Skip to main content
. 2023 Apr 13;13(6):3760–3775. doi: 10.21037/qims-22-1181

Table 6. Comparison of multi-group model results for PET quantitative parameters of tumor lesions based on 17%PET images.

Groups PET quantitative parameters of tumor lesions
SNR CNR SUVmean SUVmax
3D Unet-30s 39.29 (29.10, 50.56) 9.40 (4.66, 12.77) 3.55 (3.27, 4.60)* 7.45 (5.42, 9.73)
P2P-30s 25.31 (19.83, 39.49)* 4.88 (1.18, 8.96)* 3.78 (3.32, 5.09) 5.47 (4.47, 7.51)*
17%PET 17.61 (13.26, 24.68) 4.39 (3.12, 7.10) 4.17 (3.47, 5.30) 8.37 (6.38, 11.29)
s-PET 34.82 (24.92, 51.82) 9.68 (5.90, 13.95) 3.93 (3.23, 4.86) 7.29 (5.78, 10.59)
H 38.19 17.67 2.63 12.20
P <0.0001 0.001 0.452 0.007

The italic font represents a statistical difference between this value and that of the 17%PET group. And * indicates that the value is statistically significant compared with the s-PET group. SNR, signal-to-noise ratio; CNR, contrast-noise ratio; SUVmean, mean standardized uptake values for all voxels in the ROI; SUVmax, maximum standardized uptake values for all voxels in the ROI; PET, positron emission tomography; s-PET, standard positron emission tomography (per bed time: 90 s); 3D Unet, a deep network model based on CNN; P2P, Pixel2Pixel deep network model based on GAN; H, H value for the Kruskal-Wallis method; ROI, region of interest; CNN, convolutional neural network; GAN, generative adversarial network.