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Abstract

Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images
plays an essential role in studying early subcortical structural and functional developmental
patterns and diagnosis of related brain disorders. However, due to the dynamic appearance
changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical
segmentation is a challenging task. In this paper, we propose a context-guided, attention-based,
coarse-to-fine deep framework to precisely segment the infant subcortical structures. At the coarse
stage, we aim to directly predict the signed distance maps (SDMs) from multi-modal intensity
images, including T1w, T2w, and the ratio of T1w and T2w images, with an SDM-Unet, which
can leverage the spatial context information, including the structural position information and

the shape information of the target structure, to generate high-quality SDMs. At the fine stage,

the predicted SDMs, which encode spatial-context information of each subcortical structure, are
integrated with the multi-modal intensity images as the input to a multi-source and multi-path
attention Unet (M2A-Unet) for achieving refined segmentation. Both the 3D spatial and channel
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attention blocks are added to guide the M2A-Unet to focus more on the important subregions
and channels. We additionally incorporate the inner and outer subcortical boundaries as extra
labels to help precisely estimate the ambiguous boundaries. We validate our method on an infant
MR image dataset and on an unrelated neonatal MR image dataset. Compared to eleven state-
of-the-art methods, the proposed framework consistently achieves higher segmentation accuracy
in both qualitative and quantitative evaluations of infant MR images and also exhibits good
generalizability in the neonatal dataset.

Keywords
Infant; Subcortical segmentation; Brain; MRI

1. Introduction

The brain subcortex controls diverse cognitive and motor functions (Calabresi et al., 2014;
Grossberg, 2009; Richard et al., 2013; Scimeca and Badre, 2012) and its abnormality has
been reliably linked to affective dysfunctions and disorders (Ecker et al., 2015; Risacher

et al., 2009; Tremblay et al., 2015). To perform subcortical related neuroimaging studies
(Gilmore et al., 2012; Li et al., 2019a), accurate segmentation of subcortical structures

from magnetic resonance (MR) images plays a fundamental role. However, manually
delineating each subcortical structure on the low contrast infant brain MR images is
expertise needed, hard to reproduce, and extremely time-consuming. Hence, many automatic
subcortical segmentation methods have been proposed (Jenkinson et al., 2012; Zollei et al.,
2020). Particularly, deep learning-based methods recently exhibited a dominant performance
in medical image segmentation, e.g., infant-dedicated brain tissue segmentation methods
(Wang et al., 2018b; Zeng and Zheng, 2018), top-ranked methods in the iSeg2019 challenge
(Multi-Site Infant Brain Segmentation Algorithms), i.e., xflz, CU_SIAT, and RB (Sun et al.,
2021), nnUnet (one of the state-of-the-art medical image segmentation methods) (Isensee et
al., 2021), and modality-aware medical image segmentation methods (Dou et al., 2020;
Zhang et al., 2021; Zhu et al., 2021; Zou and Dou, 2020), and achieved tremendous
successes by effectively learning the high-level semantic features. However, the existing
deep learning-based subcortical segmentation methods (Dolz et al., 2018; Liu et al., 2020;
Wau et al., 2019a; 2019b) only perform well on adult brain MR images. Due to the dynamic
appearance changes, low tissue contrast, and tiny size of subcortical structures in infant brain
MR images (Li et al., 2019b), as shown in Fig. 1, automatic infant subcortical segmentation
is still a challenging task (Z6llei et al., 2020), especially in distinguishing the boundary
voxels, limiting the neuroimaging studies of the early subcortical development (Li et al.,
2019a; Qiu et al., 2013; Serag et al., 2011) and related brain disorders (Courchesne et al.,
2001). Therefore, fully automatic infant-dedicated subcortical segmentation methods with
high accuracy (particularly for the structural boundaries) are critically needed.

To handle above-mentioned challenges and well segment the infant subcortical structures
with ambiguous boundaries and large shape variances, in addition to the traditional multi-
modal MR images (T1w and T2w), more information is needed, such as the myelin content
information and spatial context information (e.g., distance maps with shape and position
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information). In detail, as shown in Fig. 1, the intensity ratio of T1w and T2w images
(T1w/T2w), indicating the myelin content and reflecting somewhat iron content within

the structures (Shams et al., 2019), has improved tissue contrast (Glasser and Van Essen,
2011; Misaki et al., 2015), especially for the iron-rich subcortical structures (Yoshida et al.,
2021). Thus, T1Iw/T2w images already have been applied in characterizing the subcortical
structures (Uddin et al., 2018) and measuring the myelin content within the early postnatal
phase (Lee et al., 2015). Meanwhile, T1w/T2w images could also help eliminate the
intensity inhomogeneity, due to the anti-correlated low-frequency variations within gray
matter and white matter (\an Essen et al., 2013). Therefore, it is valuable to introduce the
T1w/T2w ratio image with enhanced information into the infant subcortical segmentation,
along with the T1w and T2w images. Previous works (Wang et al., 2018a; 2018b; Zeng

and Zheng, 2018) proposed context-guided neural networks for tissue segmentation by
introducing distance maps, which encode the spatial information, including position, shape,
and relationship among different regions of interest. To make better use of the spatial context
information, (Xue et al., 2019) took the signed distance maps (SDMs) as the primary target
to supervise the network to learn the context information by directly predicting SDMs, while
obtaining the segmentation maps based on the predicted SDMs through Heaviside function,
making it possible to achieve enhanced segmentation accuracy. Attributed to the relatively
stable position and shape of each subcortical structure, it could be particularly beneficial

for subcortical segmentation by introducing distance maps as anatomical guidance. Besides,
attention mechanisms, including channel and spatial attention, were commonly used to

help the deep neural networks automatically focus on the most important channels and
regions, which also have achieved many successes in medical image segmentation (Oktay
et al., 2018; Roy et al., 2018; Wang et al., 2020). Similarly, such effective attention
mechanisms can also be leveraged to help the subcortical segmentation network focus on
the most efficacious channels and relevant subregions, which could boost the segmentation
accuracy and reduce the outliers within the irrelevant subregions with similar intensity to
the subcortical structures, especially on infant brain MR images with extremely low tissue
contrast.

Motivated by these works, in this paper, we propose a context-guided, attention-based,
coarse-to-fine deep neural framework, which intends to leverage the SDMs as spatial
context information, including the relative position information and the shape information
of the subcortical structures, to achieve accurate 3D subcortical segmentation in infant

brain MR images. Specifically, at the coarse stage, we devise an SDM learning Unet
(SDM-Unet) to directly predict high-quality SDM of each subcortical structure from the
multi-modal MR images, including the T1w images, T2w images, and the ratio of T1w

and T2w images (T1w/T2w) with enhanced structural contrast, by exploiting the subcortical
spatial-context information (encoded in the ground-truth SDMs). Meanwhile, we introduced
a Correntropy-based loss (Chen et al., 2016) into the SDM-Unet to enhance the training
stability by providing the improved robustness to outliers. At the fine stage, we designed

a multi-source and multi-path attention Unet (M2A-Unet) to effectively utilize the spatial
context information (encoded in the previously predicted SDMs), alongside the multi-modal
information, to further finetune the subcortical segmentations under both spatial and channel
attention mechanisms. Besides, to well segment the challenging ambiguous subcortical
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boundaries, both inner and outer boundaries of each subcortical structure are delineated as
extra boundary labels to force the M2A-Unet pay more attention to the boundary regions.

Overall, the main contribution of this paper can be summarized in four-fold:

1. We design a novel 3D context-guided attention-based framework with two
stages to accurately segment infant subcortical structures. Specifically, the
coarse stage SDM-Unet is trained to directly predict SDMs to provide the
anatomical guidance for the fine stage; then, the fine stage M2A-Unet path-
wisely incorporates the generated SDMs to achieve the refined segmentation
maps;

2. We leverage both spatial and channel attention mechanisms to guide the M2A-
Unet to focus on the important regions and feature maps to mitigate the dynamic
and heterogeneous intensity changes in infant brain MR images to achieve final
segmentation;

3. We delineate the structure-specific inner edges and uniform outer edge as extra
boundary labels, and make the proposed M2A-Unet pay more attention to the
ambiguous boundaries of subcortical structures;

4, The T1w/T2w images with enhanced tissue contrast, in addition to the original
T1lw and T2w images, were induced to provide extra information to help
distinguish the subcortical structures.

Of note, our preliminary conference work (Chen et al., 2020), which is the first of

using spatial context information to guide the infant subcortical segmentation, achieved
encouraging performance at two age points (i.e., 6-month and 12-month). However, it is still
challenging to effectively segment diverse subcortical structures at various ages due to the
extremely tiny sizes (e.g., 0-month), noisy intensity images with severe partial volume effect
and dynamic myelination in infant brain MR images. To better address these issues, in this
paper, we have extended the previously presented conference version (Chen et al., 2020) as
follows and achieved good subcortical segmentation accuracy on images across the first two
postnatal years:

1. We added both spatial and channel attention mechanisms in our framework;

2. We adopted the inner and outer boundaries as extra labels for each subcortical
structure;

3. We enlarged the applicable age range of our method to all ages in the first two

postnatal years (from 0-month to 26-month);

4. We increased the label number from 6 to 12 (6 subcortical structures in
each hemisphere) and simultaneously segmented the structures within each
hemisphere;

5. We added more technical details and comprehensive analyses and systematically

performed the ablation study;

6. We systematically verified the generalizability and domain adaptation ability of
our trained framework on an unrelated neonatal dataset.
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It should be noted that due to the doubled number of segmentation labels, which severely
increases the segmentation difficulty, and the reorganized training and testing datasets, the
segmentation results of this work are not directly comparable to that in our preliminary
conference work with fewer labels.

The rest of the paper is organized as follows. Section Il briefly reviews previous studies

on subcortical segmentation, context-guided image segmentation, and attention mechanisms.
Then, the proposed method is described in detail in Section I11, followed by the experiments
and results in Section IV. Finally, we conclude the paper in Section V.

Related work

2.1. Subcortical segmentation

As an essential step in various neuroimaging studies and related disease diagnoses,
automatic subcortical segmentation has been explored in previous literature. A subcortical
segmentation method is provided in the commonly used medical image analysis toolbox
FSL (Jenkinson et al., 2012), which utilizes the Bayesian framework to differentiate

the subcortical structures based on the low-level features, i.e., intensity and boundary.
Similarly, the infant FreeSurfer pipeline (Z6llei et al., 2020) can provide infant subcortical
segmentation based on an intensity adaptive version of a traditional Bayesian multi-atlas
algorithm (lglesias et al., 2013; Sabuncu et al., 2010). However, due to the low tissue
contrast and dynamic appearance in infant brain MR images, such low-level features are
noisy and fuzzy, which are thus not enough to accurately perform the infant subcortical
segmentation.

Motivated by the recent success of the convolutional neural networks (CNNSs) in semantic
segmentation tasks, many efforts have been put into learning-based subcortical segmentation
methods. In (Dolz et al., 2018), the authors proposed a 3D fully convolutional network
for subcortical segmentation, which embedded intermediate-layer outputs in the final
segmentation prediction to help the proposed network learn the local and global context.
(Wu et al., 2019b) introduced a multi-atlas strategy to guide the training of a CNN
segmentation network. Specifically, several randomly selected images are considered as
template images and are affinely aligned to the target images. Then, during the training,
multiple template patches are automatically chosen and input with the target patch to
obtain the segmentation. Soon after, (Wu et al., 2019a) proposed an enhanced version by
adding a 2D fine-stage segmentation network, which simultaneously segments the brain
MR slices from three directions through three independent U-nets and fuses the outputs
to get the refined segmentation. (Liu et al., 2020) proposed a U-net-like network, hamed
w-net, for subcortical segmentation and introduced a densely convolutional LSTM module
(DC-LSTM), serially stacked to effectively aggregate features learned at each level, to
progressively enrich low-level feature maps with high-level context. However, existing
methods are all proposed for adult brain subcortical segmentation and perform poorly on
infant brain MR images, due to the low tissue contrast, dynamic appearance changes,

and tiny brain size in infants. Although, in the iSeg2019 challenge (Multi-Site Infant
Brain Segmentation Algorithms) (Sun et al., 2021), the top-ranked methods, i.e., xflz,
CU_SIAT, and RB, obtained trust-worth results in infant brain tissue segmentation, the
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infant subcortical segmentation is more challenging due to the tripled label classes for both
left and right hemisphere. Hence, accurate infant subcortical segmentation methods remain
challenging and need further investigation.

2.2. Context-guided medical image segmentation

Given a specific region within an image, the distance transform, also named level-set
function, can transform the value of each pixel/voxel into the shortest distance to this
region’s boundary to produce a distance map as spatial context information. Inspired by
this, plenty of context-guided methods have been proposed to leverage distance maps as
additional context information to deliver improved performance (Fabbri et al., 2008; Jones
et al., 2006). For medical image segmentation tasks, in (Criminisi et al., 2008), the authors
combined the distance transform with an efficient searching method to produce spatially
smooth and contrast-sensitive segmentation labels, which was successfully performed on
torso segmentation. In (Li et al., 2010), a distance regularization term was designed to

help stabilize the level set function to maintain a reasonable shape, which achieved good
performance on bladder segmentation. The random forest algorithms were also favorably
integrated with geodesic distance transform for accurate organ segmentation (Kontschieder
et al., 2013). Meanwhile, to deal with the MR images with intensity inhomogeneity, distance
transform was also introduced to provide spatial context information and conformed with
the intensity inhomogeneity correction methods to build the energy functions to generate
accurate segmentation (Li et al., 2011; Zhang et al., 2015).

Recently, many context-guided CNN-based frameworks have been proposed for medical
image segmentation and achieved many successes, especially for the infant brain (Wang

et al., 2018a; 2018b; Zeng and Zheng, 2018). This type of methods utilizes the spatial
context information included in the distance maps to generate the segmentation labels

with enhanced accuracy (Park et al., 2019), which is highly effective for segmenting the
structures with relatively stable position and shape. In (Wang et al., 2018b), the authors
constructed SDMs with respect to the boundaries of different tissue types as anatomical
guidance and jointly input them with T1w and T2w images. Similarly, (Zeng and Zheng,
2018) proposed a multi-stage network, which computed distance maps for each brain tissue
based on the segmentations obtained from the first stage and applied them as input to
achieve the refined segmentation in the second stage. To provide more context information,
(Wang et al., 2018a) proposed a DeeplGeoS network to calculate the distance maps based
on the geodesic distance transformation, instead of the commonly used Euclidean distance
transform. However, these methods typically perform traditional segmentation networks
(without considering the context information) to generate intermediate segmentation results
for calculating distance maps during inference. Due to the low tissue contrast and

dynamic appearance changes, it is extremely challenging to obtain valid intermediate infant
subcortical segmentations for distance map calculation, and thus the segmentation errors
would be accumulated in the constructed distance maps, degrading the performance of
such context-guided methods in segmenting infant subcortex. In (Xue et al., 2019), the
authors proposed a regression-based network to directly predict the signed distance map
(SDM). Then, one can apply the Heaviside function to transform the obtained SDMs into
segmentations. The biggest advance is the proposed network can learn the spatial context
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information contained from the ground-truth SDMs to improve the segmentation accuracy.
In (Xue et al., 2019), to improve the training robustness of the proposed network, the
ordinarily used L, loss was replaced by the L, loss to penalize the differences between the
predicted SDMs and the ground-truth SDMs during training. Although, the robustness is
increased, due to the non-differentiable issue of L, loss at zero, the training process could
be unstable in multi-class segmentation tasks (Ren et al., 2015), making it unsuitable for
the subcortical segmentation task. However, to the best of our knowledge, there is still an
absence of an end-to-end distance transform-based coarse-to-fine deep framework, which
could be remarkably beneficial for accurate infant brain subcortical segmentation.

2.3. Attention mechanisms in medical image analysis

To validly unearth salient subregions in intricate scenes, e.g., excavating the subcortical
structures from the whole brain MR images, attention mechanisms are introduced to
adaptively re-weight features learned by the networks and have presented superior
advancements in many medical image analysis tasks, including classification, segmentation,
and parcellation (Guo and Yuan, 2019; Li et al., 2022; Roy et al., 2018), due to their flexible
incorporation with existing deep learning methods. The attention mechanisms are commonly
performed on different aspects, resulting in three main categories, i.e., 1) channel attention,
2) spatial attention, and 3) channel and spatial attention.

Channel attention.—In CNNs, the learned feature maps are organized in a multi-channel
manner, each of which usually illustrates different learned objects (Chen et al., 2017).
Inspired by this, channel attention is generally applied to adaptively adjust the weight of
each channel to help the network divert attention to the most important objects. In the
presentation of SENet (Hu et al., 2018), the authors first introduced channel attention to
help improve representation ability, within which a squeeze-and-excitation (SE) block was
proposed to integrate global information and capture relationships between each channel.

In (Zhang et al., 2018), the authors continuously improved the SE-block by introducing a
semantic encoding loss, which can exploit the global contextual information to enhance the
segmentation performance.

Spatial attention.—Different from channel attention, spatial attention mechanisms focus
on selectively highlighting the relevant subregions within the learned feature maps. In
(Oktay et al., 2018), the authors proposed an attention-Unet for medical image segmentation,
introducing an attention gate block to guide the network to pay more attention to important
regions, while suppress the activation of features within the irrelevant areas. Recently, self-
attention methods have shown dominant performance, which performs a spatial attention
mechanism to capture global information. Inspired by this, (Wang et al., 2020) introduced
self-attention into medical image segmentation and proposed a non-local Unet, which can
aggregate long-range information gradually by using the non-local information with flexible
global aggregation blocks.

Channel and spatial attention.—In order to combine the advantages of both channel
attention and spatial attention, many efforts have been made to perform them together
under different strategies. To focus on essential regions as well as enhance informative
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channels, (Woo et al., 2018) proposed the convolutional block attention module (CBAM),
which tandem connects the channel attention block and spatial attention block. Due to the
global pooling, which is generally used in the spatial attention block, the pixel-wise spatial
information is ignored, which could poorly influence the medical image segmentation. Thus,
(Roy et al., 2018) proposed spatial and channel SE blocks (scSE) to densely provide spatial
weights to complement channel attention and supervise the network focusing on critical
subregions.

The above-mentioned attention mechanisms can help the network focus on the most relevant
features and areas, which could be highly beneficial for the complex infant subcortical
segmentation task.

3. Method

In Fig. 2, our framework, including two subnetworks for two stages, are illustrated. We will
detailedly introduce each stage and its corresponding network in the following.

3.1. Coarse stage SDM-Unet

This section presents the coarse stage SDM learning Unet (SDM-Unet), which can leverage
the position and shape context information included in the ground-truth SDMs to force

the network learning to predict high-quality SDMs. In doing so, the predicted high-quality
SDMs can further help achieve superior segmentation performance in the fine stage.

3.1.1. Generation of ground-truth SDMs—Given a manually delineated label map
of subcortical structures, we can calculate the SDM of each specific structure through the

following formula, which is a mapping from R? to R:

0,xe%x
(]5(.7(?) = _infyew”x - y”z’x € Q, 1)
+inf, c 5)|x — Y|, x € Qou

where x and y are the coordinate of any voxel in the label map and the subcortical structure
boundary %, respectively. The regions inside (negative) and outside (positive) a subcortical
structure are respectively denoted by Q,, and Q,... In this work, all the subcortical SDMs are
created using the Euclidean distance transforms (EDT).

3.1.2. Transformation from SDMs to segmentation maps—During training, in
addition to supervise the similarity between the ground truth and predicted SDMs, we can
introduce a segmentation loss to penalize the differences between the manual delineations
and the predicted segmentation maps (converted from the predicted SDMs) to fully leverage
the informative manual delineations, thus further improving the performance of the proposed
SDM-Unet. Specifically, we can precisely convert the SDMs to the segmentation maps
through the Heaviside function. However, the Heaviside function is non-differentiable,
making it impossible to be directly performed in training. Therefore, we exploit a smooth
approximation of the Heaviside function (lto, 1994) to transform the predicted SDMs to
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the segmentation maps to build the segmentation loss, and the smooth approximation of the
Heaviside function is defined as follows:

1

S=—,
T e/

@

where p, and s, respectively denote the predicted SDM and segmentation map belonging
to the ha-th class, and m is the approximation parameter (a larger m gives a closer
approximation).

3.1.3. SDM-Unet Architecture—The architecture of the proposed SDM-Unet is shown
in Fig. 3, which inputs multi-modal MR images (T1w, T2w, and T1w/T2w images) in a
multi-channel manner and outputs the estimated SDMs for each subcortical structure. The
SDM-Unet has an encoder-decoder structure. There are three encoding blocks in the encoder
part, each of which repetitively takes the form of a combination of a core block (CB)

and max pooling. The CB has a form of Conv3D-BN-ReLU-Conv3D-BN-ReL.U. Conv3D
denotes the 3D convolution layer, BN denotes the batch normalization, and ReLU denotes
the rectified linear unit. Similarly, there are also three decoding blocks in decoder part,

each taking the form of CB-DeConv3D. The DeConv3D denotes the traditional transposed
convolution. Skip connections between each pair of encoding and the decoding blocks are
added to help recover essential low-level features.

3.1.4. SDM-Unet Loss function—There are two terms in the loss function of the
proposed SDM-Unet, i.e., SDM learning loss and segmentation loss.

SDM learning loss.: First, we introduce the SDM learning loss term, which encourages the
SDM-Unet to predict the SDMs from the original multi-modal MR images as similar as the
ground-truth SDMs. The commonly used loss term for learning the SDMs is the L, loss,
instead of L, loss, to enhance the robustness to outliers (Xue et al., 2019). However, the L,
loss is non-differentiable at zero, severely influencing the training stability.

To overcome the limitation of L, loss and alleviate the degradation caused by outliers, we
adopt the Correntropy-based loss (Closs) (Chen et al., 2016) as the SDM learning loss to
penalize the differences between the estimated SDMs and the ground-truth SDMs. Closs is
a maximum Correntropy criterion (MCC) based loss function, which has been successfully
applied in signal processing and machine learning areas to improve the robustness against
outliers. In detail, along with the increase of error e (the difference between source and
target images), the derivative of L, loss exhibits a linear increase, making it extremely
sensitive to outliers. On the contrary, when facing outliers, the derivative of Closs gets closer
to zero, suggesting its remarkedly robustness to outliers. Meanwhile, compared to the L,
loss, the Closs is differentiable everywhere (Liu et al., 2007), making the Closs-based SDM
learning loss more stable in training.

In detail, for a segmentation task with H-class, the Closs-based SDM learning loss is defined
as follows:
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H

Lsom = Z (1 — exp|

h=1

_ 2
_ (p,,2 a) )) ®

o

where ¢ is the tunable kernel bandwidth, p, and g, respectively represent the estimated SDM
and ground-truth SDM belonging to the a-th class.

Segmentation loss.: Once we transformed the predicted SDMs to segmentation maps by
performing the Eq (2), we utilized the Dice loss (Milletari et al., 2016) to build the
segmentation loss, which can measure the overlapping between the predicted segmentation
maps and the manual delineation maps to further supervise the network training. For N
voxels, the Segmentation loss is defined as:

H N
23 Suidn
L= 1- v @
‘ h;l ZlNzlsh’i—i_ ZIN:lth»"

where, 1, and s, ; respectively denote the i-th voxel in the a-th class manual delineation and
predicted segmentation map.

Joint SDM-Unet loss.: By integrating two loss terms, we can have the joint loss function for
SDM-Unet Zpm - vner:

gSDM —Unet = gsmv[ + /L?ch (5)

where 4 is the weight parameter. We can minimize the joint SDM-Unet loss to stably train
the proposed SDM-Unet to generate high-quality SDMs, and use the achieved SDMs as the
spatial context information to help the following M2A-Unet refine the segmentation results.

3.2. Fine stage M2A-Unet

To further improve the segmentation accuracy, we propose a multi-source and multi-path
attention Unet (M2A-Unet), which can fully leverage the context information generated by
SDM-Unet to increase the segmentation accuracy.

3.2.1. Boundary-identified segmentation maps—It is worth noting that the
subcortical structures are blurred with each other, as well as the fuzzy boundaries

between the GM/WM, due to the low tissue contrast in infant MR images. Therefore, the
identification of boundaries is more important than that of inner regions in infant subcortical
segmentation. To supervise the proposed network to pay more attention to the boundaries
of each subcortical structure, we delineated the inner boundary and outer boundary for each
subcortical structure and assigned structure-specific labels for each inner boundary and a
uniform label for the outer boundary, as shown in Fig. 1. By adding boundary labels to

the manual delineations, the M2A-Unet can be trained to directly estimate both the inner
and outer boundaries of each subcortical structure. Meanwhile, the performance of the
M2A-Unet could be further improved by learning to match up the boundary labels with the
boundaries of SDMs to better leverage the ample context information included in SDMs.
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Thus, the M2A-Unet can accurately achieve the refined subcortical segmentation maps by
well capturing the boundaries.

3.2.2. 3D Attention blocks—To guide the proposed M2A-Unet to pay more attention
to the beneficial subregions and feature maps while disregarding irrelevant parts, inspired
by the recent progress in attention-based medical image segmentation (Roy et al., 2018), we
extend both the spatial and channel attention blocks into 3D and path-wisely introduce them
into our M2A-Unet to further enhance the accuracy of the refined segmentation, which are
detailed below.

Spatial attention block (SAB).: The SAB spatially recalibrates the feature maps
IRH XWXxDxC

Fsup € , outputted by the previous encoding or decoding blocks, along
with the input channel C and generates the spatially re-weighted feature maps

Fyup € R XWXDXC along the output channel ¢, where H, W, and D are the

spatial height, width, and depth, respectively. In detail, for the feature maps

Foup= 00112 o gk L gH WD) where £/ K € R1X X1 XC corresponds to the
spatial location at (i, j, k) on each channel, the SAB outputs a projection tensor

u e R XW XD through a convolution layer with the weight Ws,, € R! X 1 X 1XCX1 gnq

u = W,,; © Fy,,. Activated by the sigmoid function A(-), the projection u is rescaled to [0,1],
and the spatially recalibrated F,, is

ﬁSAB = [A(ul_lvl)fl, 1, 1’ ""A(ui,/'k)fi’j’ k’

H,W,D ®)
Al w )T

This pixel-wise SAB block highlights more corresponding subregions and ignores
immaterial regions along all channels by adjusting the magnitude of each u, .

Channel attention block (CAB).: The CAB recalibrates feature maps Fe,; = [f), 5, -+, fc],

where £, € R>"> D] in a channel-wise manner and outputs the re-weighted F.,,.
Specifically, a global average pooling block is performed on each channel f. to aggregate
information in each feature map as follows,

H W D
0= D o 2 ) ™
1 1 1

where n € {1,2,---,C}. Then, a combination of the embedded global information vector v is
transformed through two fully connected (FC) layers with a ReL U operator,

vV = W,(ReLU(W,v)) ®

C ¢
where W, € RZ X1 and W, e R X 77, and the channel attention bottleneck parameter z = 2.
Similar to the SAB, by passing through the sigmoid activation layer, the CAB outputs the
resultant feature maps
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Feus = [ADGDE, A@G)E, -+, ABE] . ©)

Therefore, the higher value of A(,) means the »-th channel is more important, and the
trained network can ignore the futile channels adaptively and emphatically underline the
more important ones to help improve the final segmentation of the subcortical structures in
the low contrast infant brain MR images.

3.2.3. M2A-Unet Architecture—To sufficiently exploit both multi-modal appearance
information and the spatial context information, we simultaneously feed both the multi-
modal intensity images and the generated high-quality SDMs into the proposed M2A-Unet
through different encoding paths, which is shown in Fig. 4 and detailed as follows.

There are two parts included in the input of the M2A-Unet: a) the multi-modal MR images
are still input into one encoding path in a multi-channel manner; b) the SDMs predicted by
the SDM-Unet are separately fed through different encoding paths. Specifically, unlike the
multi-modal MR images, the SDMs contain spatial context information of each specific
subcortical structure. Therefore, to effectively integrate the subcortical spatial context
information, we construct individual encoding paths for the SDMs of each subcortical
structure, making it possible to fully leverage all SDMs to extract more high-level features.
Besides, similar to the SDM-Unet, we keep using three encoding blocks for each encoding
path.

Meanwhile, to better leverage both SAB and CAB, following the suggestions of (Roy et
al., 2018), we also organized the SABs and CABs parallelly and added them after each
encoding and decoding block. A max-out mechanism was performed to efficiently fuse the
complementary information extracted by each pair of SAB and CAB:

Frouiis j. k. ¢) = max(Fy(is j, k, c)),

~ (10)
Fes(i, j, k,c).

Finally, due to the (H + 1) encoding paths included in the M2A-Unet, it could be
significantly complex to implement the skip connections for each encoding path. Therefore,
as the multi-modal MR images accommaodate exhaustive intensity information, we just
linked the skip connections for the encoding blocks belonging to the encoding path of the
multi-modal MR images to lessen the complexity of the proposed M2A-Unet and recover
more useful details.

3.2.4. M2A-Unet Loss function—Herein, we still use the aforementioned Dice loss for
the M2A-Unet training. It is worth noting that different from the SDM-Unet, by introducing
the boundary labels, the total number of labels is 26, i.e., 12 structural labels, 12 inner
boundary labels, 1 outer boundary label, and 1 background:

(1)

i 1— 22,‘]\/:15‘;‘.,1‘;.‘,'

Zroa-tha = .
e h=1 ZiNzlsh~i+Z,N:1th,i
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4. Experiments

4.1. Dataset and experimental setup

UNC/UMN Baby Connectome Project (BCP).—To sufficiently evaluate the proposed
framework, we randomly selected 48 infant MRI scans from the UNC/UMN Baby
Connectome Project (BCP) (Howell et al., 2019). The 48 scans belong to 4 age groups (12
scans per age group) from birth to two postnatal years (i.e., 0M-3M, 6M, 12M, 18M-24M).
Each scan includes both T1w and T2w images with a resolution of 0.8 x 0.8 x 0.8 mm3.

For each scan, we performed the FLIRT in FSL (Jenkinson et al., 2012) to linearly align
T2w image onto the T1w image. Then, the T1w/T2w image was calculated by voxel-wisely
dividing the T1w image by the T2w image. We also performed the N3 (Sled et al., 1998)

on T1w and T2w images to correct intensity inhomogeneity. 1 scan from each age group are
randomly selected to perform the histogram matching based on the intensity.

To generate reliable manual subcortical labels as ground-truth, we first took advantage of
our proposed infant-dedicated 4D brain atlas (Chen et al., 2022) (including the subcortical
labels) to generate the initial subcortical segmentations by warping the age-specific atlas
subcortical labels to each individual scan using ANTS registration toolbox (Avants et al.,
2009). Specifically, as the subcortical structures are established during the third trimester,

it is possible to accurately propagate the subcortical labels from each age-specific atlas to
individual scans from the BCP dataset. Second, two trained experts (each expert has more
than 4 years of experience in infant brain MR image segmentation) performed manual
correction based on the obtained initial automatic subcortical segmentations to correct
segmentation errors based on T1w, T2w, and the T1w/T2w ratio images using ITK-SNAP
software (Yushkevich et al., 2016) under the guidance of an experienced neuroradiologist,
as we have done for data in MICCAI Grand Challenges iSeg 2017 and 2019 (Sun et al.,
2021; Wang et al., 2019). For example, for each suspicious label, we first localized it in the
3 canonical views, i.e., axial, sagittal, and coronal views. Then, we determined its correct
label based on the three images (T1w, T2w, and T1w/T2w) by considering 3 views together.
We also filled the holes and removed the bulges with the help of surface rendering. In
general, for the 12M, 18M, and 24M scans, it took 2 days to correct one scan, while the
correction of the OM, 3M, and 6M scans took almost 3 days per scan due to the low tissue
contrast. In sum, the subcortical structures of all 48 scans were manually delineated into
bilaterally symmetric 12 classes (each hemisphere includes the thalamus, caudate, putamen,
pallidum, hippocampus, and amygdala). To simplify the network of M2A-Unet, we merged
the 12 subcortical structures into six classes and calculated the corresponding ground-truth
SDMs, which were used as the ground-truth to train the coarse-stage SDM-Unet and fed into
M2A-Unet to generate refined subcortical segmentations.

Due to the distinct age-specific tissue contrast and appearance of the infant brain MR images
within each age group, we trained networks for each age group, respectively. To validate our
method, given an age group, a stratified 6-fold cross-validation strategy is employed, and
each fold consists of 10 training images and 2 testing images. We performed the ablation
study and selected hyper-parameters based on 6-month images.
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We used a Linux workstation (Intel Xeon E5-2650 CPU (8 cores 16 threads) and NVIDIA
TITAN Xp 12 GB GPUs) to train and test the proposed framework, which was implemented
using TensorFlow 1.15. Parameters of SDM-Unet and M2A-Unet are experimentally set as:
learning rate of Adam optimizer = 0.0001, kernel size of each network = 4, stride = 2,
A=0.1, and ¢ = 0.8. m = 1500, which is enough to guarantee the accuracy of the predicted
segmentation map. The segmentation was performed in a patch-wise manner, with a patch
size of 32 x 32 x 32. To avoid confusing the left and right structures during the patch-based
training, we only performed random rotation and random scaling as data augmentation

by utilizing the preprocessing strategies provided by the TensorFlow.Keras.preprocessing
package, while avoiding flipping.

We compared the proposed method with the following methods: two commonly used
software packages FIRST in FSL (Jenkinson et al., 2012) and Infant FreeSurfur (InfantFS)
(Zollei et al., 2020); state-of-the-art deep learning segmentation methods, including SA-net
(Xue et al., 2019) (regarding as the baseline in the ablation study), V-net (Milletari et al.,
2016), LiviaNet (Dolz et al., 2018), three top-ranked methods, i.e., xflz, CU_SIAT, and RB,
in the iSeg2019 challenge (Multi-Site Infant Brain Segmentation Algorithms) (Sun et al.,
2021), w-net (Liu et al., 2020), nnUnet (Isensee et al., 2021), and MAML (an extension of
nnUnet with dedicated framework for multi-modal medical images) (Zhang et al., 2021).
For the learning-based methods, we experimentally set the learning rate and epoch numbers,
respectively. In detail, the learning rates of V-net, LiviaNet, and y-net were set to 0.0001,
while the learning rates of SA-net, nnUnet, and MAML were set to 0.001. The learning
rates for the xflz, CU_SIAT, and SmartDSP were set to 0.0002. The epoch numbers of
each competing method were enlarged, and an early stop strategy was applied to ensure the
convergence of each method during training. For the patch-based methods, their patch sizes
were also set to a patch size of 32 x 32 x 32. To ensure a fair comparison, we also used

the three MR modalities as multi-channel input to train and test each deep learning-based
competing method.

The segmentation results were quantitatively evaluated by the Dice similarity coefficient
(DSC) and average symmetric surface distance (ASSD) (mean and standard deviation).

The DSC values mainly evaluate the overlapping between the ground-truth labels and the
estimated labels, while the ASSD measures the surface distance between each pair of labels,
which is more sensitive to the outliers.

developing Human Connectome Project (AHCP).—To evaluate the generalizability
and the domain adaptation capability of the trained framework, we further introduced

the developing Human Connectome Project (AHCP) dataset (Makropoulos et al., 2018)
(including neonatal subjects with multi-modal brain imaging data (between 23-44 weeks
post-menstrual age (PMA))), which were acquired by different scanners with different
protocols. The dHCP dataset provides both T1w and T2w images with a resolution of 0.5 x
0.5 x 0.5 mmP. We randomly selected 5 scans with the age of around 33 weeks PMA and

5 scans with the age of more than 40 weeks PMA to perform the domain adaptation test
and generalizability test, respectively. Similar to generating the ground-truth segmentation
maps of the BCP dataset, we also warped the subcortical labels from our infant-dedicated
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4D brain atlas (Chen et al., 2022) to the 10 dHCP scans using ANTS registration toolbox
(Avants et al., 2009) as initial label maps. Then, each label map was manually-corrected

by the same experts under the same procedures. For the generalizability test, we directly
performed the trained OM-3M framework to segment the 5 dHCP scans with the age of
more than 40 weeks PMA. To verify the domain adaptation capability, we performed 5 fold
cross-validation using the leave-one-out strategy. Note that all 10 scans were preprocessed
by histogram-matching to the same BCP scan as mentioned above.

Results on BCP infant dataset

In this section, we qualitatively and quantitatively performed experiments on the BCP
datasets to validate the performance of the proposed framework on infant subcortical
segmentation, compared to other competing methods. Meanwhile, a comprehensive ablation
study is provided to verify the effectiveness of each component newly added in the proposed
framework. Finally, a hyper-parameter selection is included to detail the choosing of suitable
hyper-parameters.

4.2.1. Qualitative comparison—In Fig. 5, to evaluate the segmentation performance
of our framework, we visually compared the segmentation results obtained by our method
and other five competing methods on two randomly selected images from 0-month (Fig.

5 (a)) and 6-month (Fig. 5 (b)) age groups, respectively. In Fig. 5, the first column is the
manual delineation, which is used as the ground-truth. The first 3 rows are 3 typical slices
from 3 canonical views, i.e., axial, sagittal, and coronal views, respectively. The last row is
mesh surfaces.

Markedly, we can find that the segmentations achieved by the proposed framework exhibit
overall higher consistency with the manual delineations. Meanwhile, potentially attributed
to the delineated structural inner and outer boundary labels, in our segmentation results,
the boundaries of each subcortical structure are smoother than the results obtained by other
competing methods. It is worth noting that by sufficiently leveraging the informative SDMs
as spatial context, our framework can be trained to effectively learn the position, shape,
and interstructural relationship of each subcortical structure, which leads to an accurate
segmentation free of outliers. In comparison, some competing methods segmented both the
0-month and 6-month images poorly with lots of overshoots, missing voxels, and outliers,
which may severely influence the practical applications and needs further post-processing.
The others erroneously assigned the left-side labels to the right-side structures in both scans.
In fact, due to the similar intensity between the left and right subcortical structures, all
competing methods, although not obvious in Fig. 5, suffered from the missing assignments
of the left and right labels. Potentially attributing to the spatial information included in

the SDMs, by feeding the high-quality SDMs into the M2A-Unet, along with the original
discrete structural labels, our framework can learn the shape, position, and relationships
between the left and right subcortical structures to help identify the left and right labels,
making our framework successfully survived this harmful issue. Finally, compared to other
competing methods, the proposed framework can segment the amygdala and hippocampus
much more precisely. Of note, the amygdala is the smallest subcortical structure, and the
hippocampus has the most complicated shape. Thus, the above-mentioned results suggest
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that our framework can well segment each subcortical structure on infant brain MR images,
making it highly useful in investigating the early development of the subcortex.

4.2.2. Quantitative comparison—In this subsection, we quantitatively compared the
proposed framework with other competing methods, and summarized the values of DSC and
ASSD of each subcortical label in Table 1 and Table 2, respectively. From Table 1 and Table
2, we have three observations.

First, compared to the competing methods, our framework has higher DSC values for all 12
subcortical structures in all four age groups and also achieves improved ASSD values on

the vast majority of subcortical structures across the age groups examined. In comparison,
LiviaNet obtained relatively high DSC values, but its performance on the ASSD metric is
poor, which could be attributed to the countless outliers, as illustrated in Fig. 5. The superior
performance on both metrics suggesting that our coarse-to-fine framework can effectively
exploit the spatial information to refine the segmentation and reduce outliers.

Second, our framework performs much better in segmenting 0-month and 6-month images,
while the others cannot segment the images acquired during these age ranges very well,
especially for the hippocampus and amygdala. Note that it is very challenging to obtain
promising segmentation on images acquired within the first several months of age, due to the
extremely small structural sizes and extremely low tissue contrast. These results imply that
the proposed framework has successfully learned to exploit the spatial context information
included in the SDMs to extenuate the severe influence from low tissue contrast and
accurately segment the infant subcortex. Moreover, it also validates that by introducing both
the spatial and channel attention blocks, the proposed framework can pay more attention

to vital regions and channels and ignore the less relevant information, helping enhance the
utilization of the noisy intensity images and SDMs to further amend the aforementioned
discords in infant brain MR images.

Third, although the competing methods, such as the y-net, nnUnet, and MAML, have
obvious improvements in segmenting the images acquired after 12-month, and achieve

lower ASSD values in the segmentation of the amygdala at 24-month, our framework still
outperforms the others in both DSC and ASSD metrics for all 12 subcortical structures at
12-month and 11 structures at 24-month (except for the left amygdala with slightly lower
accuracy). As the 24-month brain MR images have a similar appearance and contrast to the
adult brain MR image, this result further implies that incorporating the SDM of each specific
subcortical structure can not only remedy the issue of the low tissue contrast to accurately
segment the infant subcortex but also is highly valuable for the adult brain subcortical
segmentation.

In summary, compared to competing methods, our method achieved the mean DSC with a
remarkable improvement by 2.6% (from 89.8% to 92.4%, p— value = 3.6¢™4) and the mean
ASSD significantly reduced almost 42% (from 0.12 mm to 0.07 mm, p— value = 3.4¢73),
which strongly suggests the superior performance of our method on the challenge infant
subcortical segmentation task.
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4.2.3. Ablation study—In this subsection, we regarded the SA-net (Xue et al., 2019) as
the baseline and performed an ablation study to evaluate the effectiveness of the multi-modal
images and robust loss function of the proposed SDM-Unet, including:

1) using only T1w images and replacing Closs with the L, norm (SDM-Unet + T1w Closs +
L, (SA-net));

2) using only T1w images (SDM-Unet + T1w);
3) using both T1w and T2w images (SDM-Unet + T1w, T2w);
4) using both T1w, T2w, and T1w/T2w images (SDM-Unet + T1w,T2w, T1w/T2w).

Additionally, to indicate the effectiveness of attention blocks and boundary labels in the
proposed M2A-Unet, we performed additional ablation studies on the performance of our
framework as follows,

5) removing boundary labels (BL) and all attention blocks (Att) (Proposed - BL - Att);
6) removing boundary labels (Proposed - BL).

The ablation study was carried out on the 6-month infant images with the lowest tissue
contrast in terms of both DSC and ASSD metrics, which are summarized in Table 3. The
SDM-Unet is designed to estimate the SDMs of the 6 bilaterally symmetric subcortical
structures. Therefore, we merged the results of our framework into 6 classes.

From Table 3, we can find that our SDM-Unet with the robust Closs term achieved
improved performance, compared to the baseline SA-net, which can further strengthen

the performance of the fine stage M2A-Unet. Moreover, by taking advantage of the extra
information provided by the multi-model images, especially the T1w/T2w images, the
performance of the proposed framework upgrades obviously. By introducing the fine stage
M2A-Unet, both DSC and ASSD metrics improved significantly, suggesting a positive
effect of exerting the proposed M2A-UNet. Such improvements could be caused by directly
inputting the SDMs with multiple encoding paths, which allows the auspicious learning

of the spatial context information. Besides, by inducing both spatial and channel attention
blocks, the performance of the proposed framework is further enhanced, highlighting the
effectiveness of the attention blocks and the importance of the features learned by different
encoding paths. Last of all, the proposed framework trained with labels including boundary
delineations consistently yields better performance, suggesting the significance of guiding
the network to focus on precisely segmenting the boundaries of subcortical structures.

4.2.4. Selection of hyper-parameters—Our framework includes two hyper-
parameters, i.e., 4 as the loss weight parameter and the kernel bandwidth ¢ in the
coarse-stage SDM-Unet, which could influence the segmentation accuracy. Specifically,
appropriately choosing o can help mitigate the bad influence of outliers to enhance the
training stability. 6-month infant images are the most difficult to segment due to their lowest
tissue contrast. Therefore, carefully tuning 4 in segmenting 6-month infant images could
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help enhance the segmentation accuracy. In contrast, scans within other age ranges have
better tissue contrast, making their segmentation relatively easier and less sensitive to 1. On
the other hand, a suitable ¢ is used to help Closs well measure the similarity between the
ground-truth SDMs and the generated SDMs. As the ground-truth SDMs of scans within
different age ranges have similar distributions, the proper o values for models of different
age groups should be similar. Thus, we can select the proper ¢ value during the model
training for one age group and conveniently apply it to other training models. In sum, we
performed the selection of hyper-parameters on the 6-month infant images in terms of DSC
metric. To choose a suitable o, we first removed the #,., and performed the SDM-Unet on
the 6-month scans. Then, the #,,, was added with different values of 4 to testify the trade-off
between two loss terms. The DSC ratios of SDM-Unet with different kernel sizes ¢ and loss
weight parameters 4 are shown in Fig. 6 and Fig. 7, respectively.

As shown in Fig. 6, if the values of ¢ were too small, our framework performed poorly.
Along with the increase of ¢, the DSC ratio kept increasing and finally tended to be stable,
as the Zq, was approximately equivalent to the classic MSE with an infinite o. Therefore,
was set to 0.8.

As shown in Fig. 7, it is obvious that by adding the Zs.,, the performance of the SDM-Unet
can be further improved; while if 4 is too large, the &5, could dominate the loss function,
making the Zpy Suboptimized. Based on the above results, we set 1 to 0.1.

4.3. Results on unrelated dHCP neonatal dataset

4.3.1. Qualitative comparison—In Figs. 8 and 9, to verify the generalizability and
domain adaptation ability of our framework, we qualitatively compared the segmentation
results achieved by our trained framework and the state-of-the-art methods on 4 dHCP scans
with the age of around 33 weeks and more than 40 weeks PMA, respectively. The first 3
rows illustrate the labels of subcortical structures in 3 canonical views, i.e., axial, sagittal,
and coronal views, respectively. The mesh surfaces are shown in the last row.

Generalizability.: Markedly, from Fig. 8, we can find that the segmentation maps achieved
by our trained framework exhibit much better accuracy with significantly more complete
segmentation of each subcortical structure, compared to the trained nnUNet and MAML.
Particularly, our framework still obtained segmentation maps without any outliers, while
the results from nnUNet and MAML contain a large number of missing labeled voxels,
which obviously confused the left and right subcortical structures. Finally, nnUNet and
MAML segmented the subcortical structures with obvious overshoots, especially for the
thalamus and hippocampus. On the contrary, our trained framework can still well segment
the hippocampus with a complicated shape. Therefore, these results further verified the great
generalizability of the proposed framework, which could be attributed to the introduced
anatomical context information.

Domain adaptation.: From Fig. 9, we can observe that after fine-tuning on the dHCP
dataset, our trained framework can achieve significantly improved segmentations of each
subcortical structure on the premature birth scans, compared to the trained nnUNet and
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MAML. On the contrary, similar to Fig. 8, the results from MAML existed the miss-
assigned labels to the left and right subcortical structures. Besides, nnUNet and MAML
segmented the subcortical structures with distinct missing labels, such as the thalamus and
hippocampus. Oppositely, the results of our trained framework are much more consistent
with the manual-corrected labels. Thus, by performing a simple fine-tuning procedure, our
framework can again guarantee satisfied segmentation results on the out-of-domain brain
MR images, making it applicable for other practical tasks.

4.3.2. Quantitative comparison—In Tables 4 and 5, we respectively presented the
DSC ratio and ASSD values of the dHCP scans with the age of around 33 weeks and more
than 40 weeks PMA to quantitatively evaluate the generalizability and domain adaptation
ability of our framework, compared to the state-of-the-art nnUNet and MAML methods.

Generalizability.: From Table 4, we can observe that after histogram matching, our
framework still consistently performed well on the out-of-domain dHCP dataset, which
exhibited overall superior performance on each subcortical structure in both DSC ratio and
ASSD values, compared to the competing methods. In detail, the DSC ratio increased 7.1%
(from 78.1% to 85.2%, p— value = 5.1¢73) and ASSD values reduced 66.8% (from 0.45

mm to 0.15 mm, p— value = 6.5¢7°), which could be attributed to the well learned features
from SDMs. These results further testified the remarked generalizability of our framework in
neonatal datasets.

Domain adaptation.: In Table 5, by implementing the fine-tuning on the dHCP scans with
age of around 33 weeks PMA, our framework still mostly outperformed the competing
methods (except for the ASSD value of Pallidum_R), where the DSC ratio increased 3.4%
(from 86.6% to 90.0%, p— value = 7.2¢7%) and ASSD values reduced 21% (from 0.14

mm to 0.11 mm, p— value = 5.9¢74). To sum up, our framework presented a good domain
adaptation ability on limited labeled scans as ground-truth.

5. Conclusion and future works

In this work, we propose a novel spatial context-guided, coarse-to-fine, attention-based
deep neural framework to precisely segment the 12 subcortical structures in infant brain
MR images in an end-to-end manner. At the coarse stage, to cope with the extremely

low tissue contrast in infant brain MR images, we took advantage of the spatial context
information contained in the ground-truth SDMs by directly predicting SDMs from the
multi-modal MR images, including T1w, T2w, and contrast-enhanced T1w/T2w ratio
images. To improve the robustness to the outliers and enhance the training stability, we
introduced the Correntropy-based loss to robustly measure the similarity between the
predicted SDMs and ground-truth SDMs. At the fine stage, to sufficiently exploit the
multi-modal MR images and the predicted informative SDMs, we further designed a multi-
source and multi-path attention Unet (M2A-Unet) to effectively leverage the appearance
information (multi-modal MR images) and the spatial context information (predicted SDMs)
to refine the segmentation. In particular, both spatial and channel attentions mechanisms
were deployed in the proposed M2A-Unet to help highlight the most relevant subregions
and feature maps, thus mitigating the bad influence of the low tissue contrast and dynamic
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appearance changes. Besides, the inner and outer boundaries of each subcortical structure
were delineated to help supervise the M2A-Unet to pay more attention to the ambiguous
structural boundaries. Comprehensive experimental results illustrate that the segmentation
accuracy of each subcortical structure achieved by our framework is remarkably higher than
six state-of-the-art methods. Meanwhile, our framework also shows good generalizability
and domain adaptation ability in segmenting neonatal brain MR images.

Although trust-worthy results were achieved by our method of segmenting both neonatal
and infant brain subcortical structures, simply fusing multiple modalities in the later stages
or fusing each modality as an input channel could lead to sub-optimal results. To more
effectively leverage the multi-modality and context information to deliver enhanced results,
inspired by the recent successes achieved by the contrastive learning methods, which
disentangle the multimodal images into factors with separate meanings, we will explore
such methods and introduce them in our future works on infant subcortical segmentation
tasks.
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Fig. 1.
A 6-month subject’s T1lw image, T2w image, T1w/T2w image, manual delineation map of

12 subcortical structures, manual delineation map with inner and outer boundaries, and the
ground-truth signed distance map (SDM) of the thalamus. Due to the low tissue contrast

of the 6-month infant brain MR images, the subcortical boundaries are ambiguous in the
T1w image and T2w image, while the T1w/T2w image has the enhanced tissue contrast, and
thus the boundaries are more distinguishable (pointed by yellow arrows). We performed the
commonly used Euclidean distance transforms to create the subcortical ground-truth SDMs
from the manual delineation maps.
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Fig. 2.
A schematic illustration of the proposed framework with the coarse stage network (SDM-

Unet) and the fine stage network (M2A-Unet).
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Fig. 5.
Visual comparison of the segmentation results of the 12 subcortical structures on both

0-month and 6-month T1w images, obtained from manual delineation and eleven automatic
methods. Some differences are marked by boxes for evaluating convenience.
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Fig. 6.
DSC ratios of SDM-Unet with different kernel sizes o.
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Fig. 8.
Visual comparison of the segmentation results of the 12 subcortical structures on dHCP

scans with age of more than 40 weeks PMA, obtained by directly applying our trained
framework and the trained state-of-the-art methods. Some differences are marked by boxes
for evaluating convenience.
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Fig. 9.

Vi?sual comparison of the segmentation results of the 12 subcortical structures on dHCP
scans with age of around 33 weeks PMA, obtained by fine-tuning our trained framework and
the trained state-of-the-art methods. Some differences are marked by boxes for evaluating
convenience.
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