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Abstract
Chimeric antigen receptor (CAR) T-cell therapy is novel immunotherapy targeting specifically cancerous cells, and has 
been shown to induce durable remissions in some refractory hematological malignancies. However, CAR T-cell therapy has 
adverse effects, such as cytokine release syndrome (CRS), immune effector-associated neurotoxicity syndrome (ICANS), 
tumor lysis syndrome (TLS), and acute kidney injury (AKI), among others. Not many studies have covered the repercus-
sions of CAR T-cell therapy on the kidneys. In this review, we summarized the available evidence on the safety profile of 
CAR T-cell therapy in patients with pre-existing renal insufficiency/AKI and in those who develop AKI as a result of CAR 
T-cell therapy. With a 30% incidence of AKI post-CAR T-cell, various pathophysiological mechanisms, such as CRS, 
hemophagocytic lymphohistiocytosis (HLH), TLS, serum cytokines, and inflammatory biomarkers, have been shown to play 
a role. However, CRS is commonly reported as an underlying mechanism. Overall, 18% of patients in our included studies 
developed AKI after receiving CAR T-cell therapy, and most cases were reversible with appropriate therapy. While phase-1 
clinical trials exclude patients with significant renal toxicity, two studies (Mamlouk et al. and Hunter et al.) reported suc-
cessful treatment of dialysis-dependent patients with refractory diffuse large B-cell lymphoma, and demonstrated that CAR 
T-cell therapy and lymphodepletion (Flu/Cy) can be safely administered.
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insufficiency · Renal impairment · Diffuse large B-cell lymphoma
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Flu  Fludarabine
CKD  Chronic kidney disease

1 Introduction

Chimeric antigen receptor (CAR) T-cell therapy is novel 
immunotherapy, targeting specifically cancerous cells, and 
inducing durable remissions in some refractory hematolog-
ical malignancies like multiple myeloma (MM) [1]. This 
therapy is promising, as demonstrated in several clinical 
trials [2]. With its relative safety and efficacy, the Food and 
Drug Administration (FDA) approved the clinical use of 
different CAR T-cells, including idecabtagene vicleucel in 
MM [3], axicabtagene ciloleucel in diffuse large B-cell lym-
phoma [4], ciltacabtagene autoleucel [5], brexucabtagene 
autoleucel, lisocabtagene marleucel, and tisgenlecleucel.

CAR T-cell therapy has side effects which include tumor 
lysis syndrome (TLS) [6], immune effector-associated neu-
rotoxicity syndrome (ICANS) [7], hemophagocytic lym-
phohistiocytosis (HLH)/ macrophage activation syndrome 
(MAS) [8], and cytokine release syndrome (CRS) [9], which 
remarkably affects kidneys. CRS caused by T-cell activa-
tion and subsequent release of large amounts of cytokines 
is experienced by the majority of patients in clinical trials 
with CAR T-cell therapy [10]. Hypotension, nausea, fever, 
hypoxia, tachypnea, tachycardia, and pulmonary edema that 
leads to intravascular depletion are the main clinical presen-
tations of CRS. These cause hemodynamic changes leading 
to reduced renal flow, ischemia, hypovolemia, and trigger-
ing pre-renal AKI [11]. In a case series conducted by Gupta 
et al., a total of 78 adults received CAR T-cell therapy, 
and 15 of 78 (19%) developed acute kidney injury (AKI), 
among which 8 (53%) were due to decreased renal perfusion 
(resolved in 72 h), 6 (40%) were consequent to acute tubular 
necrosis (ATN), and 1 developed urinary obstruction. The 
60-day mortality and length of hospital stay were higher in 
those with ATN and obstructive AKI [12].

Similarly, in a retrospective review by Gutgarts et al., 46 
adult patients with non-Hodgkin lymphoma (NHL) received 
treatment with CAR T-cell therapy and reported a cumula-
tive incidence of any grade AKI of 30%, with grades 1/2 
and 3 AKI incidences of 21.7%, and 8.7%, respectively [13]. 
Moreover, no patients developed severe AKI necessitating 
renal replacement therapy, alongside satisfying kidney func-
tion recovery by day 30. That said, phase-1 trials exclude 
patients with significant renal toxicity. Herein, we aim to 
summarize all available evidence on the safety profile of 
CAR T-cell therapy in patients with renal insufficiency/AKI, 
and to provide insights to encourage the possibility of enroll-
ing this subset of the population in randomized controlled 
trials and cohort studies.

2  Methods

We performed a literature review using PubMed, Cochrane 
databases, and Google Scholar using the following key-
words: CAR T-cell therapy, adoptive immunotherapy, 
renal failure, end-stage renal disease, and acute kidney 
injury. Articles suitable for extraction from the literature 
searches were case report, case series, editorials, and retro-
spective reviews. We included studies published in English 
and reporting data on the safety of CAR-T cell therapy in 
patients with AKI or renal failure. Non-human studies and 
studies in languages other than English were excluded. 
There are currently no published randomized controlled 
trials available in the defined population. We reviewed the 
relevant findings and added the information to the data 
extraction sheet. We used pooled analysis to report some 
commonly reported data across studies.

3  Results

3.1  Baseline Characteristics

A total of 252 patients (male = 166, female = 86) included 
in the analysis were treated with CAR T-cell therapy and 
enrolled across 9 studies from 2016 to 2021. The mean 
age of the sample was 48 (19–86). The diseases treated 
with CAR T-cell therapy included NHL (n = 129), diffuse 
large B-cell lymphoma (DLBCL, n = 120), post-transplant 
lymphoproliferative disorder (PTLD, n = 1), B-cell ALL 
(n = 1) and Burkitt Lymphoma (n = 1). Cyclophosphamide 
(Cy) with fludarabine (Flu) is a common non-myeloabla-
tive conditioning regimen and was utilized in 6 of the stud-
ies. One study added rituximab to Cy/Flu for one patient, 
and another reported only using bendamustine for three 
patients. Three of the studies did not report their condi-
tioning regimen. The type of CAR T-cell therapy used 
in the analysis includes tisagenlecleucel alone (Lee et al., 
Melilli et al., Acharya et al., De Nattes et al.), tisagenle-
cleucel and axicabtagene ciloleucel (Gupta et al., Gutgarts 
et al.), axicabtagene ciloleucel alone (Farooqui et al. and 
Mamlouk et al.), axicabtagene ciloleucel and lisocabta-
gene maraleucel (Hunter et al.). In some cases, due to 
persistent CD19 antigen, the patient received a 28-day 
course of a bispecific CD19-directed CD3 T-cell engager 
antibody construct (blinatumomab), started 6 weeks after 
the third CAR-T cell infusion, and stopped after negative 
CD19 antigen at the time of course completion (Acharya 
et al.).

Baseline creatinine before CAR T-cell therapy 
ranged from 0.5 to 2 mg/dL. The mean creatinine values 
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pre-therapy for all nine studies was 0.8 mg/dL. In one 
study, two subjects had ESRD and were receiving hemo-
dialysis (Hunter et  al.) AKI was described in 70% of 
the studies, with the exception of Hunter et al.’s, where 
creatinine level was not reported due to concomitant 
ESRD. Table 1 shows patients’ characteristics and kidney 
profiles before and after receiving CAR-T cell therapy, 
respectively.

3.2  Clinical Outcomes

The average creatinine levels after therapy ranged between 
0.8 and 2 mg/dL, with one patient presenting with 6 mg/
dL. For another patient who presented with levels of 11 mg/
dL, steroids helped decrease this to 1.5 mg/dL. The CAR 
T-types which are effective in renal disease are axicabtagene 

ciloleucel and lisocabtagene maraleucel. It was usually pre-
ceded by lymphodepletion chemotherapy with Flu and Cy. 
Among 252 patients, 46/252 (18%) developed AKI after 
receiving CAR T-cell therapy. However, 80% developed 
CRS following CAR T-cell therapy in the included studies, 
while n = 135/250 (54%) developed ICANs. Most cases of 
AKI were reported with the use of axicabtagene ciloleucel 
therapy. We also found that AKI resolved in most cases with 
supportive care and adequate hydration.

4  Discussion

CAR T-cell therapy was highly effective in patients with 
renal failure, both with and without pre-existing kidney dis-
ease. It can be safely administered with lymphodepletion 

Table 1  Patient’s characteristics and kidney profile before and after administering chimeric antigen receptor T-cells (CAR-T cells)

AKI Acute kidney injury, NA Not available, Cr creatinine, eGFR Estimated glomerular filtration rate, N number of patients

Author Patients (N) Mean Age 
(range)

Condition Type of CAR 
T- cells

Kidney function 
before CART 

Kidney function 
after CART 

AKI

Gutgarts et al. 
[13]

N = 46 63 (19–68) Non-Hodgkin 
lymphoma

Axicabtagene 
ciloleucel & 
Tisagenlecleu-
cel

Cr: 0.8 
(0.5–2) mg/
dL, GFR 88 
[ 36-160 mL/
min/1.73m2

Cr: 1.1 mg/dl ( 
0.9–2.1 mg/dl)

AKI:14/46 (30%)

Lee et al. [49] N = 37 60 Diffuse large 
B-cell lym-
phoma

Tisagenlecleucel Cr: 0.54 mg/dL, 
BUN: 19 mg/
dL

Cr: 1.36 mg/dL, 
BUN: 44 mg/
dL

AKI:2/37 (5%)

Gupta et al. [12] N = 78 60 ± 13 Diffuse large 
B-cell lym-
phoma

Axicabtagene 
ciloleucel & 
tisagenlecleu-
cel

Cr: 0.8 mg/dL Cr: 1.4 mg/dL AKI:15/78 (19%)

Hunter et al. [14] N = 2 52–66 Relapsed/
refractory 
large B-cell 
lymphoma

Axicabtagene 
ciloleucel, 
Lisocabtagene 
maraleucel

NA NA AKI: N/A

Farooqui et al. 
[60]

N = 83 55.2 Non-Hodgkin 
lymphoma

Axicabtagene 
ciloleucel

Cr:0.8 mg/
dL, eGFR: 
91.3 mL/min/ 
1.73m2

NA AKI:14/83 (17%)

Melilli et al. [47] N = 1 40 Monomorphic 
typeB-cell 
posttransplant 
lymphoprolif-
erative disorder

Tisagenlecleucel Cr: 1.5 mg/dL Cr: 6 mg/dL AKI:1/1 (100%)

Mamlouk et al. 
[15]

N = 3 38–44 Diffuse large 
B-cell lym-
phoma

Axicabtagene 
ciloleucel

Cr: 1.20, 0.74, 
and 1.53 mg/
dL

Cr: 1.5, 0.7, 
1.7 mg/dL

NA

Acharya et al. 
[48]

N = 1 20 Relapsed/refrac-
tory Pre-B-cell 
ALL

Tisagenlecleucel Cr: 0.52 mg/dL Cr:2.91 mg/dL, 
GFR:27 mL/
min/1.73 m2

AKI:1/1 (100%)

Nattes et al. [17] N = 1 40 Refractory Bur-
kitt lymphoma

Tisagenlecleu-
cel)

Cr 0.8 mg/dL Cr 11.1 mg/
dL decrease 
to 1.5 mg/dL 
after steroids

AKI:1/1 (100%)
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chemotherapy. According to Hunter et al. [14], patients with 
end-stage renal disease achieved complete response post 
CAR T-cell therapy, making it a strong consideration in 
treating renal disease patients. In our pooled analysis, about 
18% developed AKI post-CAR T-cell therapy, whereas most 
patients reported improved blood urea nitrogen and creati-
nine levels post-therapy. Three patients from the Mamlouk 
et al. [15] study, received prior renal transplant for other 
causes, and thus were excluded from the analysis. Addition-
ally, baseline renal function was not reported in Hunter et al. 
[14] due to both patients having been diagnosed with ESRD 
before starting. The improved renal function and kidney 
injury in patients with pre-existing renal failure emphasize 
the safety of CAR T-Cell therapy in renal failure.

According to one study [18], there is low renal toxicity for 
anti-B-cell maturation antigen (BCMA) CAR T-cell therapy. 
Another clinical trial illustrated safe renal outcomes for MM 
patients post-CAR T-cell therapy [19]. CD8 + CAR T-cells 
can target the autoreactive pathogenic B cells. The CAAR 
T-cells (chimeric autoantigen receptor T cells) that express 
relevant autoantigens can attract autoreactive B cells and 
target them successfully. These experiments provide a wide 
array of the possible efficacy of CAR T-cell therapy in kid-
ney transplantation and immune diseases [20].

Post CAR T-cell therapy, various pathophysiological 
mechanisms have been shown to play a role, such as CRS, 
HLH, tumor lysis syndrome, serum cytokines, and inflam-
matory biomarkers [12, 13, 16]. CRS is usually considered 
the main cause of kidney injury post-therapy due to the 
underlying cytokine cascade, which increases third spacing, 
worsening hypotension, and vascular permeability, while 
the circulating cytokines cause cardiac toxicity leading to 
diminished cardiac output and cardiorenal syndrome. Acute 
cardiomyopathy from CRS promotes hypotension and exac-
erbates hypoperfusion in the kidney [8, 9, 11]. Hypotension, 
nausea, fever, hypoxia, tachypnea, tachycardia, and pulmo-
nary edema that leads to intravascular depletion are the 
main clinical presentations of CRS. CRS can cause hemo-
dynamic changes leading to reduced renal flow, ischemia, 
hypovolemia, and triggers pre-renal AKI [11, 16]. The pro-
longed decreased kidney perfusion and pre-renal AKI then 
progresses to acute tubular necrosis (ATN) [12, 21]. Of note, 
in Nattes et al.’s case report, the etiology of kidney dam-
age, AKI, and transplant rejection might have been due to 
either CAR T-cell therapy or T-cell-mediated rejection [17]. 
According to Teachey et al., specific cytokines, including 
IL-6, soluble IL-6 receptor, interferon-γ, and soluble gp130, 
are major predictors of CRS after CAR T-cell therapy [22]. 
Cytokines may directly affect the kidney via intra-renal 
inflammation and have direct tubular toxicity [23]. IL-6 
has been implicated as a key factor in developing systemic 
adverse effects in CRS [23]. In the case of AKI and chronic 
kidney disease (CKD), IL-6 increases fibroblast growth 

factor 23 levels, which may contribute to phosphaturia and 
hypophosphatemia, thus affecting renal function [24].

Patients receiving CAR T-cell therapy can develop ful-
minant HLH and present with increased lactate dehydro-
genase, hyperuricemia, IL-10, IL-6, and IFN-γ. The ATN, 
acute interstitial nephritis (AIN), and thrombotic micro-
angiopathy related to HLH, together with capillary leak-
age and cytokine-mediated vasodilation, trigger pre-renal 
ischemia [25, 26]. TLS after CAR T-cell therapy for refrac-
tory chronic lymphocytic leukemia is also a cause of AKI, 
according to Porter et al. [27]. In TLS, the damage to large 
amounts of tumor cells leads to rapid release of intracel-
lular substances such as potassium, uric acid, calcium, and 
phosphorus results in a series of metabolic disorders [28]. 
The treatment with anti-CD19-CAR T cells leading to TLS 
causes phosphate and uric acid to precipitate and block renal 
tubules leading to renal tubular injury [29]. Another pro-
posed mechanism is when cytokines produced by infiltrated 
interstitial and glomerular lymphocytes after CAR T-cell 
therapy activate podocytes and renal tubular epithelial cells 
[30]. In turn, podocytes increase cytokine production, such 
as tumor necrosis factor α, IL-8, and IL-6, which leads to 
kidney injury [31].

While there have been isolated cases of severe renal 
impairment post Flu exposure [37–39], most are in context 
of TLS, and the incidence of AKI remains less than 5% [36]. 
Special considerations for patients with pre-existing renal 
impairment given Flu treatment should be addressed, as 
60% of each Flu dose is excreted in the urine [35]. Dose-
reduced Flu (Table 2) has shown reasonably equivalent 
exposure while maintaining a higher index of safety [35]. 
Despite occasions of creatinine increasing up to threefold, 
the worsening renal function is amenable to recovery with 
proper hydration [32]. One retrospective study has shown 
that dose-reduced Flu in cases of underlying renal impair-
ment does not affect PFS and OS when compared to patients 

Table 2  Fludarabine dose recommendation in patients with renal 
insufficiency

CrCl Creatinine clearance, GFR Glomerular filtration rate, HD 
Hemodialysis *KDIGO Kidney Disease Improving Global Outcome

Author/references Dose reduction

Bodge et al. [40] 20–25% reduction for GFR between 
45–89 ml/min/1.73m2

50% reduction for GFR between 
44–29 ml/min/1.73m2 and those on 
HD

*based on KDIGO guidelines
Golightly et al. [41] 20% reduction CrCl 50–79 mL/min

40% reduction CrCl 30–49 mL/min
Do not administer for CrCl < 30 mL/min

Aronoff et al. [42] 25% reduction for CrCl 10–50 mL/min
50% reduction for CrCl < 10 mL/min
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with previously normal renal function [33]. Thus, lymphode-
pletion dosing regimens can be personalized to avoid renal 
failure without compromising eligibility or response to 
CAR-T cell therapy. However, it is important to note that 
a new study has shown optimal lymphodepletion dosing 
(greater than 13.8 mg x h/L) results in lower relapse rates 
and improved survival after CAR-T cell therapy [34]. There 
is no clear consensus on exactly how much to reduce Flu 
doses in patients with underlying renal impairment. Most 
studies suggest a 20–25% reduction for mild impairment and 
up to a 50% for moderate to severe impairment [40–42].

Renal damage after CAR-T cell therapy is often wit-
nessed. In all the trials of CD-19–directed CAR-T cells, 
more than 40% of patients depicted CRS regardless of the 
CAR-T cell construct or the disease [27, 43–45]. The rise in 
serum creatinine was evident, particularly 7–10 days post-
infusion, [27, 45, 46]. This was similar in patients with Bur-
kitt lymphoma and TLS has also been evident in the initial 
trials of CAR-T cell therapy for chronic lymphocytic leuke-
mia, where elevations in uric acid, lactate dehydrogenase, 
phosphorus levels, and AKI were noted around 22 days after 
CAR-T cell infusion [27].

Despite the post-CAR T-cell-induced renal damage, 
patients can present with borderline AKI before receiving 
the therapy, and their creatinine stays within manageable 
range, especially with axicabtagene ciloleucel [15, 47]. The 
majority of patients with B-cell lymphomas also present 
with pre-CAR-T cell therapy AKI [13], though the inci-
dence of AKI after CAR-T cell therapy is low, unless an 
ICU admission or grade 3–4 CRS occurs [13].

Kidney complications are associated with various cancer 
therapies, especially CAR T-cell therapy. Each CART prod-
uct must be evaluated individually for its toxicity profile to 
minimize adverse events [12, 49]. Axicabtagene ciloleucel is 
associated with higher toxicity, and indirectly increases the 
risk of AKI through CRS mechanisms [50]. Tisagenlecleucel 
has a reduced inflammatory profile, lower toxicity rate, and 
low rates of AKI (5%) [49, 51]. The two series evaluating 
patients who received axicabtagene ciloleucel found higher 
rates of AKI (23%), severe CRS (13%), and overall CRS 
(83%) [12, 13].

Previous nephrotoxic medication exposures before post-
CART AKI development are common in these patients and 
include medications like vancomycin, acyclovir, ibuprofen, 
trimethoprim-sulfamethoxazole, and intravenous contrast. 
Patients developing AKI usually receive tocilizumab for 
CRS and dexamethasone [13]. The pre-renal AKI cohort 
receives supportive care, avoids nephrotoxic agents, uses 
intravenous fluids and hemodynamic support, with the 
condition resolving within 72 h [12]. In comparison, ATN 
and obstructive AKI have high mortality rates [12]. Kidney 
replacement therapy is mostly fatal, especially in ATN, but 
post-renal AKI is responsive to IV fluids [12, 13].

While mild and moderate CRS are self-limiting and can 
be managed with supportive care [52], severe CRS requires 
corticosteroids, tocilizumab, or siltuximab, either with cor-
ticosteroids or alone [52, 53]. Tocilizumab is also indicated 
for catecholamine-dependent vasodilatory shock and severe 
CRS. It improves blood pressure and prevents multiple organ 
failure [54]. Gutgarts et al. [13] reported normal kidney 
function within 30 days post-CAR T-cell therapy in patients 
with NHL. Similarly, Hunter et al. [14] reported the success-
ful treatment of two dialysis-dependent patients diagnosed 
with refractory-DLBCL with CAR T-cell therapy.

To prevent pre-renal AKI in these patients, intravenous 
fluids, and vasopressors to maintain renal perfusion and 
systemic hemodynamics are helpful [55]. In TLS, hydra-
tion, allopurinol, and alkalinization prevent AKI for low-
risk patients, while in the high-risk cohort, hydration and 
rasburicase help lower uric acid levels, [56]. HLH cases 
require aggressive immunosuppression involving corticos-
teroids and anti-IL-6 therapy (tocilizumab or siltuximab) 
with supportive care [57]. If immunosuppression fails to 
reduce toxicity, etoposide should be considered [57, 58]. For 
HLH management, intravenous immunoglobulin has also 
been recommended [59]. There is a need to identify various 
biomarkers that can not only predict AKI earlier but can 
assist in categorizing long-term risks for CKD in patients 
with post-CAR T-cell therapy [12, 49].

5  Conclusion

The incidence of AKI in those receiving CAR T-cell ther-
apy ranges from 50 to 90%. The range is determined by 
the types of CAR T-cells used and the underlying patho-
physiological mechanisms. These include CRS, HLH, TLS, 
and inflammatory cytokines. Also, other factors, such as 
lymphodepleting therapy (fludarabine), dehydration, and 
nephrotoxic agents, may potentiate pre-renal or other renal 
injuries. Though phase 1 clinical trials exclude patients with 
significant renal toxicity, two studies have demonstrated that 
CAR T-cell therapy and lymphodepletion (Flu/Cy) can be 
safely administered. While there is no clear consensus on 
how much to reduce Flu doses in patients with underlying 
renal impairment, most studies suggest a 20–25% reduction 
for mild impairment and up to a 50% reduction for moderate 
to severe impairment, without significantly compromising 
the response to CAR T-cell. Additionally, the majority of 
post-CAR T-cell therapy-related AKI remains reversible by 
treating the underlying cause, adequate hydration, supportive 
care, and tocilizumab or siltuximab. That being said, the 
safety data we present in the defined population are limited; 
however, they should pave the way for including patients 
with renal insufficiency in prospective cohort studies and 
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clinical trials of CAR T-cell therapy to determine its long-
term safety and efficacy profiles.
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