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Abstract

Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images 

plays an essential role in studying early subcortical structural and functional developmental 

patterns and diagnosis of related brain disorders. However, due to the dynamic appearance 

changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical 

segmentation is a challenging task. In this paper, we propose a context-guided, attention-based, 

coarse-to-fine deep framework to precisely segment the infant subcortical structures. At the coarse 
stage, we aim to directly predict the signed distance maps (SDMs) from multi-modal intensity 

images, including T1w, T2w, and the ratio of T1w and T2w images, with an SDM-Unet, which 

can leverage the spatial context information, including the structural position information and 

the shape information of the target structure, to generate high-quality SDMs. At the fine stage, 
the predicted SDMs, which encode spatial-context information of each subcortical structure, are 

integrated with the multi-modal intensity images as the input to a multi-source and multi-path 

attention Unet (M2A-Unet) for achieving refined segmentation. Both the 3D spatial and channel 
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attention blocks are added to guide the M2A-Unet to focus more on the important subregions 

and channels. We additionally incorporate the inner and outer subcortical boundaries as extra 

labels to help precisely estimate the ambiguous boundaries. We validate our method on an infant 

MR image dataset and on an unrelated neonatal MR image dataset. Compared to eleven state-

of-the-art methods, the proposed framework consistently achieves higher segmentation accuracy 

in both qualitative and quantitative evaluations of infant MR images and also exhibits good 

generalizability in the neonatal dataset.
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1. Introduction

The brain subcortex controls diverse cognitive and motor functions (Calabresi et al., 2014; 

Grossberg, 2009; Richard et al., 2013; Scimeca and Badre, 2012) and its abnormality has 

been reliably linked to affective dysfunctions and disorders (Ecker et al., 2015; Risacher 

et al., 2009; Tremblay et al., 2015). To perform subcortical related neuroimaging studies 

(Gilmore et al., 2012; Li et al., 2019a), accurate segmentation of subcortical structures 

from magnetic resonance (MR) images plays a fundamental role. However, manually 

delineating each subcortical structure on the low contrast infant brain MR images is 

expertise needed, hard to reproduce, and extremely time-consuming. Hence, many automatic 

subcortical segmentation methods have been proposed (Jenkinson et al., 2012; Zöllei et al., 

2020). Particularly, deep learning-based methods recently exhibited a dominant performance 

in medical image segmentation, e.g., infant-dedicated brain tissue segmentation methods 

(Wang et al., 2018b; Zeng and Zheng, 2018), top-ranked methods in the iSeg2019 challenge 

(Multi-Site Infant Brain Segmentation Algorithms), i.e., xflz, CU_SIAT, and RB (Sun et al., 

2021), nnUnet (one of the state-of-the-art medical image segmentation methods) (Isensee et 

al., 2021), and modality-aware medical image segmentation methods (Dou et al., 2020; 

Zhang et al., 2021; Zhu et al., 2021; Zou and Dou, 2020), and achieved tremendous 

successes by effectively learning the high-level semantic features. However, the existing 

deep learning-based subcortical segmentation methods (Dolz et al., 2018; Liu et al., 2020; 

Wu et al., 2019a; 2019b) only perform well on adult brain MR images. Due to the dynamic 

appearance changes, low tissue contrast, and tiny size of subcortical structures in infant brain 

MR images (Li et al., 2019b), as shown in Fig. 1, automatic infant subcortical segmentation 

is still a challenging task (Zöllei et al., 2020), especially in distinguishing the boundary 

voxels, limiting the neuroimaging studies of the early subcortical development (Li et al., 

2019a; Qiu et al., 2013; Serag et al., 2011) and related brain disorders (Courchesne et al., 

2001). Therefore, fully automatic infant-dedicated subcortical segmentation methods with 

high accuracy (particularly for the structural boundaries) are critically needed.

To handle above-mentioned challenges and well segment the infant subcortical structures 

with ambiguous boundaries and large shape variances, in addition to the traditional multi-

modal MR images (T1w and T2w), more information is needed, such as the myelin content 

information and spatial context information (e.g., distance maps with shape and position 
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information). In detail, as shown in Fig. 1, the intensity ratio of T1w and T2w images 

(T1w/T2w), indicating the myelin content and reflecting somewhat iron content within 

the structures (Shams et al., 2019), has improved tissue contrast (Glasser and Van Essen, 

2011; Misaki et al., 2015), especially for the iron-rich subcortical structures (Yoshida et al., 

2021). Thus, T1w/T2w images already have been applied in characterizing the subcortical 

structures (Uddin et al., 2018) and measuring the myelin content within the early postnatal 

phase (Lee et al., 2015). Meanwhile, T1w/T2w images could also help eliminate the 

intensity inhomogeneity, due to the anti-correlated low-frequency variations within gray 

matter and white matter (Van Essen et al., 2013). Therefore, it is valuable to introduce the 

T1w/T2w ratio image with enhanced information into the infant subcortical segmentation, 

along with the T1w and T2w images. Previous works (Wang et al., 2018a; 2018b; Zeng 

and Zheng, 2018) proposed context-guided neural networks for tissue segmentation by 

introducing distance maps, which encode the spatial information, including position, shape, 

and relationship among different regions of interest. To make better use of the spatial context 

information, (Xue et al., 2019) took the signed distance maps (SDMs) as the primary target 

to supervise the network to learn the context information by directly predicting SDMs, while 

obtaining the segmentation maps based on the predicted SDMs through Heaviside function, 

making it possible to achieve enhanced segmentation accuracy. Attributed to the relatively 

stable position and shape of each subcortical structure, it could be particularly beneficial 

for subcortical segmentation by introducing distance maps as anatomical guidance. Besides, 

attention mechanisms, including channel and spatial attention, were commonly used to 

help the deep neural networks automatically focus on the most important channels and 

regions, which also have achieved many successes in medical image segmentation (Oktay 

et al., 2018; Roy et al., 2018; Wang et al., 2020). Similarly, such effective attention 

mechanisms can also be leveraged to help the subcortical segmentation network focus on 

the most efficacious channels and relevant subregions, which could boost the segmentation 

accuracy and reduce the outliers within the irrelevant subregions with similar intensity to 

the subcortical structures, especially on infant brain MR images with extremely low tissue 

contrast.

Motivated by these works, in this paper, we propose a context-guided, attention-based, 

coarse-to-fine deep neural framework, which intends to leverage the SDMs as spatial 

context information, including the relative position information and the shape information 

of the subcortical structures, to achieve accurate 3D subcortical segmentation in infant 

brain MR images. Specifically, at the coarse stage, we devise an SDM learning Unet 

(SDM-Unet) to directly predict high-quality SDM of each subcortical structure from the 

multi-modal MR images, including the T1w images, T2w images, and the ratio of T1w 

and T2w images (T1w/T2w) with enhanced structural contrast, by exploiting the subcortical 

spatial-context information (encoded in the ground-truth SDMs). Meanwhile, we introduced 

a Correntropy-based loss (Chen et al., 2016) into the SDM-Unet to enhance the training 

stability by providing the improved robustness to outliers. At the fine stage, we designed 

a multi-source and multi-path attention Unet (M2A-Unet) to effectively utilize the spatial 

context information (encoded in the previously predicted SDMs), alongside the multi-modal 

information, to further finetune the subcortical segmentations under both spatial and channel 

attention mechanisms. Besides, to well segment the challenging ambiguous subcortical 

Chen et al. Page 3

Neuroimage. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



boundaries, both inner and outer boundaries of each subcortical structure are delineated as 

extra boundary labels to force the M2A-Unet pay more attention to the boundary regions.

Overall, the main contribution of this paper can be summarized in four-fold:

1. We design a novel 3D context-guided attention-based framework with two 

stages to accurately segment infant subcortical structures. Specifically, the 

coarse stage SDM-Unet is trained to directly predict SDMs to provide the 

anatomical guidance for the fine stage; then, the fine stage M2A-Unet path-

wisely incorporates the generated SDMs to achieve the refined segmentation 

maps;

2. We leverage both spatial and channel attention mechanisms to guide the M2A-

Unet to focus on the important regions and feature maps to mitigate the dynamic 

and heterogeneous intensity changes in infant brain MR images to achieve final 

segmentation;

3. We delineate the structure-specific inner edges and uniform outer edge as extra 

boundary labels, and make the proposed M2A-Unet pay more attention to the 

ambiguous boundaries of subcortical structures;

4. The T1w/T2w images with enhanced tissue contrast, in addition to the original 

T1w and T2w images, were induced to provide extra information to help 

distinguish the subcortical structures.

Of note, our preliminary conference work (Chen et al., 2020), which is the first of 

using spatial context information to guide the infant subcortical segmentation, achieved 

encouraging performance at two age points (i.e., 6-month and 12-month). However, it is still 

challenging to effectively segment diverse subcortical structures at various ages due to the 

extremely tiny sizes (e.g., 0-month), noisy intensity images with severe partial volume effect 

and dynamic myelination in infant brain MR images. To better address these issues, in this 

paper, we have extended the previously presented conference version (Chen et al., 2020) as 

follows and achieved good subcortical segmentation accuracy on images across the first two 

postnatal years:

1. We added both spatial and channel attention mechanisms in our framework;

2. We adopted the inner and outer boundaries as extra labels for each subcortical 

structure;

3. We enlarged the applicable age range of our method to all ages in the first two 

postnatal years (from 0-month to 26-month);

4. We increased the label number from 6 to 12 (6 subcortical structures in 

each hemisphere) and simultaneously segmented the structures within each 

hemisphere;

5. We added more technical details and comprehensive analyses and systematically 

performed the ablation study;

6. We systematically verified the generalizability and domain adaptation ability of 

our trained framework on an unrelated neonatal dataset.
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It should be noted that due to the doubled number of segmentation labels, which severely 

increases the segmentation difficulty, and the reorganized training and testing datasets, the 

segmentation results of this work are not directly comparable to that in our preliminary 

conference work with fewer labels.

The rest of the paper is organized as follows. Section II briefly reviews previous studies 

on subcortical segmentation, context-guided image segmentation, and attention mechanisms. 

Then, the proposed method is described in detail in Section III, followed by the experiments 

and results in Section IV. Finally, we conclude the paper in Section V.

2. Related work

2.1. Subcortical segmentation

As an essential step in various neuroimaging studies and related disease diagnoses, 

automatic subcortical segmentation has been explored in previous literature. A subcortical 

segmentation method is provided in the commonly used medical image analysis toolbox 

FSL (Jenkinson et al., 2012), which utilizes the Bayesian framework to differentiate 

the subcortical structures based on the low-level features, i.e., intensity and boundary. 

Similarly, the infant FreeSurfer pipeline (Zöllei et al., 2020) can provide infant subcortical 

segmentation based on an intensity adaptive version of a traditional Bayesian multi-atlas 

algorithm (Iglesias et al., 2013; Sabuncu et al., 2010). However, due to the low tissue 

contrast and dynamic appearance in infant brain MR images, such low-level features are 

noisy and fuzzy, which are thus not enough to accurately perform the infant subcortical 

segmentation.

Motivated by the recent success of the convolutional neural networks (CNNs) in semantic 

segmentation tasks, many efforts have been put into learning-based subcortical segmentation 

methods. In (Dolz et al., 2018), the authors proposed a 3D fully convolutional network 

for subcortical segmentation, which embedded intermediate-layer outputs in the final 

segmentation prediction to help the proposed network learn the local and global context. 

(Wu et al., 2019b) introduced a multi-atlas strategy to guide the training of a CNN 

segmentation network. Specifically, several randomly selected images are considered as 

template images and are affinely aligned to the target images. Then, during the training, 

multiple template patches are automatically chosen and input with the target patch to 

obtain the segmentation. Soon after, (Wu et al., 2019a) proposed an enhanced version by 

adding a 2D fine-stage segmentation network, which simultaneously segments the brain 

MR slices from three directions through three independent U-nets and fuses the outputs 

to get the refined segmentation. (Liu et al., 2020) proposed a U-net-like network, named 

ψ-net, for subcortical segmentation and introduced a densely convolutional LSTM module 

(DC-LSTM), serially stacked to effectively aggregate features learned at each level, to 

progressively enrich low-level feature maps with high-level context. However, existing 

methods are all proposed for adult brain subcortical segmentation and perform poorly on 

infant brain MR images, due to the low tissue contrast, dynamic appearance changes, 

and tiny brain size in infants. Although, in the iSeg2019 challenge (Multi-Site Infant 

Brain Segmentation Algorithms) (Sun et al., 2021), the top-ranked methods, i.e., xflz, 

CU_SIAT, and RB, obtained trust-worth results in infant brain tissue segmentation, the 
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infant subcortical segmentation is more challenging due to the tripled label classes for both 

left and right hemisphere. Hence, accurate infant subcortical segmentation methods remain 

challenging and need further investigation.

2.2. Context-guided medical image segmentation

Given a specific region within an image, the distance transform, also named level-set 

function, can transform the value of each pixel/voxel into the shortest distance to this 

region’s boundary to produce a distance map as spatial context information. Inspired by 

this, plenty of context-guided methods have been proposed to leverage distance maps as 

additional context information to deliver improved performance (Fabbri et al., 2008; Jones 

et al., 2006). For medical image segmentation tasks, in (Criminisi et al., 2008), the authors 

combined the distance transform with an efficient searching method to produce spatially 

smooth and contrast-sensitive segmentation labels, which was successfully performed on 

torso segmentation. In (Li et al., 2010), a distance regularization term was designed to 

help stabilize the level set function to maintain a reasonable shape, which achieved good 

performance on bladder segmentation. The random forest algorithms were also favorably 

integrated with geodesic distance transform for accurate organ segmentation (Kontschieder 

et al., 2013). Meanwhile, to deal with the MR images with intensity inhomogeneity, distance 

transform was also introduced to provide spatial context information and conformed with 

the intensity inhomogeneity correction methods to build the energy functions to generate 

accurate segmentation (Li et al., 2011; Zhang et al., 2015).

Recently, many context-guided CNN-based frameworks have been proposed for medical 

image segmentation and achieved many successes, especially for the infant brain (Wang 

et al., 2018a; 2018b; Zeng and Zheng, 2018). This type of methods utilizes the spatial 

context information included in the distance maps to generate the segmentation labels 

with enhanced accuracy (Park et al., 2019), which is highly effective for segmenting the 

structures with relatively stable position and shape. In (Wang et al., 2018b), the authors 

constructed SDMs with respect to the boundaries of different tissue types as anatomical 

guidance and jointly input them with T1w and T2w images. Similarly, (Zeng and Zheng, 

2018) proposed a multi-stage network, which computed distance maps for each brain tissue 

based on the segmentations obtained from the first stage and applied them as input to 

achieve the refined segmentation in the second stage. To provide more context information, 

(Wang et al., 2018a) proposed a DeepIGeoS network to calculate the distance maps based 

on the geodesic distance transformation, instead of the commonly used Euclidean distance 

transform. However, these methods typically perform traditional segmentation networks 

(without considering the context information) to generate intermediate segmentation results 

for calculating distance maps during inference. Due to the low tissue contrast and 

dynamic appearance changes, it is extremely challenging to obtain valid intermediate infant 

subcortical segmentations for distance map calculation, and thus the segmentation errors 

would be accumulated in the constructed distance maps, degrading the performance of 

such context-guided methods in segmenting infant subcortex. In (Xue et al., 2019), the 

authors proposed a regression-based network to directly predict the signed distance map 

(SDM). Then, one can apply the Heaviside function to transform the obtained SDMs into 

segmentations. The biggest advance is the proposed network can learn the spatial context 

Chen et al. Page 6

Neuroimage. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information contained from the ground-truth SDMs to improve the segmentation accuracy. 

In (Xue et al., 2019), to improve the training robustness of the proposed network, the 

ordinarily used L2 loss was replaced by the L1 loss to penalize the differences between the 

predicted SDMs and the ground-truth SDMs during training. Although, the robustness is 

increased, due to the non-differentiable issue of L1 loss at zero, the training process could 

be unstable in multi-class segmentation tasks (Ren et al., 2015), making it unsuitable for 

the subcortical segmentation task. However, to the best of our knowledge, there is still an 

absence of an end-to-end distance transform-based coarse-to-fine deep framework, which 

could be remarkably beneficial for accurate infant brain subcortical segmentation.

2.3. Attention mechanisms in medical image analysis

To validly unearth salient subregions in intricate scenes, e.g., excavating the subcortical 

structures from the whole brain MR images, attention mechanisms are introduced to 

adaptively re-weight features learned by the networks and have presented superior 

advancements in many medical image analysis tasks, including classification, segmentation, 

and parcellation (Guo and Yuan, 2019; Li et al., 2022; Roy et al., 2018), due to their flexible 

incorporation with existing deep learning methods. The attention mechanisms are commonly 

performed on different aspects, resulting in three main categories, i.e., 1) channel attention, 

2) spatial attention, and 3) channel and spatial attention.

Channel attention.—In CNNs, the learned feature maps are organized in a multi-channel 

manner, each of which usually illustrates different learned objects (Chen et al., 2017). 

Inspired by this, channel attention is generally applied to adaptively adjust the weight of 

each channel to help the network divert attention to the most important objects. In the 

presentation of SENet (Hu et al., 2018), the authors first introduced channel attention to 

help improve representation ability, within which a squeeze-and-excitation (SE) block was 

proposed to integrate global information and capture relationships between each channel. 

In (Zhang et al., 2018), the authors continuously improved the SE-block by introducing a 

semantic encoding loss, which can exploit the global contextual information to enhance the 

segmentation performance.

Spatial attention.—Different from channel attention, spatial attention mechanisms focus 

on selectively highlighting the relevant subregions within the learned feature maps. In 

(Oktay et al., 2018), the authors proposed an attention-Unet for medical image segmentation, 

introducing an attention gate block to guide the network to pay more attention to important 

regions, while suppress the activation of features within the irrelevant areas. Recently, self-

attention methods have shown dominant performance, which performs a spatial attention 

mechanism to capture global information. Inspired by this, (Wang et al., 2020) introduced 

self-attention into medical image segmentation and proposed a non-local Unet, which can 

aggregate long-range information gradually by using the non-local information with flexible 

global aggregation blocks.

Channel and spatial attention.—In order to combine the advantages of both channel 

attention and spatial attention, many efforts have been made to perform them together 

under different strategies. To focus on essential regions as well as enhance informative 
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channels, (Woo et al., 2018) proposed the convolutional block attention module (CBAM), 

which tandem connects the channel attention block and spatial attention block. Due to the 

global pooling, which is generally used in the spatial attention block, the pixel-wise spatial 

information is ignored, which could poorly influence the medical image segmentation. Thus, 

(Roy et al., 2018) proposed spatial and channel SE blocks (scSE) to densely provide spatial 

weights to complement channel attention and supervise the network focusing on critical 

subregions.

The above-mentioned attention mechanisms can help the network focus on the most relevant 

features and areas, which could be highly beneficial for the complex infant subcortical 

segmentation task.

3. Method

In Fig. 2, our framework, including two subnetworks for two stages, are illustrated. We will 

detailedly introduce each stage and its corresponding network in the following.

3.1. Coarse stage SDM-Unet

This section presents the coarse stage SDM learning Unet (SDM-Unet), which can leverage 

the position and shape context information included in the ground-truth SDMs to force 

the network learning to predict high-quality SDMs. In doing so, the predicted high-quality 

SDMs can further help achieve superior segmentation performance in the fine stage.

3.1.1. Generation of ground-truth SDMs—Given a manually delineated label map 

of subcortical structures, we can calculate the SDM of each specific structure through the 

following formula, which is a mapping from ℝ3 to ℝ:

ϕ(x) =
0, x ∈ ℬ
−infy ∈ ℬ‖x − y‖2, x ∈ Ωin

+infy ∈ ℬ‖x − y‖2, x ∈ Ωout

(1)

where x and y are the coordinate of any voxel in the label map and the subcortical structure 

boundary ℬ, respectively. The regions inside (negative) and outside (positive) a subcortical 

structure are respectively denoted by Ωin and Ωout. In this work, all the subcortical SDMs are 

created using the Euclidean distance transforms (EDT).

3.1.2. Transformation from SDMs to segmentation maps—During training, in 

addition to supervise the similarity between the ground truth and predicted SDMs, we can 

introduce a segmentation loss to penalize the differences between the manual delineations 

and the predicted segmentation maps (converted from the predicted SDMs) to fully leverage 

the informative manual delineations, thus further improving the performance of the proposed 

SDM-Unet. Specifically, we can precisely convert the SDMs to the segmentation maps 

through the Heaviside function. However, the Heaviside function is non-differentiable, 

making it impossible to be directly performed in training. Therefore, we exploit a smooth 

approximation of the Heaviside function (Ito, 1994) to transform the predicted SDMs to 
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the segmentation maps to build the segmentation loss, and the smooth approximation of the 

Heaviside function is defined as follows:

sℎ = 1
1 + e−pℎ ∕ m , (2)

where pℎ and sℎ respectively denote the predicted SDM and segmentation map belonging 

to the ℎ-th class, and m is the approximation parameter (a larger m gives a closer 

approximation).

3.1.3. SDM-Unet Architecture—The architecture of the proposed SDM-Unet is shown 

in Fig. 3, which inputs multi-modal MR images (T1w, T2w, and T1w/T2w images) in a 

multi-channel manner and outputs the estimated SDMs for each subcortical structure. The 

SDM-Unet has an encoder-decoder structure. There are three encoding blocks in the encoder 

part, each of which repetitively takes the form of a combination of a core block (CB) 

and max pooling. The CB has a form of Conv3D-BN-ReLU-Conv3D-BN-ReLU. Conv3D 

denotes the 3D convolution layer, BN denotes the batch normalization, and ReLU denotes 

the rectified linear unit. Similarly, there are also three decoding blocks in decoder part, 

each taking the form of CB-DeConv3D. The DeConv3D denotes the traditional transposed 

convolution. Skip connections between each pair of encoding and the decoding blocks are 

added to help recover essential low-level features.

3.1.4. SDM-Unet Loss function—There are two terms in the loss function of the 

proposed SDM-Unet, i.e., SDM learning loss and segmentation loss.

SDM learning loss.: First, we introduce the SDM learning loss term, which encourages the 

SDM-Unet to predict the SDMs from the original multi-modal MR images as similar as the 

ground-truth SDMs. The commonly used loss term for learning the SDMs is the L1 loss, 

instead of L2 loss, to enhance the robustness to outliers (Xue et al., 2019). However, the L1

loss is non-differentiable at zero, severely influencing the training stability.

To overcome the limitation of L1 loss and alleviate the degradation caused by outliers, we 

adopt the Correntropy-based loss (Closs) (Chen et al., 2016) as the SDM learning loss to 

penalize the differences between the estimated SDMs and the ground-truth SDMs. Closs is 

a maximum Correntropy criterion (MCC) based loss function, which has been successfully 

applied in signal processing and machine learning areas to improve the robustness against 

outliers. In detail, along with the increase of error e (the difference between source and 

target images), the derivative of L2 loss exhibits a linear increase, making it extremely 

sensitive to outliers. On the contrary, when facing outliers, the derivative of Closs gets closer 

to zero, suggesting its remarkedly robustness to outliers. Meanwhile, compared to the L1

loss, the Closs is differentiable everywhere (Liu et al., 2007), making the Closs-based SDM 

learning loss more stable in training.

In detail, for a segmentation task with H-class, the Closs-based SDM learning loss is defined 

as follows:
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ℒSDM = ∑
ℎ = 1

H
1 − exp − (pℎ − qℎ)2

2σ2 (3)

where σ is the tunable kernel bandwidth, pℎ and qℎ respectively represent the estimated SDM 

and ground-truth SDM belonging to the ℎ-th class.

Segmentation loss.: Once we transformed the predicted SDMs to segmentation maps by 

performing the Eq (2), we utilized the Dice loss (Milletari et al., 2016) to build the 

segmentation loss, which can measure the overlapping between the predicted segmentation 

maps and the manual delineation maps to further supervise the network training. For N
voxels, the Segmentation loss is defined as:

ℒSeg = ∑
ℎ = 1

H
1 − 2∑i = 1

N sℎ, itℎ, i

∑i = 1
N sℎ, i + ∑i = 1

N tℎ, i
(4)

where, tℎ, i and sℎ, i respectively denote the i-th voxel in the ℎ-th class manual delineation and 

predicted segmentation map.

Joint SDM-Unet loss.: By integrating two loss terms, we can have the joint loss function for 

SDM-Unet ℒSDM − Unet:

ℒSDM − Unet = ℒSDM + λℒSeg (5)

where λ is the weight parameter. We can minimize the joint SDM-Unet loss to stably train 

the proposed SDM-Unet to generate high-quality SDMs, and use the achieved SDMs as the 

spatial context information to help the following M2A-Unet refine the segmentation results.

3.2. Fine stage M2A-Unet

To further improve the segmentation accuracy, we propose a multi-source and multi-path 

attention Unet (M2A-Unet), which can fully leverage the context information generated by 

SDM-Unet to increase the segmentation accuracy.

3.2.1. Boundary-identified segmentation maps—It is worth noting that the 

subcortical structures are blurred with each other, as well as the fuzzy boundaries 

between the GM/WM, due to the low tissue contrast in infant MR images. Therefore, the 

identification of boundaries is more important than that of inner regions in infant subcortical 

segmentation. To supervise the proposed network to pay more attention to the boundaries 

of each subcortical structure, we delineated the inner boundary and outer boundary for each 

subcortical structure and assigned structure-specific labels for each inner boundary and a 

uniform label for the outer boundary, as shown in Fig. 1. By adding boundary labels to 

the manual delineations, the M2A-Unet can be trained to directly estimate both the inner 

and outer boundaries of each subcortical structure. Meanwhile, the performance of the 

M2A-Unet could be further improved by learning to match up the boundary labels with the 

boundaries of SDMs to better leverage the ample context information included in SDMs. 
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Thus, the M2A-Unet can accurately achieve the refined subcortical segmentation maps by 

well capturing the boundaries.

3.2.2. 3D Attention blocks—To guide the proposed M2A-Unet to pay more attention 

to the beneficial subregions and feature maps while disregarding irrelevant parts, inspired 

by the recent progress in attention-based medical image segmentation (Roy et al., 2018), we 

extend both the spatial and channel attention blocks into 3D and path-wisely introduce them 

into our M2A-Unet to further enhance the accuracy of the refined segmentation, which are 

detailed below.

Spatial attention block (SAB).: The SAB spatially recalibrates the feature maps 

FSAB ∈ ℝH × W × D × C, outputted by the previous encoding or decoding blocks, along 

with the input channel C and generates the spatially re-weighted feature maps 

FSAB ∈ ℝH × W × D × C along the output channel C, where H, W, and D are the 

spatial height, width, and depth, respectively. In detail, for the feature maps 

FSAB = [f1, 1, 1, f1, 1, 2, ⋯, fi, j, k, ⋯, fH, W , D], where fi, j, k ∈ ℝ1 × 1 × 1 × C corresponds to the 

spatial location at (i, j, k) on each channel, the SAB outputs a projection tensor 

u ∈ ℝH × W × D through a convolution layer with the weight WSAB ∈ ℝ1 × 1 × 1 × C × 1, and 

u = WSAB ⊙ FSAB. Activated by the sigmoid function A( ⋅ ), the projection u is rescaled to [0,1], 

and the spatially recalibrated FSAB is

FSAB = [A(u1, 1, 1)f1, 1, 1, ⋯, A(ui, j, k)fi, j, k,
⋯, A(uH, W , D)fH, W , D]

(6)

This pixel-wise SAB block highlights more corresponding subregions and ignores 

immaterial regions along all channels by adjusting the magnitude of each ui, j, k.

Channel attention block (CAB).: The CAB recalibrates feature maps FCAB = [f1, f2, ⋯, fC], 
where f i ∈ ℝH, W , D], in a channel-wise manner and outputs the re-weighted FCAB. 

Specifically, a global average pooling block is performed on each channel fC to aggregate 

information in each feature map as follows,

vn = 1
H × W × D ∑

i

H
∑

i

W
∑

i

D
fn(i, j, k) (7)

where n ∈ {1, 2, ⋯, C}. Then, a combination of the embedded global information vector v is 

transformed through two fully connected (FC) layers with a ReLU operator,

v = W2(ReLU(W1v)) (8)

where W1 ∈ ℝ
C
z × C] and W2 ∈ ℝC × C

z ], and the channel attention bottleneck parameter z = 2. 

Similar to the SAB, by passing through the sigmoid activation layer, the CAB outputs the 

resultant feature maps
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FCAB = A(v1)f1, A(v2)f2, ⋯, A(vC)fC . (9)

Therefore, the higher value of A(vn) means the n-th channel is more important, and the 

trained network can ignore the futile channels adaptively and emphatically underline the 

more important ones to help improve the final segmentation of the subcortical structures in 

the low contrast infant brain MR images.

3.2.3. M2A-Unet Architecture—To sufficiently exploit both multi-modal appearance 

information and the spatial context information, we simultaneously feed both the multi-

modal intensity images and the generated high-quality SDMs into the proposed M2A-Unet 

through different encoding paths, which is shown in Fig. 4 and detailed as follows.

There are two parts included in the input of the M2A-Unet: a) the multi-modal MR images 

are still input into one encoding path in a multi-channel manner; b) the SDMs predicted by 

the SDM-Unet are separately fed through different encoding paths. Specifically, unlike the 

multi-modal MR images, the SDMs contain spatial context information of each specific 

subcortical structure. Therefore, to effectively integrate the subcortical spatial context 

information, we construct individual encoding paths for the SDMs of each subcortical 

structure, making it possible to fully leverage all SDMs to extract more high-level features. 

Besides, similar to the SDM-Unet, we keep using three encoding blocks for each encoding 

path.

Meanwhile, to better leverage both SAB and CAB, following the suggestions of (Roy et 

al., 2018), we also organized the SABs and CABs parallelly and added them after each 

encoding and decoding block. A max-out mechanism was performed to efficiently fuse the 

complementary information extracted by each pair of SAB and CAB:

FFused(i, j, k, c) = max(FSAB(i, j, k, c)),
FCAB(i, j, k, c) .

(10)

Finally, due to the (H + 1) encoding paths included in the M2A-Unet, it could be 

significantly complex to implement the skip connections for each encoding path. Therefore, 

as the multi-modal MR images accommodate exhaustive intensity information, we just 

linked the skip connections for the encoding blocks belonging to the encoding path of the 

multi-modal MR images to lessen the complexity of the proposed M2A-Unet and recover 

more useful details.

3.2.4. M2A-Unet Loss function—Herein, we still use the aforementioned Dice loss for 

the M2A-Unet training. It is worth noting that different from the SDM-Unet, by introducing 

the boundary labels, the total number of labels is 26, i.e., 12 structural labels, 12 inner 

boundary labels, 1 outer boundary label, and 1 background:

ℒM2A − Unet = ∑
ℎ = 1

H
1 − 2∑i = 1

N sℎ, itℎ, i

∑i = 1
N sℎ, i + ∑i = 1

N tℎ, i
. (11)
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4. Experiments

4.1. Dataset and experimental setup

UNC/UMN Baby Connectome Project (BCP).—To sufficiently evaluate the proposed 

framework, we randomly selected 48 infant MRI scans from the UNC/UMN Baby 

Connectome Project (BCP) (Howell et al., 2019). The 48 scans belong to 4 age groups (12 

scans per age group) from birth to two postnatal years (i.e., 0M-3M, 6M, 12M, 18M-24M). 

Each scan includes both T1w and T2w images with a resolution of 0.8 × 0.8 × 0.8 mm3. 

For each scan, we performed the FLIRT in FSL (Jenkinson et al., 2012) to linearly align 

T2w image onto the T1w image. Then, the T1w/T2w image was calculated by voxel-wisely 

dividing the T1w image by the T2w image. We also performed the N3 (Sled et al., 1998) 

on T1w and T2w images to correct intensity inhomogeneity. 1 scan from each age group are 

randomly selected to perform the histogram matching based on the intensity.

To generate reliable manual subcortical labels as ground-truth, we first took advantage of 

our proposed infant-dedicated 4D brain atlas (Chen et al., 2022) (including the subcortical 

labels) to generate the initial subcortical segmentations by warping the age-specific atlas 

subcortical labels to each individual scan using ANTs registration toolbox (Avants et al., 

2009). Specifically, as the subcortical structures are established during the third trimester, 

it is possible to accurately propagate the subcortical labels from each age-specific atlas to 

individual scans from the BCP dataset. Second, two trained experts (each expert has more 

than 4 years of experience in infant brain MR image segmentation) performed manual 

correction based on the obtained initial automatic subcortical segmentations to correct 

segmentation errors based on T1w, T2w, and the T1w/T2w ratio images using ITK-SNAP 

software (Yushkevich et al., 2016) under the guidance of an experienced neuroradiologist, 

as we have done for data in MICCAI Grand Challenges iSeg 2017 and 2019 (Sun et al., 

2021; Wang et al., 2019). For example, for each suspicious label, we first localized it in the 

3 canonical views, i.e., axial, sagittal, and coronal views. Then, we determined its correct 

label based on the three images (T1w, T2w, and T1w/T2w) by considering 3 views together. 

We also filled the holes and removed the bulges with the help of surface rendering. In 

general, for the 12M, 18M, and 24M scans, it took 2 days to correct one scan, while the 

correction of the 0M, 3M, and 6M scans took almost 3 days per scan due to the low tissue 

contrast. In sum, the subcortical structures of all 48 scans were manually delineated into 

bilaterally symmetric 12 classes (each hemisphere includes the thalamus, caudate, putamen, 

pallidum, hippocampus, and amygdala). To simplify the network of M2A-Unet, we merged 

the 12 subcortical structures into six classes and calculated the corresponding ground-truth 

SDMs, which were used as the ground-truth to train the coarse-stage SDM-Unet and fed into 

M2A-Unet to generate refined subcortical segmentations.

Due to the distinct age-specific tissue contrast and appearance of the infant brain MR images 

within each age group, we trained networks for each age group, respectively. To validate our 

method, given an age group, a stratified 6-fold cross-validation strategy is employed, and 

each fold consists of 10 training images and 2 testing images. We performed the ablation 

study and selected hyper-parameters based on 6-month images.
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We used a Linux workstation (Intel Xeon E5-2650 CPU (8 cores 16 threads) and NVIDIA 

TITAN Xp 12 GB GPUs) to train and test the proposed framework, which was implemented 

using TensorFlow 1.15. Parameters of SDM-Unet and M2A-Unet are experimentally set as: 

learning rate of Adam optimizer = 0.0001, kernel size of each network = 4, stride = 2, 

λ = 0.1, and σ = 0.8. m = 1500, which is enough to guarantee the accuracy of the predicted 

segmentation map. The segmentation was performed in a patch-wise manner, with a patch 

size of 32 × 32 × 32. To avoid confusing the left and right structures during the patch-based 

training, we only performed random rotation and random scaling as data augmentation 

by utilizing the preprocessing strategies provided by the TensorFlow.Keras.preprocessing 

package, while avoiding flipping.

We compared the proposed method with the following methods: two commonly used 

software packages FIRST in FSL (Jenkinson et al., 2012) and Infant FreeSurfur (InfantFS) 

(Zöllei et al., 2020); state-of-the-art deep learning segmentation methods, including SA-net 

(Xue et al., 2019) (regarding as the baseline in the ablation study), V-net (Milletari et al., 

2016), LiviaNet (Dolz et al., 2018), three top-ranked methods, i.e., xflz, CU_SIAT, and RB, 

in the iSeg2019 challenge (Multi-Site Infant Brain Segmentation Algorithms) (Sun et al., 

2021), ψ-net (Liu et al., 2020), nnUnet (Isensee et al., 2021), and MAML (an extension of 

nnUnet with dedicated framework for multi-modal medical images) (Zhang et al., 2021). 

For the learning-based methods, we experimentally set the learning rate and epoch numbers, 

respectively. In detail, the learning rates of V-net, LiviaNet, and ψ-net were set to 0.0001, 

while the learning rates of SA-net, nnUnet, and MAML were set to 0.001. The learning 

rates for the xflz, CU_SIAT, and SmartDSP were set to 0.0002. The epoch numbers of 

each competing method were enlarged, and an early stop strategy was applied to ensure the 

convergence of each method during training. For the patch-based methods, their patch sizes 

were also set to a patch size of 32 × 32 × 32. To ensure a fair comparison, we also used 

the three MR modalities as multi-channel input to train and test each deep learning-based 

competing method.

The segmentation results were quantitatively evaluated by the Dice similarity coefficient 

(DSC) and average symmetric surface distance (ASSD) (mean and standard deviation). 

The DSC values mainly evaluate the overlapping between the ground-truth labels and the 

estimated labels, while the ASSD measures the surface distance between each pair of labels, 

which is more sensitive to the outliers.

developing Human Connectome Project (dHCP).—To evaluate the generalizability 

and the domain adaptation capability of the trained framework, we further introduced 

the developing Human Connectome Project (dHCP) dataset (Makropoulos et al., 2018) 

(including neonatal subjects with multi-modal brain imaging data (between 23–44 weeks 

post-menstrual age (PMA))), which were acquired by different scanners with different 

protocols. The dHCP dataset provides both T1w and T2w images with a resolution of 0.5 × 

0.5 × 0.5 mm3. We randomly selected 5 scans with the age of around 33 weeks PMA and 

5 scans with the age of more than 40 weeks PMA to perform the domain adaptation test 

and generalizability test, respectively. Similar to generating the ground-truth segmentation 

maps of the BCP dataset, we also warped the subcortical labels from our infant-dedicated 
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4D brain atlas (Chen et al., 2022) to the 10 dHCP scans using ANTs registration toolbox 

(Avants et al., 2009) as initial label maps. Then, each label map was manually-corrected 

by the same experts under the same procedures. For the generalizability test, we directly 

performed the trained 0M-3M framework to segment the 5 dHCP scans with the age of 

more than 40 weeks PMA. To verify the domain adaptation capability, we performed 5 fold 

cross-validation using the leave-one-out strategy. Note that all 10 scans were preprocessed 

by histogram-matching to the same BCP scan as mentioned above.

4.2. Results on BCP infant dataset

In this section, we qualitatively and quantitatively performed experiments on the BCP 

datasets to validate the performance of the proposed framework on infant subcortical 

segmentation, compared to other competing methods. Meanwhile, a comprehensive ablation 

study is provided to verify the effectiveness of each component newly added in the proposed 

framework. Finally, a hyper-parameter selection is included to detail the choosing of suitable 

hyper-parameters.

4.2.1. Qualitative comparison—In Fig. 5, to evaluate the segmentation performance 

of our framework, we visually compared the segmentation results obtained by our method 

and other five competing methods on two randomly selected images from 0-month (Fig. 

5 (a)) and 6-month (Fig. 5 (b)) age groups, respectively. In Fig. 5, the first column is the 

manual delineation, which is used as the ground-truth. The first 3 rows are 3 typical slices 

from 3 canonical views, i.e., axial, sagittal, and coronal views, respectively. The last row is 

mesh surfaces.

Markedly, we can find that the segmentations achieved by the proposed framework exhibit 

overall higher consistency with the manual delineations. Meanwhile, potentially attributed 

to the delineated structural inner and outer boundary labels, in our segmentation results, 

the boundaries of each subcortical structure are smoother than the results obtained by other 

competing methods. It is worth noting that by sufficiently leveraging the informative SDMs 

as spatial context, our framework can be trained to effectively learn the position, shape, 

and interstructural relationship of each subcortical structure, which leads to an accurate 

segmentation free of outliers. In comparison, some competing methods segmented both the 

0-month and 6-month images poorly with lots of overshoots, missing voxels, and outliers, 

which may severely influence the practical applications and needs further post-processing. 

The others erroneously assigned the left-side labels to the right-side structures in both scans. 

In fact, due to the similar intensity between the left and right subcortical structures, all 

competing methods, although not obvious in Fig. 5, suffered from the missing assignments 

of the left and right labels. Potentially attributing to the spatial information included in 

the SDMs, by feeding the high-quality SDMs into the M2A-Unet, along with the original 

discrete structural labels, our framework can learn the shape, position, and relationships 

between the left and right subcortical structures to help identify the left and right labels, 

making our framework successfully survived this harmful issue. Finally, compared to other 

competing methods, the proposed framework can segment the amygdala and hippocampus 

much more precisely. Of note, the amygdala is the smallest subcortical structure, and the 

hippocampus has the most complicated shape. Thus, the above-mentioned results suggest 
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that our framework can well segment each subcortical structure on infant brain MR images, 

making it highly useful in investigating the early development of the subcortex.

4.2.2. Quantitative comparison—In this subsection, we quantitatively compared the 

proposed framework with other competing methods, and summarized the values of DSC and 

ASSD of each subcortical label in Table 1 and Table 2, respectively. From Table 1 and Table 

2, we have three observations.

First, compared to the competing methods, our framework has higher DSC values for all 12 

subcortical structures in all four age groups and also achieves improved ASSD values on 

the vast majority of subcortical structures across the age groups examined. In comparison, 

LiviaNet obtained relatively high DSC values, but its performance on the ASSD metric is 

poor, which could be attributed to the countless outliers, as illustrated in Fig. 5. The superior 

performance on both metrics suggesting that our coarse-to-fine framework can effectively 

exploit the spatial information to refine the segmentation and reduce outliers.

Second, our framework performs much better in segmenting 0-month and 6-month images, 

while the others cannot segment the images acquired during these age ranges very well, 

especially for the hippocampus and amygdala. Note that it is very challenging to obtain 

promising segmentation on images acquired within the first several months of age, due to the 

extremely small structural sizes and extremely low tissue contrast. These results imply that 

the proposed framework has successfully learned to exploit the spatial context information 

included in the SDMs to extenuate the severe influence from low tissue contrast and 

accurately segment the infant subcortex. Moreover, it also validates that by introducing both 

the spatial and channel attention blocks, the proposed framework can pay more attention 

to vital regions and channels and ignore the less relevant information, helping enhance the 

utilization of the noisy intensity images and SDMs to further amend the aforementioned 

discords in infant brain MR images.

Third, although the competing methods, such as the ψ-net, nnUnet, and MAML, have 

obvious improvements in segmenting the images acquired after 12-month, and achieve 

lower ASSD values in the segmentation of the amygdala at 24-month, our framework still 

outperforms the others in both DSC and ASSD metrics for all 12 subcortical structures at 

12-month and 11 structures at 24-month (except for the left amygdala with slightly lower 

accuracy). As the 24-month brain MR images have a similar appearance and contrast to the 

adult brain MR image, this result further implies that incorporating the SDM of each specific 

subcortical structure can not only remedy the issue of the low tissue contrast to accurately 

segment the infant subcortex but also is highly valuable for the adult brain subcortical 

segmentation.

In summary, compared to competing methods, our method achieved the mean DSC with a 

remarkable improvement by 2.6% (from 89.8% to 92.4%, p – value = 3.6e−4) and the mean 

ASSD significantly reduced almost 42% (from 0.12 mm to 0.07 mm, p – value = 3.4e−3), 

which strongly suggests the superior performance of our method on the challenge infant 

subcortical segmentation task.
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4.2.3. Ablation study—In this subsection, we regarded the SA-net (Xue et al., 2019) as 

the baseline and performed an ablation study to evaluate the effectiveness of the multi-modal 

images and robust loss function of the proposed SDM-Unet, including:

1) using only T1w images and replacing Closs with the L1 norm (SDM-Unet + T1w Closs + 

L1 (SA-net));

2) using only T1w images (SDM-Unet + T1w);

3) using both T1w and T2w images (SDM-Unet + T1w, T2w);

4) using both T1w, T2w, and T1w/T2w images (SDM-Unet + T1w,T2w,T1w/T2w).

Additionally, to indicate the effectiveness of attention blocks and boundary labels in the 

proposed M2A-Unet, we performed additional ablation studies on the performance of our 

framework as follows,

5) removing boundary labels (BL) and all attention blocks (Att) (Proposed - BL - Att);

6) removing boundary labels (Proposed - BL).

The ablation study was carried out on the 6-month infant images with the lowest tissue 

contrast in terms of both DSC and ASSD metrics, which are summarized in Table 3. The 

SDM-Unet is designed to estimate the SDMs of the 6 bilaterally symmetric subcortical 

structures. Therefore, we merged the results of our framework into 6 classes.

From Table 3, we can find that our SDM-Unet with the robust Closs term achieved 

improved performance, compared to the baseline SA-net, which can further strengthen 

the performance of the fine stage M2A-Unet. Moreover, by taking advantage of the extra 

information provided by the multi-model images, especially the T1w/T2w images, the 

performance of the proposed framework upgrades obviously. By introducing the fine stage 

M2A-Unet, both DSC and ASSD metrics improved significantly, suggesting a positive 

effect of exerting the proposed M2A-UNet. Such improvements could be caused by directly 

inputting the SDMs with multiple encoding paths, which allows the auspicious learning 

of the spatial context information. Besides, by inducing both spatial and channel attention 

blocks, the performance of the proposed framework is further enhanced, highlighting the 

effectiveness of the attention blocks and the importance of the features learned by different 

encoding paths. Last of all, the proposed framework trained with labels including boundary 

delineations consistently yields better performance, suggesting the significance of guiding 

the network to focus on precisely segmenting the boundaries of subcortical structures.

4.2.4. Selection of hyper-parameters—Our framework includes two hyper-

parameters, i.e., λ as the loss weight parameter and the kernel bandwidth σ in the 

coarse-stage SDM-Unet, which could influence the segmentation accuracy. Specifically, 

appropriately choosing σ can help mitigate the bad influence of outliers to enhance the 

training stability. 6-month infant images are the most difficult to segment due to their lowest 

tissue contrast. Therefore, carefully tuning λ in segmenting 6-month infant images could 
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help enhance the segmentation accuracy. In contrast, scans within other age ranges have 

better tissue contrast, making their segmentation relatively easier and less sensitive to λ. On 

the other hand, a suitable σ is used to help Closs well measure the similarity between the 

ground-truth SDMs and the generated SDMs. As the ground-truth SDMs of scans within 

different age ranges have similar distributions, the proper σ values for models of different 

age groups should be similar. Thus, we can select the proper σ value during the model 

training for one age group and conveniently apply it to other training models. In sum, we 

performed the selection of hyper-parameters on the 6-month infant images in terms of DSC 

metric. To choose a suitable σ, we first removed the ℒSeg and performed the SDM-Unet on 

the 6-month scans. Then, the ℒSeg was added with different values of λ to testify the trade-off 

between two loss terms. The DSC ratios of SDM-Unet with different kernel sizes σ and loss 

weight parameters λ are shown in Fig. 6 and Fig. 7, respectively.

As shown in Fig. 6, if the values of σ were too small, our framework performed poorly. 

Along with the increase of σ, the DSC ratio kept increasing and finally tended to be stable, 

as the ℒSDM was approximately equivalent to the classic MSE with an infinite σ. Therefore, σ
was set to 0.8.

As shown in Fig. 7, it is obvious that by adding the ℒSeg, the performance of the SDM-Unet 

can be further improved; while if λ is too large, the ℒSeg could dominate the loss function, 

making the ℒSDM suboptimized. Based on the above results, we set λ to 0.1.

4.3. Results on unrelated dHCP neonatal dataset

4.3.1. Qualitative comparison—In Figs. 8 and 9, to verify the generalizability and 

domain adaptation ability of our framework, we qualitatively compared the segmentation 

results achieved by our trained framework and the state-of-the-art methods on 4 dHCP scans 

with the age of around 33 weeks and more than 40 weeks PMA, respectively. The first 3 

rows illustrate the labels of subcortical structures in 3 canonical views, i.e., axial, sagittal, 

and coronal views, respectively. The mesh surfaces are shown in the last row.

Generalizability.: Markedly, from Fig. 8, we can find that the segmentation maps achieved 

by our trained framework exhibit much better accuracy with significantly more complete 

segmentation of each subcortical structure, compared to the trained nnUNet and MAML. 

Particularly, our framework still obtained segmentation maps without any outliers, while 

the results from nnUNet and MAML contain a large number of missing labeled voxels, 

which obviously confused the left and right subcortical structures. Finally, nnUNet and 

MAML segmented the subcortical structures with obvious overshoots, especially for the 

thalamus and hippocampus. On the contrary, our trained framework can still well segment 

the hippocampus with a complicated shape. Therefore, these results further verified the great 

generalizability of the proposed framework, which could be attributed to the introduced 

anatomical context information.

Domain adaptation.: From Fig. 9, we can observe that after fine-tuning on the dHCP 

dataset, our trained framework can achieve significantly improved segmentations of each 

subcortical structure on the premature birth scans, compared to the trained nnUNet and 
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MAML. On the contrary, similar to Fig. 8, the results from MAML existed the miss-

assigned labels to the left and right subcortical structures. Besides, nnUNet and MAML 

segmented the subcortical structures with distinct missing labels, such as the thalamus and 

hippocampus. Oppositely, the results of our trained framework are much more consistent 

with the manual-corrected labels. Thus, by performing a simple fine-tuning procedure, our 

framework can again guarantee satisfied segmentation results on the out-of-domain brain 

MR images, making it applicable for other practical tasks.

4.3.2. Quantitative comparison—In Tables 4 and 5, we respectively presented the 

DSC ratio and ASSD values of the dHCP scans with the age of around 33 weeks and more 

than 40 weeks PMA to quantitatively evaluate the generalizability and domain adaptation 

ability of our framework, compared to the state-of-the-art nnUNet and MAML methods.

Generalizability.: From Table 4, we can observe that after histogram matching, our 

framework still consistently performed well on the out-of-domain dHCP dataset, which 

exhibited overall superior performance on each subcortical structure in both DSC ratio and 

ASSD values, compared to the competing methods. In detail, the DSC ratio increased 7.1% 

(from 78.1% to 85.2%, p – value = 5.1e−3) and ASSD values reduced 66.8% (from 0.45 

mm to 0.15 mm, p – value = 6.5e−5), which could be attributed to the well learned features 

from SDMs. These results further testified the remarked generalizability of our framework in 

neonatal datasets.

Domain adaptation.: In Table 5, by implementing the fine-tuning on the dHCP scans with 

age of around 33 weeks PMA, our framework still mostly outperformed the competing 

methods (except for the ASSD value of Pallidum_R), where the DSC ratio increased 3.4% 

(from 86.6% to 90.0%, p – value = 7.2e−4) and ASSD values reduced 21% (from 0.14 

mm to 0.11 mm, p – value = 5.9e−4). To sum up, our framework presented a good domain 

adaptation ability on limited labeled scans as ground-truth.

5. Conclusion and future works

In this work, we propose a novel spatial context-guided, coarse-to-fine, attention-based 

deep neural framework to precisely segment the 12 subcortical structures in infant brain 

MR images in an end-to-end manner. At the coarse stage, to cope with the extremely 

low tissue contrast in infant brain MR images, we took advantage of the spatial context 

information contained in the ground-truth SDMs by directly predicting SDMs from the 

multi-modal MR images, including T1w, T2w, and contrast-enhanced T1w/T2w ratio 

images. To improve the robustness to the outliers and enhance the training stability, we 

introduced the Correntropy-based loss to robustly measure the similarity between the 

predicted SDMs and ground-truth SDMs. At the fine stage, to sufficiently exploit the 

multi-modal MR images and the predicted informative SDMs, we further designed a multi-

source and multi-path attention Unet (M2A-Unet) to effectively leverage the appearance 

information (multi-modal MR images) and the spatial context information (predicted SDMs) 

to refine the segmentation. In particular, both spatial and channel attentions mechanisms 

were deployed in the proposed M2A-Unet to help highlight the most relevant subregions 

and feature maps, thus mitigating the bad influence of the low tissue contrast and dynamic 
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appearance changes. Besides, the inner and outer boundaries of each subcortical structure 

were delineated to help supervise the M2A-Unet to pay more attention to the ambiguous 

structural boundaries. Comprehensive experimental results illustrate that the segmentation 

accuracy of each subcortical structure achieved by our framework is remarkably higher than 

six state-of-the-art methods. Meanwhile, our framework also shows good generalizability 

and domain adaptation ability in segmenting neonatal brain MR images.

Although trust-worthy results were achieved by our method of segmenting both neonatal 

and infant brain subcortical structures, simply fusing multiple modalities in the later stages 

or fusing each modality as an input channel could lead to sub-optimal results. To more 

effectively leverage the multi-modality and context information to deliver enhanced results, 

inspired by the recent successes achieved by the contrastive learning methods, which 

disentangle the multimodal images into factors with separate meanings, we will explore 

such methods and introduce them in our future works on infant subcortical segmentation 

tasks.
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Fig. 1. 
A 6-month subject’s T1w image, T2w image, T1w/T2w image, manual delineation map of 

12 subcortical structures, manual delineation map with inner and outer boundaries, and the 

ground-truth signed distance map (SDM) of the thalamus. Due to the low tissue contrast 

of the 6-month infant brain MR images, the subcortical boundaries are ambiguous in the 

T1w image and T2w image, while the T1w/T2w image has the enhanced tissue contrast, and 

thus the boundaries are more distinguishable (pointed by yellow arrows). We performed the 

commonly used Euclidean distance transforms to create the subcortical ground-truth SDMs 

from the manual delineation maps.
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Fig. 2. 
A schematic illustration of the proposed framework with the coarse stage network (SDM-

Unet) and the fine stage network (M2A-Unet).
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Fig. 3. 
The architecture of the proposed SDM-Unet at the coarse stage.
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Fig. 4. 
The architecture of the proposed M2A-Unet at the fine stage.
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Fig. 5. 
Visual comparison of the segmentation results of the 12 subcortical structures on both 

0-month and 6-month T1w images, obtained from manual delineation and eleven automatic 

methods. Some differences are marked by boxes for evaluating convenience.

Chen et al. Page 28

Neuroimage. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
DSC ratios of SDM-Unet with different kernel sizes σ.
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Fig. 7. 
DSC ratios of SDM-Unet with different loss weight parameters λ.

Chen et al. Page 30

Neuroimage. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Visual comparison of the segmentation results of the 12 subcortical structures on dHCP 

scans with age of more than 40 weeks PMA, obtained by directly applying our trained 

framework and the trained state-of-the-art methods. Some differences are marked by boxes 

for evaluating convenience.
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Fig. 9. 
Visual comparison of the segmentation results of the 12 subcortical structures on dHCP 

scans with age of around 33 weeks PMA, obtained by fine-tuning our trained framework and 

the trained state-of-the-art methods. Some differences are marked by boxes for evaluating 

convenience.
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