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Abstract
The current move towards digital pathology enables pathologists to use artificial intelligence (AI)-based
computer programmes for the advanced analysis of whole slide images. However, currently, the best-performing
AI algorithms for image analysis are deemed black boxes since it remains – even to their developers – often
unclear why the algorithm delivered a particular result. Especially in medicine, a better understanding of
algorithmic decisions is essential to avoid mistakes and adverse effects on patients. This review article aims to
provide medical experts with insights on the issue of explainability in digital pathology. A short introduction to
the relevant underlying core concepts of machine learning shall nurture the reader’s understanding of why
explainability is a specific issue in this field. Addressing this issue of explainability, the rapidly evolving research
field of explainable AI (XAI) has developed many techniques and methods to make black-box machine-learning
systems more transparent. These XAI methods are a first step towards making black-box AI systems understandable
by humans. However, we argue that an explanation interface must complement these explainable models to
make their results useful to human stakeholders and achieve a high level of causability, i.e. a high level of causal
understanding by the user. This is especially relevant in the medical field since explainability and causability play a
crucial role also for compliance with regulatory requirements. We conclude by promoting the need for novel user
interfaces for AI applications in pathology, which enable contextual understanding and allow the medical expert to
ask interactive ‘what-if’-questions. In pathology, such user interfaces will not only be important to achieve a high
level of causability. They will also be crucial for keeping the human-in-the-loop and bringing medical experts’
experience and conceptual knowledge to AI processes.
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Introduction

During the last decade, technological advancements in
whole slide images (WSIs) and approval for clinical
use by regulatory agencies in many countries have
paved the way for implementing digital workflows in
diagnostic pathology. This shift to digitisation enables
pathologists to view, examine and annotate histopatho-
logical slides seamlessly in various magnifications on
a computer screen and facilitates telepathology and
obtaining a second opinion from (remote) colleagues.
However, digital pathology is not just a modern

version of the conventional microscope but the foun-
dation for computational pathology. It enables the
usage of artificial intelligence (AI) to aggregate infor-
mation from multiple sources of patient information
including WSIs. Thus, this big-data approach to
pathology opens up entirely new capabilities and will
change the pathology practice [1,2].
Over the last few years, many computational

approaches for the advanced analysis of WSIs have
been developed. These applications aim to support
pathologists with tedious routine tasks, improve the
accuracy of diagnosis, and aid in exploring new

© 2023 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley &
Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

http://wileyonlinelibrary.com
https://orcid.org/0000-0003-2718-7648
https://orcid.org/0000-0002-6786-5194
https://orcid.org/0000-0002-9691-4872
mailto:heimo.mueller@medunigraz.at
http://creativecommons.org/licenses/by/4.0/


diagnostic and prognostic criteria in many pathology
subspecialties, including breast pathology [3], lung
pathology [4], prostate [5,6], musculoskeletal [7], and
dermatopathology [8]. Many of these computational
approaches deliver results comparable to human
experts or may even outperform human pathologists in
specific tasks [9]. Furthermore, computational WSI
analysis enables exploring aspects beyond human
capabilities using ‘sub-visual’ information. An exam-
ple is the prediction of molecular genetic alterations
from histopathologic morphology [10]. Most of these
applications utilise AI, specifically machine learning
(ML) techniques to achieve such promising results.
However, these AI applications have become increas-
ingly opaque, meaning that it is often impossible to
retrace and understand how a result was generated.
Therefore, there is a growing call for explainability,
especially in high-stakes domains such as medicine.
This review aims to shed light on the issue of

explainability in digital pathology:

1. To provide insights into the context of
explainability in digital pathology, we briefly dive
into the basic principles of ML.

2. We explain the notion of explainability and give
an overview of the state-of-the-art in relevant
explainability techniques.

3. We introduce the concept of causability and
describe why explainability and causability are par-
ticularly important in pathology.

4. We discuss current research strands and open ques-
tions in this field.

ML: basic principles

The concept of explainability in digital pathology is
closely linked to ML applications in this domain. To
lay the ground for the following sections, we briefly
introduce basic principles and limitations of ML with-
out going into technical details.
ML, a subfield of AI, comprises computer programmes

that can automatically learn and improve from
‘experience’ without following explicit instructions. This
distinguishes ML from traditional software engineering,
where the developers explicitly define and encode the
rules to determine how the software handles the input
data for a specific output. In ML, the algorithm approxi-
mates input–output relations from data using numerical
optimisation and statistics. Most ML approaches define a
solution space (also called ‘model’), a loss function and a
learning algorithm that searches for solutions that
minimise the loss function. In unsupervised learning, a

sub-discipline of ML, the algorithm attempts to find
patterns in the input data. Unsupervised ML is used for
clustering and automatically recovering structure in data
or feature extraction for other ML types. In supervised
learning, the algorithm receives a so-called training
dataset, which includes samples of input data and
corresponding output data (often called labels). The ML
algorithm autonomously derives a model that best
describes input–output relations for these training data.
The goal is to train an ML model which does not only
perform well on the training data but can also make
highly accurate predictions for previously unseen
data – an ability called generalisation. A test dataset, not
previously seen by the model, is used to test the
generalisation-ability of theMLmodel.
Current ML applications for classification tasks in

pathology, where the algorithm predicts a discrete class
(e.g. tumour/non-tumour) and for regression tasks,
where the algorithm predicts a continuous value
(e.g. likelihood of tumour metastasis), are mostly based
on training with labelled data [11]. Unsupervised ML
techniques are mainly used for assisting tasks along the
ML pipeline. For example, clustering can be used to
propagate labels from a subset of annotated data to
remaining unlabelled data [12].
Generally, the ML, model after training on images,

is a complex high-dimensional non-linear mathemati-
cal function that can become quite complicated,
depending on the complexity of the task and the
ML algorithms used. For example, deep learning
(DL) algorithms, a family of ML algorithms using
‘deep’ (i.e. multi-layered) neural networks, yield ML
models comprising millions of parameters and are so
complex that humans cannot understand relationships
amongst variables to form the model’s prediction.
Such ML models are called ‘black-box’ models [13].
An ML model, which reaches high prediction accu-

racy for the test dataset, can still show decreased pre-
diction accuracy in a real-world setting. Two common
reasons for prediction failures of ML models are out-
of-distribution (OOD) data and spurious correlations.

Out-of-distribution data
The prediction performance of an ML model is
approximated under the assumption of being applied
to identically distributed data as encountered during
the training. For OOD data, the performance may be
substantially different. An illustrative example for such
OOD input data would be to present an immunohisto-
chemistry (IHC) image to an ML model that was
trained solely with haematoxylin and eosin stained
slides. However, especially in digital pathology, issues
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with OOD data are often more subtle. For example,
staining variations between pathology laboratories can
result in decreased performance of an ML application
when trained on WSIs of a single laboratory and
applied to WSIs of another laboratory [14].

Spurious correlations
The predictions of an ML model are based on the
input–output relations it has learned from the training
data. However, the input–output relations learned by
the ML model are not causal relationships but only
correlations. An ML model may also base its predic-
tions on spurious correlations, i.e. ones that occur
purely by chance. Confounding variables, which cause
spurious correlations, may be artefacts visible to
humans. For example, predictions of an ML model for
the recognition of melanoma in dermoscopic images
have shown associations with surgical skin markings
[15]. However, confounding variables in digital
pathology may also be hidden variables such as patient
age, preparation date or origin of histology slide, or
WSI scanner [16].
In practice, such decreased prediction accuracy and

prediction failures of ML models are a problem if they
cannot be identified and recognised by the human who
relies on the machine’s decision. Users must be aware
of the limitations of AI applications and consider their
potential flaws [17]. Therefore, if an AI system is sup-
posed to contribute to a medical decision, where
wrong decisions can have significant adverse effects
on patients, medical experts must have the means to
retrace and understand machine decision processes
[13]. The lack of explainability of black-box models is
often named as a significant obstacle to introducing
these applications in high-stakes areas such as medi-
cine [18].

Explainability and approaches of explainable AI

‘Explainability’ refers to a characteristic of an AI sys-
tem which enables humans to understand why the AI
system delivered the presented predictions [17]. Tech-
nically speaking, explainability highlights those ele-
ments of input data and ML model which contributed
to the AI system’s output [19].
It can be differentiated into global explanations,

which aim to provide insights into the inner workings
of the ML model and make the model transparent as a
whole, and local explanations, which aim to explain a
specific prediction of the ML model [20,21]. Further-
more, two types of AI systems can be distinguished

concerning the time when explainability is obtained: ante
hoc explainable systems and post hoc explainable sys-
tems [22]. Ante hoc explainable systems are inherently
interpretable by design since they use ML algorithms
that generate models which are directly human-
interpretable. Classical examples include decision trees,
linear regression and fuzzy inference systems [23], but
there are also approaches to create interpretable DL
algorithms [24,25]. Post hoc explanation methods gen-
erate explanations for so-called black-box ML models,
which are too complex to be directly interpretable. Post
hoc explanation methods usually do not aim to explain
how an ML model functions, but they aim to explain
why it made a specific prediction [21].
During the last decade, the research topic of

explainable AI (XAI), a subfield of ML, has developed
many methods and mechanisms to provide human-
interpretable explanations for complex ML models.
Several review papers (e.g. [25–27]) provide detailed
overviews of current XAI techniques.
It can be distinguished between XAI methods

aiming to explain the inner workings of the ML
model, XAI methods seeking to explain a specific
prediction of the ML model and XAI methods aiming
to estimate the uncertainty of the ML model’s
prediction [25]. So-called model-ground explana-
tions, i.e. XAI methods that aim to explain the inner
workings of the ML model, are mainly targeted at
the developers of the ML system who want to gain
insights on how to improve the system [28]. In con-
trast, explanations of the ML model’s predictions and
uncertainty are highly relevant to the users of the ML
application.
In pathology, where typical tasks for ML applica-

tions are related to WSI analysis, explanations are best
conveyed to the user by visualization on the input
image or synthetic visualisations [29]. Popular presenta-
tion modalities of XAI methods in the imaging domain
include saliency maps, concept attribution, prototypes,
counterfactuals, and trust scores (see Figure 1) [29,30].
Saliency maps show the estimated relevance of each

(group of) pixel(s) of the input image to the ML
model’s prediction in the form of a visual heatmap
overlay on the input image. Various techniques are
available to estimate the relevance of input pixels to
the ML model’s prediction. Often, these techniques
result in divergent explanations for the same input
image [30,31]. For non-experts in the XAI field, who
often do not have sufficient knowledge and informa-
tion to understand which technique has been applied
to create a specific saliency map and what the limita-
tions of that specific approximation technique are,
saliency maps might provide a misleading explanation.
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Figure 1. Legend on next page.
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Thus, although they are one of the most widespread
XAI methods, saliency maps should be applied and
interpreted with caution [21].
Concept attribution techniques depict the estimated

relevance of human-defined concepts (e.g. colour,
area, architecture of nuclear features, mitosis) to the
ML model’s prediction in the form of relevance
scores [32].
Prototypes are a so-called ‘explanation by example’

technique. The prototypes method aims to convey the
common features of a specific prediction class by
showing representative input examples for the respec-
tive prediction [30]. Prototypes can either be examples
picked from the model’s training dataset or synthetic
examples [33,34].
Counterfactuals are also an ‘explanation by exam-

ple’ technique. The counterfactuals method displays
examples of input data, which are similar to the spe-
cific input but result in a different output of the ML
model. Counterfactuals aim to reveal necessary mini-
mal changes in the input so that one would obtain a
contrastive output of the ML model [30,35].
Trust scores provide estimates for the ML model’s

uncertainty and help to better understand the limita-
tions of the ML model resulting from the model’s
training data and training scheme (i.e. reducible
[epistemic] uncertainty) as well as the limitations
resulting from the fact that any ML model is only a
simplified emulation of the real world (i.e. irreducible
[aleatoric] uncertainty) [25]. Uncertainty measures
can be visualised as overlays on the input image to
highlight areas where the ML model’s uncertainty is
high [25]. Alternatively, they can be used to calculate
confidence intervals of the model’s output [36].
Since post hoc explanations created by XAI tech-

niques are simplified approximations of complex ML
models, it is vital to be aware of their limitations.
Users must be informed where, i.e. for which domain
and task, the underlying approximations are valid and
reliable and where such an explanation might become
inaccurate and misleading [21]. In addition to the risk
that the recipient of a post hoc explanation is not
aware of its limitations, there is also a risk that
(ambiguous) post hoc explanations unintentionally
support positive confirmation bias and, thus, false
interpretations by the recipients [29]. Furthermore,

post hoc explanations can be intentionally misused
to foster inadequate trust, for example, by falsely
attributing an AI decision to an irrelevant but
acceptable feature [21,37].

From explainability to causability

AI applications in high-stakes domains such as pathol-
ogy must perform well and reliably. In addition, they
should also be interpretable and explainable for a
human expert. Indeed, various stakeholder groups in
pathology have different requirements regarding
explainability [38]: in clinical use, explainability should
enable the pathologist to make an informed decision on
whether or not to rely on the system’s recommenda-
tions, specifically in cases where the AI system and the
medical expert disagree [17]. Explainability should sup-
port the pathology laboratory’s quality assurance in
understanding the limitations of the AI application and
the ML model’s ability to generalise to the specific
framework conditions of that laboratory [25]. Finally,
medical researchers also require explainability, as they
seek to uncover new insights from AI and thus need to
understand the causality of patterns learned by an ML
model [13]. However, current best-performing AI
approaches typically rely on statistical correlations and
cannot build causal models to support human under-
standing. There is a need to disentangle correlation
from causation to avoid providing misleading explana-
tions [39].
As described in the previous section, XAI

methods are a first step towards making black-box
models better understandable by humans. However,
an explainable model (XAI) is not sufficient. To
make the results gained by that model useful to the
human stakeholder, an explanation interface must
complement the explainable model (see Figure 2)
[13,40]. Ideally, as shown recently [29], the expla-
nation interface for an AI system in digital pathol-
ogy should be interactive, enabling the user to
retrieve explanations on demand and to ask ‘why’
and ‘what-if’ questions to refine the understanding
of explanatory factors underlying the ML model’s
prediction. Holzinger et al [13] have coined the term

Figure 1. Popular presentation modalities of XAI methods are prototypes (show representative input examples for the predicted classes),
counterfactuals (show how minimal changes in the input would lead to contrastive output), trust scores (highlight areas where the ML
model’s uncertainty is high), saliency map (visualises estimated relevance of input pixels to the ML model’s output) and concept attribu-
tion (depict the estimated relevance of human-defined concepts to the ML model’s prediction). Here these presentation modalities of
XAI methods are exemplified through AI results for Ki-67 quantification (graphic adapted from [29]).
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‘causability’ as a measure of the usability of such
explanation interfaces:

Causability is the extent to which an explanation of a
statement to a human expert achieves a specified level of
causal understanding with effectiveness, efficiency and
satisfaction in a specified context of use. [13]

Thus, similar to the well-known term usability, which
is widely utilised in human–computer interaction to
measure the quality of use, causability measures the
quality of explanations in human–AI interaction. As
such, causability is critical for successfully designing,
developing and evaluating human–AI interfaces [41].
In digital pathology, there is a need for effective and
efficient human–AI interfaces to empower human
experts to take responsibility for their AI-supported
decision-making by helping them better understand the
underlying factors for an ML model’s prediction. In
addition, human–AI interfaces should also enable
humans to complement AI with conceptual knowl-
edge, experience, and contextual understanding [42].
For example, the graphical user interface of an AI
solution for automatic Ki-67 quantification in digital
pathology (as shown in Figure 1) should not only

visualise in an overlay on the WSI all cells the AI has
classified as K-i67-positive tumour cells, but should
also enable the pathologist to easily provide corrective
feedback, for example by clicking on cells
misclassified by the AI. Moreover, human–AI inter-
faces play a crucial role in keeping the human always
in control, which is essential in the medical field for
social, ethical and legal reasons [41].

Explainability and causability in the regulatory
context

The regulatory landscape for market approval of medi-
cal devices is different across continents and countries
and it is beyond the scope of this article to give a
detailed and comprehensive overview. Instead, in the
following paragraphs, the importance of explainability
and causability in the regulatory context is illustrated
based on the example of the European in vitro diag-
nostic medical devices regulation (IVDR).
In Europe, AI applications for WSI analysis in diag-

nostics are regarded as IVD as defined in article 2
(2) of the European IVDR [43]. To apply for market

Figure 2. XAI techniques help to make black-box ML models more transparent and explainable. However, these explainable models must
be complemented by an explanation interface to deliver results that are useful to the users and achieve high causability.

256 M Plass et al

© 2023 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2023; 9: 251–260



approval of an IVD in the European Union, the
IVDR requests manufacturers to provide evidence of
scientific validity, analytical performance and clinical
performance of the IVD.

Role of explainability and causability in
demonstrating scientific validity
To provide evidence for the scientific validity of an AI
application, it must be demonstrated that there is a scien-
tifically proven link between the output of the AI appli-
cation and the targeted physiological state or clinical
condition as defined in the intended purpose of the AI
application. Demonstrating such an association of the
output of the AI application with the targeted clinical
condition or physiological state is impossible with a
black-box ML approach. Still, it requires explainability
and causability to answer the question: Why does the AI
application work in general and generate reliable
results for the intended purpose? [44]. However, for
demonstration of scientific validity, it must be distin-
guished between (1) an AI algorithm that supports or
replaces an existing diagnostic method that scientific
studies have already validated and (2) an AI algorithm
that itself contributes significantly to the scientific and
diagnostic approach [44].
An illustrative example for the first case would be

an AI algorithm that assists pathologists with quantify-
ing the Ki-67 labelling index (i.e. the percentage of
Ki-67 IHC-stained tumour nuclei), a well-established
indicator for cellular proliferation used for diagnosis
and prognosis assessment in various cancers [45].
Manufacturers of the AI algorithm may refer to the
existing scientific studies providing evidence for the
scientific validity of Ki-67 as a cellular proliferation
index. However, in addition, the algorithm must dem-
onstrate that its results (i.e. the Ki-67-values deter-
mined by the algorithm) are indeed based on the
percentage of Ki-67-stained tumour cell nuclei of
the input WSI data. To show this, the algorithm
should: (1) mark the identified tumour cell nuclei as
Ki-67-positive or -negative on the WSI and (2) com-
pute the Ki-67 result as the percentage of positive
tumour cells in the region of interest. This visualisa-
tion of the algorithm’s outcome makes the algorithm’s
prediction process retractable and verifiable by a medi-
cal expert.
An illustrative example for the second case, an AI

algorithm that significantly contributes to the scientific
and diagnostic approach, is a survival prediction algo-
rithm for colorectal cancer which was not trained to
identify already known features but used a weakly
supervised learning approach to find novel features

[46]. By analysing the algorithm’s results, medical
experts found that small groups of tumour cells in the
vicinity of fat cells, called ‘tumour-associated fat’
(TAF), constituted a feature of high-risk clusters found
by the algorithm. However, scientific studies have not
yet validated the diagnostic approach based on TAF.
Thus, to provide evidence for the scientific validity of
the AI algorithm, it would be necessary to conduct
independent validation studies to demonstrate the cor-
relation of the presence of TAF with the survival of
colorectal cancer patients in independent cohorts.

Role of explainability and causability in analytical
performance evaluation
Evaluation of the analytical performance should demon-
strate the AI application’s ability to reliably and accu-
rately generate the intended analytical output from the
input data over the whole range of the intended use
[47]. Thus, it is especially important that test datasets
used for the evaluation of the analytical performance of
an AI application cover features of the entire intended
purpose of the AI application. Such features include,
amongst others, population and disease spectrum, speci-
men preparation and handling, preanalytical parameters
(e.g. fixation, staining), scanning process (e.g. scanner
type, resolution, compression, colour calibration) and
WSI quality (e.g. stitching errors, air bubbles, and out-
of-focus areas) [48].
XAI methods are important tools to consult when an

AI application cannot deliver reliable results for a given
input dataset. Specific reasons may be the low quality of
input data or features of the input data which were not
present in the training data. Furthermore, XAI methods
should help to recognise so-called ‘Clever Hans’ predic-
tors and detect if the model learned any shortcuts or
biases [49,50]. However, in addition to the explainability
of the ML model itself, for analytical performance evalu-
ation of an AI application, explanations regarding the
training dataset (including quantity, quality, uniqueness,
annotation process, and scope and origin of the training
data) are also needed to enable the identification of possi-
ble biases, gaps or shortcomings in the training-data,
which might cause the AI-application to generate wrong
results under real-world conditions.

Role of explainability and causability in clinical
performance evaluation
The clinical performance of an AI application is evalu-
ated in clinical studies where medical experts in diag-
nostics apply the AI application. This includes
evaluating the human–AI interface for its ability to
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support medical decision-making under real-world
conditions. To achieve high causability, the human–AI
interface should provide the user (on request) with
information about the AI application’s scientific valida-
tion and performance evaluation, including comprehen-
sible information about the algorithmic approach, the
training and test datasets, as well as the reference
dataset used for analytical performance evaluation.
In addition, the human–AI interface shall also highlight
relevant medical factors in the decision-making of the
AI application to enable the medical expert to under-
stand why the AI application generated a specific result.
The human–AI interface should provide explanatory
information without disturbing or decelerating the
user’s primary task. It must ensure an effective mapping
between explanations generated by an XAI method and
the user’s previous knowledge and consider the needs
and preferences of the target user group.

Conclusion and future outlook

Due to the large amounts of data available and increas-
ing computing power, AI methods are becoming pro-
gressively successful in pathology and other fields.
Currently, the most successful AI algorithms are based
on the family of so-called DL algorithms. These ML
algorithms, which function based on neural networks,
are called ‘black boxes’ because the obtained results
are practically untraceable, and it remains – even to
the AI expert – often unclear why an algorithm made
a particular decision.
Traditionally, AI experts evaluate ML algorithms with

metrics such as accuracy and specificity. These metrics
are easily measurable on test data, and if the algorithm
works as expected, this evaluation is also practically suf-
ficient. However, these metrics can be dramatically mis-
leading if, for example, the training data are not
independent and identically distributed – which is rarely
the case in clinical data. As a result, problems in the rela-
tions learned by the AI can remain hidden and lead to
unexpected errors. Especially in medicine, when it
comes to sensitive data and decisions that directly affect
people, a better understanding is necessary to avoid
damage and mistakes. To make these black boxes trans-
parent, the field of XAI has developed a set of useful
methods to highlight decision-relevant parts that contrib-
uted to model accuracy in training or a particular predic-
tion. However, a disadvantage is that these methods do
not refer to a human model, i.e. a user.
For this reason, ‘causability’ was introduced in refer-

ence to the well-known term usability. Whilst XAI

means implementing transparency and traceability,
causability is measuring the quality of explanations.
Causability can thus be defined as ‘cause identifiability’
– the measurable extent to which an explanation of an
AI’s decision to a user achieves a specified level of
causal understanding with effectiveness, efficiency, and
satisfaction in a specified context of use.
In the future, novel human–AI interfaces that enable

contextual understanding and allow the domain expert to
ask interactive ‘what-if’-questions are urgently required to
achieve a high level of causability. A human-in-the-loop
can (sometimes – not always) bring human experience
and conceptual knowledge to AI processes – something
that the current best AI algorithms (still) lack.
Consequently, human medical professionals will
remain important in the future and together with algo-
rithms, will achieve better quality in their daily work.
Digital pathology is a vital enabler in that direction.
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