29( 5.78, 10.59)
H 54.90 27.25 16.81 37.28
P <0.0001 <0.0001 0.001 <0.0001

The italic font represents a statistical difference between this value and that of the 8%PET group. And * indicates that the value is statistically significant compared with the s-PET group. SNR, signal-to-noise ratio; CNR, contrast-noise ratio; SUVmean, mean standardized uptake values for all voxels in the ROI; SUVmax, maximum standardized uptake values for all voxels in the ROI; PET, positron emission tomography; s-PET, standard positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model based on GAN; H, H value for the Kruskal-Wallis method; ROI, region of interest; CNN, convolutional neural network; GAN, generative adversarial network.