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Frequent somatostatin receptor PET, for example, 64Cu-DOTATATE
PET, is part of the diagnostic work-up of patients with neuroendocrine
neoplasms (NENs), resulting in high accumulated radiation doses. Scan-
related radiation exposure should be minimized in accordance with the
as-low-as-reasonably achievable principle, for example, by reducing
injected radiotracer activity. Previous investigations found that reducing
64Cu-DOTATATE activity to below 50 MBq results in inadequate image
quality and lesion detection. We therefore investigated whether image
quality and lesion detection of less than 50 MBq of 64Cu-DOTATATE
PET could be restored using artificial intelligence (AI). Methods: We
implemented a parameter-transferred Wasserstein generative adversar-
ial network for patients with NENs on simulated low-dose 64Cu-DOTA-
TATE PET images corresponding to 25% (PET25%), or about 48 MBq,
of the injected activity of the reference full dose (PET100%), or about
191 MBq, to generate denoised PET images (PETAI). We included 38
patients in the training sets for network optimization. We analyzed PET
intensity correlation, peak signal-to-noise ratio (PSNR), structural similar-
ity index (SSIM), and mean-square error (MSE) of PETAI/PET100% versus
PET25%/PET100%. Two readers assessed Likert scale–defined image
quality (1, very poor; 2, poor; 3, moderate; 4, good; 5, excellent) and
identified lesion-suspicious foci on PETAI and PET100% in a subset of the
patients with no more than 20 lesions per organ (n 5 33) to allow com-
parison of all foci on a 1:1 basis. Detected foci were scored (C1, definite
lesion; C0, lesion-suspicious focus) and matched with PET100% as the
reference. True-positive (TP), false-positive (FP), and false-negative
(FN) lesions were assessed. Results: For PETAI/PET100% versus
PET25%/PET100%, PET intensity correlation had a goodness-of-fit value
of 0.94 versus 0.81, PSNRwas 58.1 versus 53.0, SSIMwas 0.908versus
0.899, and MSE was 2.6 versus 4.7. Likert scale–defined image quality
was rated good or excellent in 33 of 33 and 32 of 33 patients on PET100%
and PETAI, respectively. Total number of detected lesions was 118 on
PET100% and 115 on PETAI. Only 78 PETAI lesions were TP, 40 were FN,
and 37 were FP, yielding detection sensitivity (TP/(TP1FN)) and a false
discovery rate (FP/(TP1FP)) of 66% (78/118) and 32% (37/115), respec-
tively. In 62% (23/37) of cases, the FP lesionwas scoredC1, suggesting a
definite lesion.Conclusion:PETAI improved visual similaritywith PET100%
compared with PET25%, and PETAI and PET100% had similar Likert scale–
defined image quality. However, lesion detection analysis performed by

physicians showed high proportions of FP and FN lesions on PETAI,
highlighting the need for clinical validation of AI algorithms.
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Neuroendocrine neoplasms (NENs) are rare diseases that origi-
nate from the diffuse neuroendocrine system. PET based on radiotracers
targeting the somatostatin receptor (SSR), overexpressed in most
NENs, plays a fundamental role in the clinical management of diagno-
sis, staging, treatment guidance, and follow-up of patients with NENs
(1–4). Patients may undergo lifelong annual or biannual follow-up with
inclusion of SSR-based PET/CT imaging (3), resulting in relatively
high accumulated radiation exposure that underscores the importance
of adhering to the as-low-as-reasonably achievable principle (5).
The U.S. Food and Drug Administration–approved activity dose of

the SSR PET radiotracer 64Cu-DOTATATE is 148 MBq, with an
effective radiation dose of 4.7 mSv (6). One way to reduce the PET-
related radiation burden is by reducing the radiotracer activity dose.
By analyzing simulated dose-reduced PET images, we previously
demonstrated that the injected 64Cu-DOTATATE activity could be
reduced to approximately 100 MBq without loss of clinically relevant
information (7). With activity dose reduction to less than 50 MBq,
image quality was suboptimal and lesion detection sensitivity was low.
Deep learning (DL), a subtype of artificial intelligence (AI), has

recently been proposed as a tool for low-count PET image noise
reduction (8), because it has been shown to outperform conven-
tional denoising methods while retaining lesion detectability and
quantitative accuracy in oncologic PET (9,10). However, limited
contrast recovery has been observed for smaller lesions (,1 cm3),
which challenges the use of DL methods when lesion detectability
is important for clinical diagnosis.
When evaluating the performance of AImethods inmedical imaging,

discrepancies may arise between conventional fidelity-based metrics,
for example, structural similarity index (SSIM) and mean-square
error (MSE), and objective clinical task–basedmetrics. For example, the
application of a denoising DL algorithm on simulated low-dose SPECT
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images in a phantom study by Yu et al. (11) did not improve the sig-
nal detection task despite showing improvements in fidelity-based
metrics. Similarly, using a denoising DL algorithm to augment
low-dose SPECT myocardial perfusion scintigraphy images, Yu
et al. (12) found poor performance in the detection of myocardial
defects, whereas the fidelity-based metrics were improved. Dis-
crepancies are not limited to denoising algorithms. Yang et al. (13)
found that implementation of a DL algorithm for CT-less atten-
uation correction of 18F-FDG PET/CT images from oncologic
patients resulted in false-negative (FN) lesions and the appearance
of false-positive (FP) lesions when the DL PET images were
reviewed by radiologists, even though convincing fidelity-based
metrics were found. As highlighted in the recently published
Recommendations for Evaluation of Artificial Intelligence for
Nuclear Medicine (RELAINCE) guidelines (14), it is therefore
essential to include evaluation of relevant clinical tasks early in the
development of the algorithms and to not rely solely on fidelity-
based metrics.

In the current study, we evaluated to what extent application of
a DL-based model could assist in reducing the image noise of sub-
optimal, low-dose 64Cu-DOTATATE PET images while retaining
finer image structures such as tumor lesions. The clinical goal of
SSR PET imaging is to ensure correct lesion detection, disease
classification, and staging of patients with NENs. In accordance
with the RELAINCE guidelines (14), we therefore evaluated the
clinical task of detecting tumor lesions on denoised, low-dose PET
images from patients with NENs, in addition to evaluation of the
Likert scale–defined image quality and conventional fidelity-based
metrics.

MATERIALS AND METHODS

Patient Population
The study is a continuation of our previously reported activity dose

reduction PET investigation performed in patients with NENs (7). We
retrospectively included the same 38 patients with NENs referred to a

TABLE 1
Patient Characteristics

Characteristic Data (n 5 38)
Subset for clinical image

analysis (n 5 33)*

Sex

Female 21 (55) 19 (58)

Male 17 (45) 14 (42)

Age (y)

Median 64 64

Range 37–84 37–84

Site of primary tumor

Small intestine 21 (55) 16 (49)

Pancreas 11 (29) 11 (33)

Lung 3 (8) 3 (9)

Other 3 (8) 3 (9)

Previous treatment†

Surgery 29 (76) 27 (82)

Somatostatin analogs 23 (61) 18 (55)

Peptide receptor radionuclide therapy 12 (32) 8 (24)

Chemotherapy 10 (26) 7 (21)

Radiofrequency ablation (liver metastases) 2 (5) 2 (6)

Ki-67 proliferation index

,3% 9 (24) 8 (24)

3%–20% 26 (68) 22 (67)

.20% 3 (8) 3 (9)

Dose (MBq)‡

PET100% 191 (169–209) 191 (172–209)

PET25%/PETAI 48 (42–52) 48 (43–52)

*Patients with .20 lesions per organ (n 5 5) were excluded for clinical image analysis. Patients used for clinical image analysis (n 5 33)
thus represent subset of all 38 patients included in training sets.

†Some patients received multiple treatments. Therefore, total number of treatments exceeds number of patients.
‡Dose at PET100% is 64Cu-DOTATATE activity dose given to patient for PET/CT. PET25% and PETAI dose is derived from simulated

equivalent dose at 25% of PET100% dose.
Data are number followed by percentage in parentheses, except for age and dose (median and range).
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routine 64Cu-DOTATATE PET/
CT at the Department of Clini-
cal Physiology and Nuclear
Medicine, Copenhagen Univer-
sity Hospital–Rigshospitalet, be-
tween April and September
2019 with PET list-mode data
available. The study was ap-
proved by the Danish Patient
Safety Authority (reference 31–
1521–453) according to Danish
regulations, and the requirement
to obtain written informed con-
sent was waived.

PET/CT Acquisition and
Image Reconstruction

PET/CT acquisition, PET re-
construction, and generation of
reduced-dose PET equivalents
were performed as previously de-
scribed (7). Patients were injected
with approximately 200 MBq of
64Cu-DOTATATE based on our
clinical studies (15–18). PET ac-
quisition was performed approxi-
mately 1 h later with a Siemens
Biograph 128 mCT PET/CT
scanner with an axial field of

view of 221 mm and a 4 min/bed position acquisition time. A standard rou-
tine whole-body diagnostic CT imaging series was performed. Simulated
low-dose 64Cu-DOTATATE PET images corresponding to 25% (PET25%)
of the injected activity of the reference full dose (PET100%) were generated
by randomly deleting events in the PET list-mode file using LMChopper
(e7-tools; Siemens Healthineers). We created 5 realizations of the PET25%
images. This was done to increase the number of training samples and per-
form data augmentation because of noise variation among the realizations.
Reconstruction of both PET100% and PET25% was performed using
3-dimensional (3D) ordinary Poisson ordered-subset expectation maxi-
mization with 2 iterations and 21 subsets, including time of flight at 540 ps
and modeling of the point spread function, followed by smoothing by a
gaussian postprocessing filter at 2 mm full width at half-maximum. The
reconstructed image size was 4003 4003 426 voxels with a voxel size
of 2.043 2.043 2.00mm3.

PET Image Preprocessing
PET25% images were first cropped to 256 3 256 3 426 voxels to

minimize the effect of voxels outside of the body. We extracted patches
of 64 3 64 3 9 voxels with a stride of 9 voxels in each direction,
excluding patches with maximum PET or CT values that were less than
empirically selected thresholds (,10 Bq/mL or ,2200 HU, respec-
tively) to limit empty patches. A total of 762,338 patches were
extracted for each of the 5 noise realizations across the 38 patients.

Network Setup and Training
To generate the denoised PET images (PETAI), we implemented a

parameter-transferred Wasserstein generative adversarial network (PT-
WGAN) for low-dose PET noise reduction inspired by Gong et al. (19).
The network type was chosen because the authors demonstrated it had
better performance than a pure 2-dimensional (2D) or 3D convolutional
neural network on the same dataset. Supplemental Appendix A gives a
more detailed overview (supplemental materials are available at http://
jnm.snmjournals.org). In short, the PT-WGAN consists of 2 parts, a gen-
erator and a discriminator, where the generator is a hybrid 2D and 3D

U-netlike network pretrained
without the discriminator to im-
prove stability and convergence
during training. The hybrid
combination was introduced by
Gong et al. (19) to limit computa-
tional resources. The model train-
ing and evaluation were done
using 5-fold cross-validation. In
each fold, we first reserved a test
set consisting of one fifth of the
38 patients for evaluation that
was not part of model training for
that fold. Next, we reserved 10%
of the remaining four fifths of the
data for validation during training
(used to detect overfitting) and
trained the model on the remain-
ing patients. After the 5 repeti-
tions, all 38 patients had at one
point been in a test set, and a
PETAI image was therefore cre-
ated. We did not vary any hyper-
parameters among the folds.

Objective Visual
Similarity Analysis

We evaluated the quantita-
tive accuracy of PET25% and
PETAI by computing a joint
histogram of the PET activity relative to PET100%, and we compared
the image fidelity using the following standard similarity comparison
metrics: peak signal-to-noise ratio (PSNR), SSIM, and MSE. We
restricted the comparison to voxels inside the patient volume defined
using the CT image (more than 2900 HU).

Clinical Image Analysis
Two readers placed side by side collectively analyzed all PET/CT

scans: a board-certified nuclear medicine physician with 10 y and a
nuclear medicine physician in training with 4 y of experience in read-
ing SSR-based PET/CT scans from patients with NENs. To analyze
all patients’ lesions on a 1:1 basis, only PET images from a subset of
patients with no more than 20 lesions in each organ system (n 5 33),
of the initially included 38 patients used for training, were used for the
clinical image analysis. The readers were blinded to the PET image
(PET100% or PETAI) and analyzed the images in 2 clusters, each
containing either PET100%/CT or PETAI/CT from 1 of the 33 patients,
presented to the readers in random order. After 12 wk of quarantine,
the second cluster was analyzed by the same readers. Mirada DBx
1.2.0 was used for the clinical analysis.

Likert Scale–Defined Image Quality
The image quality of the PET images was rated on a 5-point Likert

scale: 1 (very poor), 2 (poor), 3 (moderate), 4 (good), and 5 (excel-
lent). Scores 4 and 5 were accepted as diagnostic image quality.

Number and Certainty of Detected Lesions
On each PET image, any focus considered lesion-suspicious was anno-

tated. The CT was used mainly to confirm the anatomic location of the
PET focus. Each focus was given a certainty score for a definite lesion
(C1) and for a focus indicative of a lesion or a suspicious area (C0), in
which the presence of a lesion could not be ruled out. The images were
then unblinded and the identified foci were matched on PET100% and
PETAI. PET100% was considered the standard of truth. Concordant, true-
positive (TP) lesions identified on both PET100% and PETAI and

FIGURE 1. Joint histogram of PET
intensity values for PET25% (top) and
PETAI (bottom) versus reference
PET100%. Green line is identity line,
and R2 is shown above each image.
Analysis was performed on training
sets (n5 38).

FIGURE 2. Image similarity metrics:
PSNR (top), MSE (middle), and SSIM
(bottom). Error bars mark 95% CI.
Analysis was performed on training
sets (n5 38).
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discordant lesions—FN lesions visible on PET100% but not PETAI and FP
lesions visible on PETAI but not PET100%—were grouped according to
organs and regions. Organ- or region-specific and overall sensitivities and
false discovery rates (FDRs) for detected lesions on PETAI were calcu-
lated as TP/(TP1FN) and FP/(TP1FP), respectively, on a per-lesion
basis. We evaluated the distribution of TP, FP, and FN lesions according
to the number of lesions detected on PET100% in the following groups:
no lesions, 1 lesion, 2–5 lesions, 6–10 lesions, and more than 10 lesions.
We also analyzed the per-patient sensitivities and specificities for the
detection of organ- or region-specific and overall disease based on
matched lesions on a per-patient basis, with PET100% as the reference.

Patient Characteristics Based on Lesion Types
To analyze whether patient-specific characteristics contributed to the

occurrence of FN and FP lesions, we compared patients with FN or FP
lesions and patients with either TP-only or no lesions with the follow-
ing variables: injected activity dose, weight, activity dose per weight,
and liver background (SUVmean measured in a 3-cm-diameter sphere in
the right lobe of the liver in an area free of blood vessels and lesions).

Statistics
PET100% was considered the standard of truth. For the clinical analysis,

the proportion of PET images with Likert scale–defined image quality
scores of good or excellent (considered diagnostic image quality) were
analyzed with the McNemar test for paired proportions for PETAI versus
PET100%. The McNemar test was also used for analysis of the distribution
of C1 and C0 lesion scores among TP lesions on PETAI versus PET100%.
For sensitivities, specificities, and FDR, 95% CI was calculated with
the Clopper-Pearson exact method. For comparison of the patient-specific
characteristics, we used Mann–Whitney U tests. Reference groups were
patients with only TP lesions or no lesions for the patient-specific com-
parisons. R version 3.6.1 was used for the clinical statistical analysis.
For comparison of the PET intensity correlations of PET25% and
PET100% versus PETAI and PET100%, we computed a goodness-of-fit
value (R2) to the identity line for each of the patients. Image fidelity
metrics of PET25% and PET100% versus PETAI and PET100% were cal-
culated with NumPy version 1.22.4 and scikit-image version 0.18.2
(20) in Python version 3.8.

RESULTS

Patient Characteristics
Characteristics of the patients are shown in Table 1.

Objective Visual Similarity Analysis
The AI algorithm was able to reduce the noise while improving

the quantitative accuracy in the images (Fig. 1), resulting in better
correlation with PET100% for PETAI (R

2 5 0.94) compared with
PET25% (R2 5 0.81). The model increased PSNR and SSIM
while decreasing MSE compared with PET25% (Fig. 2).

Likert Scale–Defined Image Quality
Likert scale–defined image quality scores are shown in Figure 3.

All PET100% (33/33) and all but 1 PETAI (32/33) had a Likert sca-
le–defined image quality score of 4 (good) or 5 (excellent) and
were thus considered diagnostic image quality. No statistically sig-
nificant difference in the proportions of patients with diagnostic
image quality PET was observed (P 5 1.0). Figure 4 shows a rep-
resentative example of the AI algorithm’s ability to reduce noise
and apparently restore the Likert scale–defined image quality of
low-dose PET25%.

Number of Detected Lesions
Table 2 shows the number of lesions detected on PET100% and

PETAI grouped by organs and regions. The total number of lesions
was similar on PET100% and PETAI, with 118 and 115 lesions
detected, respectively. However, only 78 lesions were TP on
PETAI, yielding lesion detection sensitivity of 66% (78/118). In
addition, 37 FP lesions were detected on PETAI, corresponding to
FDR of 32% (37/115). The same trend, with high rates of FP and

FIGURE 3. Distribution of Likert scale–defined image quality scores—3,
moderate; 4, good; and 5, excellent (Likert scale–defined image quality
scores 4 and 5 are considered diagnostic image quality)—on PET100% and
PETAI. No patient had Likert scale–defined image quality score below 3.
Analysis was performed on patient subset for clinical image analysis con-
sisting of patients with#20 lesions per organ (n5 33).

FIGURE 4. Examples of full-dose PET100%, low-dose PET25%, and
denoised PETAI.
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FN lesions yielding low lesion detection sensitivity and high FDR,
was observed for the abdomen and liver. A representative example
of a patient with a FN liver lesion is shown in Figure 5. This patient
had additional TP liver lesions. Figure 6 shows a representative
example of a patient with a FP lesion detected only on PETAI. This
was the only lesion detected on either of the scans, that is, no TP
lesions. Figure 7 shows the distribution of TP, FP, and FN lesions
according to the number of detected lesions on PET100%. Per-
patient sensitivity and specificity for the detection of NEN disease
across organs and regions are shown in Supplemental Table 1.

Certainty in Detected Lesions
The distributions of lesion certainty scores (C1 and C0) across organs

and regions are shown in Table 3. Most TP lesions were given C1

scores, suggesting that the readers were certain of the presence of a
lesion on both PET100% and PETAI. For the FN lesions, larger fractions
of C0 lesions were observed on PET100%, suggesting that the readers
were uncertain whether a suspicious focus indeed was a lesion in these
cases. Of the 37 FP lesions detected only on PETAI, 23 (62%) were
given a score of C1, suggesting that the readers were certain of the pres-
ence of a lesion.

Patient Characteristics Based on Lesion Types
Patient-specific characteristics are shown in Table 4. There was

a trend of a lower weight-adjusted activity dose in the groups of
patients with FP compared with the groups of patients with no
lesions or only TP lesions, although this was not statistically
significant.

DISCUSSION

Using randomly undersampled list-mode 64Cu-DOTATATE
PET data, we simulated low-dose PET images and implemented a
state-of-the-art denoising PT-WGAN-based AI algorithm to test
whether the image quality and lesion detection rate could be
restored. Our main finding was that only 78 of 118 lesions could
be detected on PETAI (TP), and of 115 lesions detected on PETAI,
37 were FP, corresponding to lesion detection sensitivity and FDR
of 66% (78/118) and 32% (37/115), respectively. Despite the
improvements of the fidelity-based metrics and the Likert scale–
defined image quality performed by the AI algorithm, the discrep-
ancies between PET100% and PETAI for the detection of correct
lesions highlight the need for clinical validation when assessing
the performance of AI algorithms.

According to the fidelity-based metrics,
perceived Likert scale–defined image qual-
ity, and total number of detected lesions, the
algorithm appeared successful in denoising
low-dose PET25%. However, low lesion
detection sensitivity on PETAI shows that a
large fraction of the lesions was not captured
by the AI algorithm. Even more alarming
was the high proportion of FP lesions
observed only on PETAI, yielding high FDR.
For most of the 37 FP lesions, the readers
assigned a C1 certainty score, suggesting
high certainty that the focus was indeed a
lesion. Because the readers generally consid-
ered PETAI to be of diagnostic image quality
(Likert scale–defined image quality score of
good or excellent), they may have been prone
to accepting an apparent lesion-suspicious
focus as a lesion without raising concern that

TABLE 2
Number of Lesions Grouped by Organs and Regions in 33 Patients with NENs

Organ or region
No. of lesions

PET100%
No. lesions

PETAI TP FP FN Sensitivity* FDR*

Liver 36 38 17 21 19 47 (30–65) 55 (38–71)

Pancreas 6 7 6 1 0 100 (54–100) 14 (0–58)

Abdominal 49 47 36 11 13 73 (59–85) 23 (12–38)

Extraabdominal LNs 5 6 5 1 0 100 (48–100) 17 (0–64)

Bone 17 12 10 2 7 59 (33–82) 17 (2–48)

Other 5 5 4 1 1 80 (28–99) 20 (1–72)

Overall 118 115 78 37 40 66 (57–75) 32 (24–42)

*Data for sensitivity and FDR are percentages followed by 95% CI in parentheses.
Abdominal 5 intestines, intraabdominal carcinosis, and intraabdominal lymph nodes (LNs); other 5 brain (1), ovary (1), thyroid or

parathyroid (1), and skin (2). Analysis is performed on patient subset for clinical image analysis consisting of patients with #20 lesions per
organ (n 5 33).

FIGURE 5. Patient with FN liver lesion. Patient had additional concordant TP liver lesions. Arrows
mark lesion location on PET100% and PET100%/CT. PET25% shown for reference.
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its appearance may result from the algorithm. Importantly, FP and FN
lesions were not restricted to patients with multiple lesions on
PET100%, in which case a single or a few FN or FP findings
would have limited clinical consequences. FP and FN lesions
were also found in patients with none or only 1 lesion detected
on PET100%, in which case a single misclassified lesion could alter
the patient’s status from healthy to diseased, or vice versa. This
was supported by low per-patient sensitivity and specificity for
the presence or absence of disease across organs and regions based
on matched lesions. These findings highlight the importance of
focusing on the correct clinically relevant task when assessing AI
algorithms, as recommended in the RELAINCE guidelines (14).
Compared with other advanced DL-based denoising studies on

low-dose or fast-acquisition 18F-FDG PET in oncologic patients
who showed detection sensitivity of up to 97% (21,22), the

detection sensitivity of our study was low.
Without a comparative study, it is difficult to
assess potential causes of this difference.
However, the larger training cohorts, 313
patients in a study by Xing et al. (21) and 60
patients in a study by Sanaat et al. (22),
could have an impact. Differences in the
patients’ tumor phenotypes, the physical
properties of 18F versus 64Cu, or the biodis-
tribution of the radiotracer may also contrib-
ute. Patients with NENs frequently have
metastatic disease with multiple lesions scat-
tered throughout the body. Metastases are
often small (#1 cm), which may impact the
performance of the denoising algorithms. In
line with this, Yu et al. (11) showed poor
performance of a DL-based denoising algo-
rithm for signal detection of small signal
sizes of denoised low-dose SPECT images.

In addition, the liver and the intestines are particularly lesion-prone
in patients with NENs, and these organs have relatively high back-
ground uptakes of SSR-based radiotracers, making it difficult to dis-
tinguish potential lesions from surrounding tissue on low-dose PET.
However, we did not find any difference in uptake of 64Cu-DOTA-
TATE in the normal liver of patients with FN or FP lesions com-
pared with patients with no or TP-only lesions. In contrast, a trend
of a lower weight-adjusted dose in the group with FP lesions was
observed, which could contribute to the FP lesions because of
increased image noise.
If denoising AI algorithms of low-dose, whole-body SSR PET

images are to be implemented clinically, the challenges of FP and
FN lesions must be solved. Variations in DL training strategies,
including choice of network architecture, loss function, and hyper-
parameters, might improve performance. We compared the effect
of the network architecture by comparing PT-WGAN against
traditional 3D U-netlike, residual 3D U-netlike, and adversarial
network architectures and found the best performance with PT-
WGAN (Supplemental Appendix B). Furthermore, we evaluated
the influence of sampling patches over areas with high activity,
and although this improved PSNR and MSE, there was no im-
provement on image structure measured with SSIM (Supplemental
Appendix A). We speculate that further improvement might be
achieved by incorporating a lesion-based loss term; however, this
would require total tumor segmentation of the training patients
and was not pursued in this work.
A limitation of the method is the low number of included patients,

despite being comparable to other recently published studies of 9–31
patients (10,19,23). We chose to use a k-fold cross-validation train-
ing strategy to achieve a sufficient number of patients for evaluation,
which is a frequently used technique to overcome a low number of
patients. This is a significant limitation because clinical AI methods
must be evaluated using an independent test set to show robustness
and avoid potential data leakage. However, we would not expect
lesion detection sensitivity and FDR to improve if tested on an inde-
pendent test set. Rather, we speculate that the FP or FN findings
may be even more pronounced. Although the 38 patients each con-
tribute many data points during training because of the large, whole-
body PET data files, these in turn are highly correlated with those
extracted from neighboring areas. Inclusion of additional patients in
the training sets may assist the AI algorithm in detecting the lesion
patterns and may improve the performance. In addition, optimization

FIGURE 6. Patient with FP liver lesion on PETAI. Patient had no lesions detected on PET100%.
Arrows mark lesion location on PETAI and PETAI/CT. PET25% shown for reference.

FIGURE 7. Distribution of TP, FP, and FN on PETAI corresponding
to number of lesions detected on PET100%. Analysis was performed
on patient subset for clinical image analysis consisting of patients with
#20 lesions per organ (n5 33).
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of the low-dose PET acquisition or reconstruction regime before run-
ning the AI algorithm may improve the performance.
It could be argued that a more comprehensive evaluation of the

performance of the denoising algorithm, in terms of restoring lesion
detection, could be obtained with a receiver-operating-characteristic
analysis (24). For example, the detection of regional or organwise and

overall 64Cu-DOTATATE avid disease (yes or no), on a per-patient
basis, could be performed with 5-point confidence scores (e.g., defi-
nitely normal, probably normal, unsure, probably malignant, or defi-
nitely malignant) for both PET100% and PETAI, using an external
standard of truth for presence of disease, to compare disease detection
performance as the areas under the receiver-operating-characteristic

TABLE 3
Certainty of Detected Lesions in 33 Patients with NENs

Organ or region

All lesions TP

P*

FN FP

Total C1 C0 Total C1 C0 Total C1 C0 Total C1 C0

Liver

PET100% 36 31 5 17 17 0 1.0 19 14 5 N/A N/A N/A

PETAI 38 29 9 17 17 0 N/A N/A N/A N/A 21 12 9

Pancreas

PET100% 6 6 0 6 6 0 1.0 0 0 0 N/A N/A N/A

PETAI 7 7 0 6 6 0 N/A N/A N/A N/A 1 1 0

Abdominal

PET100% 49 45 4 36 35 1 1.0 13 10 3 N/A N/A N/A

PETAI 47 43 4 36 36 0 N/A N/A N/A N/A 11 7 4

Extraabdominal LNs

PET100% 5 5 0 5 5 0 1.0 0 0 0 N/A N/A N/A

PETAI 6 5 1 5 5 0 N/A N/A N/A N/A 1 0 1

Bone

PET100% 17 16 1 10 10 0 1.0 7 6 1 N/A N/A N/A

PETAI 12 11 1 10 9 1 N/A N/A N/A N/A 2 2 0

Other

PET100% 5 5 0 4 4 0 1.0 1 1 0 N/A N/A N/A

PETAI 5 5 0 4 4 0 N/A N/A N/A N/A 1 1 0

Overall

PET100% 118 108 10 78 77 1 0.5 40 31 9 N/A N/A N/A

PETAI 115 100 15 78 77 1 N/A N/A N/A N/A 37 23 14

*P values calculated using McNemar test for paired proportions of distribution of C1 and C0 lesion scores in TP lesions on PET100% vs.
PETAI.

Abdominal 5 intestines, intraabdominal carcinosis, and intraabdominal lymph nodes (LNs); N/A 5 not applicable; other 5 brain (1),
ovary (1), thyroid or parathyroid (1), and skin (2). Analysis is performed on patient subset for clinical image analysis consisting of patients
with #20 lesions per organ (n 5 33).

TABLE 4
Characteristics of 33 Patients with NENs Based on Lesion Type

Parameter TP-only or no lesions (n 5 11) FN (n 5 16) P* FP (n 5 15) P*

Injected dose (MBq) 188 (181.5–201.5) 190.5 (184–198.9) 0.94 192.0 (184.0–195.6) 0.94

Weight (kg) 76.0 (67–81.5) 73.0 (64.3) 0.87 86.7 (74.0–97.5) 0.09

Dose/weight (MBq/kg) 2.5 (2.4–2.9) 2.6 (2.0–3.1) 0.82 2.3 (2.0–2.6) 0.07

Liver SUVmean 5.0 (4.7–6.6) 5.0 (4.7–6.1) 0.79 6.1 (5.0–6.9) 0.22

*Mann–Whitney U test for comparison with reference (TP-only or no lesions group).
Data are shown as medians with interquartile range in parentheses. Analysis is performed on patient subset for clinical image analysis

consisting of patients with #20 lesions per organ (n 5 33). n refers to number of patients in each group. Patients may appear in both FN
and FP groups if they have both FP and FN lesions. Accordingly, total number of patients exceeds 33.
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curves (25). For comparison of performance for the detection of mul-
tiple lesions per patients, the areas under the free-response operating
characteristic curves, which take into account detection confidence
and the location of lesions, could be compared for PET100% and
PETAI using an external standard of truth (26). However, we consider
PET100% as the standard of truth to be the most relevant reference in
our case, because PETAI is directly derived from the corresponding
full-dose images through low-dose simulation and denoising through
the AI algorithm. We find the 2-point confidence score (C1 or C0) to
be representative of the clinical reading situation: the reader either is
confident that a lesion is present (C1) or has some uncertainty and
raises a flag (C0) such that special attention can be drawn to the suspi-
cious area on prior or subsequent scans. Furthermore, we find that the
2-point confidence score sufficiently underscores concerns about
using PETAI for lesion detection, because 23 of the 37 FP cases were
considered definite lesions (and thus given a C1 score). Thus, selecting
C1 as the threshold for lesions still provides alarmingly high lesion
detection FDR of 23% (23/100) and low lesion detection sensitivity
of 71% (77/108).
The Likert scale–defined image quality used in this paper repre-

sents the readers’ overall subjective assessment of how the images
compare to standard 64Cu-DOTATATE PET images seen in the
clinical setting. Other definitions of image quality for assessment
of AI imaging methods include objective task-based evaluations of
the image quality, e.g., lesion detection like in our study, for objective
assessment of image quality (27). The distinction between the subjec-
tive image quality and the objective lesion detection task is important,
because the PETAI Likert scale-defined image quality generally were
rated as good or excellent; that is, to the reader, the PETAI images
overall appear similar to high-quality 64Cu-DOTATATE PET images
seen in a clinical setting, whereas the objective lesion detection task
demonstrated that the PETAI images were inadequate.

CONCLUSION

We implemented a state-of-the-art PT-WGAN denoising AI
algorithm on simulated low-dose 64Cu-DOTATATE PET images
from patients with NENs of a suboptimal standard to test whether
the image quality and lesion detection rate could be restored. The
algorithm improved the image similarity metrics, and the perceived
Likert scale–defined image quality of PETAI was equivalent to the
full-dose PET images. However, application of the denoising algo-
rithm resulted in FN lesions and FP lesions when compared with
full-dose PET in a clinical analysis. The discrepancies highlight the
need for relevant clinical validation of AI algorithms.
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KEY POINTS

QUESTION: Can the image quality and lesion detection rate of
low-dose (,50 MBq) 64Cu-DOTATATE PET scans from patients
with NENs be restored using state-of-the-art AI for image
denoising?

PERTINENT FINDINGS: The denoising AI algorithm performed
well on standard image fidelity-based comparison metrics, and
the perceived Likert scale–defined image quality was restored.
However, clinical assessment showed that more than half of the
lesions found on the denoised low-dose 64Cu-DOTATATE PET
were FP or FN compared with the full-dose scans.

IMPLICATIONS FOR PATIENT CARE: The study highlights
the importance of assessing clinically relevant endpoints when
evaluating AI algorithms in nuclear medicine in accordance with
the RELAINCE guidelines.
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