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Insights into the photovoltaic 
properties of indium sulfide 
as an electron transport material 
in perovskite solar cells
Davoud Dastan 1, Mustafa K. A. Mohammed 2,12*, Ali K. Al‑Mousoi 3,12, Anjan Kumar 4, 
Sinan Q. Salih 5, P. S. JosephNg 6*, Duha S. Ahmed 7, Rahul Pandey 8,12, 
Zaher Mundher Yaseen 9,10 & M. Khalid Hossain 11

According to recent reports, planar structure-based organometallic perovskite solar cells (OPSCs) 
have achieved remarkable power conversion efficiency (PCE), making them very competitive with 
the more traditional silicon photovoltaics. A complete understanding of OPSCs and their individual 
parts is still necessary for further enhancement in PCE. In this work, indium sulfide (In2S3)-based 
planar heterojunction OPSCs were proposed and simulated with the SCAPS (a Solar Cell Capacitance 
Simulator)-1D programme. Initially, OPSC performance was calibrated with the experimentally 
fabricated architecture (FTO/In2S3/MAPbI3/Spiro-OMeTAD/Au) to evaluate the optimum parameters 
of each layer. The numerical calculations showed a significant dependence of PCE on the thickness 
and defect density of the MAPbI3 absorber material. The results showed that as the perovskite layer 
thickness increased, the PCE improved gradually but subsequently reached a maximum at thicknesses 
greater than 500 nm. Moreover, parameters involving the series resistance as well as the shunt 
resistance were recognized to affect the performance of the OPSC. Most importantly, a champion 
PCE of over 20% was yielded under the optimistic simulation conditions. Overall, the OPSC performed 
better between 20 and 30 °C, and its efficiency rapidly decreases above that temperature.

The scientific community has shown a great deal of interest in researching perovskite solar cells (OPSCs), which 
are mainly comprised of organic–inorganic metal halide compounds and are used to produce high-efficiency and 
inexpensive photovoltaic (PV) technologies1–3. These semiconductors have a number of important characteristics, 
including high charge carrier mobility, long carrier diffusion length, adjustable bandgaps, and a high absorption 
coefficient4–7. Due to such exceptional properties, photoconversion efficiency (PCE) values spiked substantially, 
from 3.8% in 2009 to over 25% in 20218–11. In order, an OPSC has a front electrode, an electron-transport 
material (ETM), a light harvesting layer, a hole-transport material (HTM), and a back electrode. The harvester 
material of an OPSC generates charge carriers when exposed to sunlight12–15. These photocarriers are delivered 
to the appropriate electrodes by ETMs and HTMs. The relevance of charge transport materials is crucial to the 
entire PV performance of OPSCs, in addition to the perovskite layer’s role. For instance, titanium dioxide (TiO2), 
a common ETM, is not suitable for fabricating large devices since it demands an operating temperature of more 
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than 400 °C. The use of TiO2 in high-efficiency OPSCs is further limited by the material’s poor electron mobility 
(µe) and UV instability16–18. This highlights the need to look for a candidate ETM layer with appropriate proper-
ties, such as high µe, good electrical conductivity (σ), and low-temperature manufacturing.

Compact ETM-based planar PSCs have a simplified layout and are easier to fabricate. TiO2 and ZnO have 
been widely used as ETMs for planar n-i-p OPSCs19–23. Nevertheless, planar OPSCs based on compacted TiO2 
and ZnO often exhibit low stability because of the materials’ limited carrier mobility, offset energy level align-
ment with perovskites, and defect traps at the surface24–28. As a result, it is important to provide cutting-edge 
ETM components for OPSCs. Indium sulfide (In2S3) is an n-type semiconductor with excellent carrier mobility, 
nontoxicity, an adequate bandgap, adjustable electrical properties, and good thermal durability29,30, all of which 
are ideal for utilization as an ETM in solar cells31,32. By adjusting the period of chemical bath deposition to 
2 h, Hou et al. were able to construct an In2S3 nanoflakes array as ETMs for CH3NH3PbI3 OPSCs, achieving a 
performance of 18.22%. However, the long-term stability of In2S3-OPSC was not examined in this work30. One 
year later, Xu et al. prepared In2S3 sheets as ETMs for CH3NH3PbI3 devices using a solvent-thermal approach for 
2 h and achieved an efficiency of 18.83%33. Subsequently, Yang et al. made further efforts to use In2S3 film and 
developed a spray-assisted deposition technique as an ETM for semitransparent CsPbIBr2 OPSCs. The optimized 
devices obtained a performance of 5.59% with improved ambient stability34. Meanwhile, as far as we can tell, no 
theoretical studies relevant to adopting In2S3 as the ETM in perovskite solar cells have been reported.

In this work, the first ever conventional n-i-p planar architecture of OPSCs using In2S3 as the electron trans-
port material has been simulated and optimized. To verify our data, we recreated the findings of an experimen-
tally published 18.83% robust and stable single-cation OPSC (FTO/In2S3/MAPbI3/Spiro-OMeTAD/Au)33. To 
improve the efficiency of the control OPSC, the thickness variation of the perovskite (tp) was further investigated. 
Along with thickness variation, the effects of defect density (NT), series resistance (Rs), shunt resistance (Rsh), 
and operating temperature on OPSC performance were studied. Our research can offer some key advice for 
OPSC design and optimization based on theoretical principles.

Method and simulation
The numerical modeling of the devices enables us to understand the solar cell dynamics without the need for 
actual manufacturing. It also provides a high-level outline of the device’s functionality. The one-dimensional 
SCAPS (version 3.3.07) was used in this simulation study. In 2000, researchers at the University of Gent in Bel-
gium created this open-source program, which can be downloaded at any time35. The SCAPS software assists in 
the modeling of planar and graded PV structures up to seven components, with the additional functionality of 
calculating the band alignment graph, current–voltage (J–V) behavior, quantum efficiency (QE), recombination 
and generation currents, and other essential PV characteristics. SCAPS-1D relies primarily on the well-estab-
lished Poisson’s formula and the continuity laws for electrons and holes to perform its calculations36–39. SCAPS 
is very powerful software for performing solar cell and a description of the programme, and the algorithms it 
uses, is found in the literature40,41 and in its user manual42.

where q is the charge, V is the potential, p(x) is the free hole concentration, n(x) is the free electron concentra-
tion, ε is the dielectric permittivity, N+

D (x) is the donor density, N−
A (x) is the acceptor density, pt(x) is the hole 

trap concentration, nt(x) is the trap concentration of an electron, Jn is the current density of an electron, Jp is the 
current density of a hole, Gn is the electron generation rate, Gp is the holes generation rate, Rn is the recombina-
tion rate of electrons, Rp is the recombination rate of holes.

Here, we simulated a typical n-i-p PV architecture with CH3NH3PbI3 perovskite as the photoactive film, 
compact In2S3 as the ETM, and Spiro-OMeTAD organic film as the HTM, with fluorine-containing SnO2 (FTO) 
and gold (Au) as the front and back electrodes, respectively. In Fig. 1a, we have a graphical diagram of the FTO/
In2S3/CH3NH3PbI3/Spiro-OMeTAD/Au device assembly. Tables 1 and 2 summarize the fundamental device 
parameters of several materials utilized in this analysis that were acquired from the theoretical and experimental 
literature. The work functions for the front and back electrodes were 4.4 eV and 5.2 eV, respectively. The SCAPS 
software calculated the absorption spectrum of each layer based on the optical merits of the materials and the 
geometry of the device.

The defects were used 0.6 eV above the valence band with a particular energy of 0.1 eV, taking into account 
the Gaussian energy distribution and the capture cross-section of carriers of 10–15 cm2. The radiative recombina-
tion coefficient for perovskite was 2.3 × 10–9 cm3/s, which was taken into consideration. The modeling analysis 
added imperfections at the HTM/perovskite and perovskite/ETM interfaces about 1010 cm−2. The conventional 
AM 1.5 G spectrum and a temperature of 300 K were used for the computations.

Figure 1b displays the band structure diagram for the suggested n-i-p OPSC layout. At the conduction band 
interface of In2S3 and CH3NH3PbI3, a potential barrier of 0.12 eV exists, which is a beneficial barrier for the bet-
ter transport of electrons from perovskite to ETM, whereas at the junction of the valence band of perovskite and 
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Figure 1.   (a) Solar cell structure utilized in simulation. (b) Band alignment diagram of the proposed OPSC. (c) 
A representation comparison between experimental and modeled parameters of our control OPSC33.

Table 1.   The input parameters of simulated perovskite solar cells.

Device layer properties

Device layers

Unit In2S3 IGZO MAPbI3 Spiro-OMeTAD

Thickness nm 200 200 700 (varied) 100

Energy gap eV 2.45 3.05 1.57 3.2

Electron affinity energy eV 3.98 4.16 3.86 2.1

µe cm2/V s 400 15.0 8 2 × 104

µh cm2/V s 210 0.1 4 2 × 104

Concentration of the shallow acceptor
(NA) 1/cm3 0 0.0 1 × 1019 (varied) 1 × 1020

Concentration of the shallow donor
(ND) 1/cm3 1.47 × 1018 1.0 × 1018 1 × 1019 0

CB effective density of states (NC) 1/cm3 1.8 × 1019 5.8 × 1018 1 × 1018 2.8 × 1018

VB effective density of states (NV) 1/cm3 4 × 1013 5.8 × 1018 1 × 1018 1.8 × 1019

Dielectric permittivity – 6.5 10.0 28 3

Defect type – Neutral Neutral Neutral Neutral

Capture cross section of electrons cm2 1 × 10–15 1 × 10–15 1 × 10–15 1 × 10–15

Capture cross section of holes cm2 1 × 10–15 1 × 10–15 1 × 10–15 1 × 10–15

NT 1/cm3 1 × 1016 (varied) 1.0 × 1015 2.45 × 1015 (varied) 1 × 1014

Energetic distribution – Single Single Single 0.6 eV above Ev Single 0.6 eV above Ev

References 43 44 45 46
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HTM, holes have to contend with a large barrier of 0.13 eV. The J–V plot of the suggested cell architecture was 
analyzed after the appropriate layer parameters and operational conditions were determined (as covered in this 
section). Figure 1c displays the calculated J–V graph and its initial output parameters. We attained a power con-
version efficiency (PCE) of 19.71%, which is close to the PCE of 18.83% that has been published experimentally33. 
A slight mismatch between the experimental and computed results is that in the present research, the FTO and 
Au layers were utilized as front and back electrodes, where the thickness of front and back contacts cannot be 
changed. In the experimental research, however, they were employed as layers with appropriate thicknesses.

Ethics approval and consent to participate.  This article does not contain any studies with human par-
ticipants or animals performed by the authors. We comply with the ethical standards. We provide our consent 
to take part.

Results and discussion
Increasing the device’s efficiency is highly dependent on the thickness of the absorber layer. Nevertheless, using a 
very thick photoactive layer leads to a low charge carrier extraction rate and considerable losses owing to charge 
recombination; finding the right equilibrium between these two variations is crucial. Therefore, optimizing the 
light-absorbing thickness becomes essential for determining photocarrier production and spectrum response in 
photovoltaics47. The obtained J–V graphs are shown in Fig. 2a, with perovskite thickness variations ranging from 
0.3 to 1.1 µm, whereas Fig. 2b–e show the variations in the JSC, VOC, FF, and PCE parameters. According to Fig. 2, 
an increment in the perovskite thickness causes a rise in the JSC and a reduction in the VOC. The trend of rising 
JSC values is a result of increased photocarrier production. Thin perovskite film results in lower long-wavelength 
photon absorption rates, which results in less photocarrier formation and worse JSC values48. Furthermore, the 
poor recombination due to the thin perovskite creates a high VOC. Increasing the absorber perovskite’s thick-
ness also boosts the layer’s ability to absorb light with longer wavelengths. As a result, more charge carriers are 
produced, which leads to a rise in the value of the JSC

49. However, with higher absorbance, the recombination 
rate of photocarriers also increases since photocarriers have to cover a longer distance before approaching the 
corresponding electrodes. The increase in perovskite thickness raises the Rs, which causes a decrease in FF. 
The improvement in efficiency is attributable to the steady rise in JSC. Our calculations suggest that the ideal 
value for the perovskite thickness should be 0.7 µm for the highest performance of MAPbI3-based single-cation 
OPSC. Therefore, optimizing the thickness of the perovskite layer is crucial for achieving the highest efficiency 
in a perovskite solar cell. By carefully balancing the absorption of light and the extraction of charge carriers, an 
optimal thickness can be found that maximizes the photocurrent and minimizes recombination, leading to the 
best performance of the device.

Figure 2f illustrates the external QE (EQE) of devices with varying MAPbI3 film thicknesses. The EQE of the 
device was clearly improved when the MAPbI3 light harvester thickness was less than 0.7 µm, which indicates 
that the improvement in absorption was high. Nevertheless, the EQE of the device rose less when the thickness 
of MAPbI3 was more than 0.7 µm, indicating that the rise in absorption was less significant. As the MAPbI3 
film thickness increased, it was better able to absorb light of longer wavelengths50. The profile of carrier generation 
rate is also obtained and reported in Fig. 3 to validate the higher penetration of generation rate in the absorber 
layer at higher thicknesses.

The number of defects in the photoactive MAPbI3 has a significant impact on the output quality of perovs-
kite solar cells. The VOC of the device may be optimized by controlling the generation-recombination rate of the 
photocarriers inside the perovskite. Shockley–Read–Hall (SRH) recombination may provide a more adequate 
explanation for the correlation between NT and OPSC performance37,49. The perovskite defect density in this 
analysis ranges from 2.45 × 1014 to 2.45 × 1016 cm−3, and its impact on how well our computed work performs is 
investigated. Figure 4a displays J–V graphs that have been plotted with varying NT values. Results show that a 
minor decrease in JSC—from 24.241 to 23.582 mA/cm2 and a major reduction in VOC—from 1.188 to 0.991 V—are 
found when the NT is increased from 2.45 × 1014 to 2.45 × 1016 cm−3 (Table 3). Since FF is dependent on VOC, there 
is a significant decrease in FF values (from 79.163 to 66.498%). The efficiency was dramatically reduced from 
22.79 to 15.55% because of these decreases in JSC, VOC, and FF values. This suggests that a rise in the NT values 
leads to a greater number of imperfections, which in turn raises the recombination process, as shown in Fig. 5. 

Table 2.   Interface parameters of FTO/ In2S3/MAPbI3/Spiro-OMeTAD/Au OPSCs.

Parameters/interfaces In2S3/MAPbI3 MAPbI3/spiro-OMeTAD

Defect type Neutral Neutral

Total defect density (cm−2) 1 × 1010 1 × 1010

Capture cross section electrons (cm2) 1 × 1010 1 × 10−18

Capture cross section holes (cm2) 1 × 10−19 1 × 10−18

Energetic distribution Single single

Reference for defect energy level Et Above the highest Ev Above the highest Ev

Energy with respect to reference (eV) 0.600 0.600

Total density (1/cm2) 1 × 1010 1 × 1010
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According to the experimentally stated value, we chose the NT for the perovskite here to be 2.45 × 1015 cm−3, 
which accounts for carrier diffusion lengths (Lp) of photocarriers of about 0.65 µm33.

The efficiency of OPSC is significantly affected by the amount of doping used. Doping can be categorized as 
either n-type or p-type, depending on the dopants used. Thus, improving OPSC efficiency relies on setting the 
appropriate value of NA. Doping concentration levels can be adjusted experimentally in many different ways51. 
Doping concentrations and defect density values, for example, can be experimentally modified by adding differ-
ent dopants or adjusting their concentrations in the perovskite material. Experimentally changing doping ratios 
and minimizing defects may also be accomplished by adjusting the relative amounts of cesium (Cs), methylam-
monium iodide (MAI), formamidinium iodide (FAI), and lead iodide (PbI2)52.
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Figure 2.   (a) J–V characteristics of the OPSCs with different MAPbI3 thicknesses. Variations of OPSC 
performance parameters with various thicknesses of perovskite: (b) VOC, (c) JSC, (d) FF, and (e) PCE. (f) QE of 
devices with various MAPbI3 thicknesses.

Figure 3.   Generation rate inside the device with at different thicknesses of the absorber layer.
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Furthermore, the NA of the perovskite was adjusted from 1016 to 1020 cm−3, and the results are shown in 
Fig. 4b to help understand the impact of doping on the OPSC performance. According to our findings, the J–V 
characteristics are unchanged at low NA levels. Nevertheless, the inherent built-in electric field (Vbi) rises when 
NA surpasses 1018 cm−3. The performance of the cell is enhanced by an increase in Vbi because it leads to improved 
separation of photocarriers. JSC was shown to decrease with increasing NA levels (Table 4). Auger recombination 
might explain a decline in JSC value with rising NA. Auger recombination rises with increasing doping ratios, 
which lowers device efficiency53,54. Here, a further decline in JSC was shown if the NA was raised above 1019 cm−3. 
As a result, we decided to set the highest value for NA in the current simulation at 1019 cm−3.

The series resistance (Rs) has a major effect on the operation of the OPSC, particularly the FF and short 
circuit current (ISC). When the resistance of a series circuit rises, FF drops. Therefore, for higher levels of Rs, the 
ISC begins to decrease as well. Hence, a device’s efficiency suffers when Rs is quite high55. This led researchers 
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Figure 4.   J–V plots of the OPSCs obtained with varying (a) total defect density and (b) concentration of the 
shallow acceptor in CH3NH3PbI3.

Table 3.   PV device parameters of OPSCs with varying total defect density in CH3NH3PbI3.

NT (cm−3) Lp (µm) VOC (V) JSC (mA/cm2) FF (%) PCE (%)

2.45 × 1014 2.1 1.188 24.241 79.163 22.79

7.55 × 1014 1.2 1.138 24.227 78.347 21.60

2.45 × 1015 0.65 1.089 24.180 76.456 20.15

7.55 × 1015 0.37 1.043 24.039 73.047 18.32

2.45 × 1016 0.21 0.991 23.582 66.498 15.55

Figure 5.   Recombination rate profile at different defect density in absorber layer.
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to examine how the PCE and FF of perovskite photoactive material changed with variations in Rs. We evaluate 
the performance of the OPSC while changing the Rs from 0 to 12 Ω cm2 to examine the impact of Rs on OPSC 
performance. The J–V profiles for various resistances are depicted in Fig. 6a. Our research shows that the photo-
voltaic has superior performance and a higher FF at lower Rs (Fig. 6b–e). The efficiency of the devices deteriorates 
rapidly as the Rs rises. These findings are consistent with those reported in other studies36,56.

Shunt resistance (Rsh) is caused by the several pathways for charge recombination in the OPSC57. We simu-
late the device’s operation, changing the Rsh from 0 to 1000 Ω cm2, to examine the impact of Rsh on OPSC 
performance. Changing Rsh affects several different device characteristics, as seen in Fig. 6f,j. The performance 
of OPSC is found to improve as Rsh rises. PCE = 19.15% and FF = 73.13% at 800 Ω cm2, and at 1000 Ω cm2 we 
obtain PCE = 19.35% and FF = 73.8%, respectively. Therefore, we determine that an Rsh of 800 Ω cm2 is optimal.

Figure 7a illustrates how altering the ambient temperature from 17 to 57 °C has an impact on the J–V plots 
of the OPSC device. It turns out that both VOC and FF suffer when the temperature goes up. However, there are 
not any noticeable changes at JSC. Efficiency gradually drops because both VOC and FF are impacted by rising 
temperatures. This investigation demonstrates that OPSC in an ambient environment gives better efficiency, 
which is over 25%; however, as the temperature rises, this efficiency gradually declines, as shown in Fig. 7b. An 
increase in temperature increases the recombination and reverse saturation currents, which further reduce the 
VOC and device performance. In addition, when the device is running at a higher temperature, the bandgap gets 
smaller, which may lead to more exciton recombination and less efficiency58. This observation may be extremely 
important when choosing OPSC in tropical areas.

Finally, the performance of the optimized OPSC was compared to that of an OPSC made of indium gallium 
zinc oxide (IGZO) as an ETM layer (see Fig. 8a). Recently, IGZO has been used as an ETM; it offers great promise 
because of its high µe, environmental stability, low processing temperatures, and comparable electron affinity 
to perovskite37,44,59. As we can see in inset table of Fig. 8, In2S3-based device showed comparable photovoltaic 
parameters to the IGZO-based device. The findings from this study are expected to facilitate the manufacturing 
of high-efficiency perovskite solar cells in the near future. The energy level layout is constructed by incorporating 
an ETM, a MAPbI3 absorbing layer, and Spiro-OMeTAD as HTM. This arrangement affects the valence/conduc-
tion band offset, which refers to the variation in the valence band between the HTM and the perovskite, as well 
as the conduction band between the ETM and the perovskite. The energy level offset at the ETM/MAPbI3 and 
the MAPbI3/HTM interfaces greatly affects the solar cell’s performance36. Figure 8b,c shows that quasi-Fermi 
levels Fn and Fp coexist with EC and EV in the OPSCs based on In2S3 and IGZO layers. As shown, the In2S3- and 
IGZO-based structures showed a small conduction band offset (CBO) of 0.121 eV and 0.294 eV at ETM/MAPbI3 
interface, indicating that In2S3 ETM provides better interface for electron transportation. However, IGZO film 
showed larger valence band offset at ETM/MAPbI3 interface, which is significant for blocking the backflow of 
holes and suppressing the recombination rate in the OPSC.

Finally, we estimated The EQE spectra of In2S3 and IGZO ETM-based OPSCs, as shown in Fig. 8d. The EQE 
could vary depending on the specific features of the semiconductors and the design of the cell. IGZO ETM-
based OPSC has been proven to demonstrate relatively higher QE spectrum across the visible spectrum than 
In2S3 ETM-based OPSC. This is because IGZO has a wide bandgap, which allows it to absorb a minimal amount 
of visible light while still effectively extracting electrons from the MAPbI3 film. In general, it can be concluded 
that the utilization of both In2S3 and IGZO ETMs can effectively enhance the EQE of OPSCs. However, the 
selection of a suitable ETM is dependent upon the specific needs of the device and the preferred wavelength 
range for optimal performance.

We have provided insights into the relationship between the device’s performance and the defects’ density, 
which could be useful for optimizing the fabrication process and improving the device’s performance. One possi-
ble approach to address this issue is to optimize the growth conditions during the fabrication process to minimize 
the defect density. For example, by carefully controlling the temperature, pressure, and some other important 
parameters of spin coating method during the growth process, it is possible to reduce the number of defects in 
the device. Interface passivation and anion/cation engineering can also be done to reduce the defect density. 
Additionally, post-growth processing techniques such as annealing could also reduce the density of defects in 
the material. In summary, we agree that the feasibility of tuning the property of the device at the fabrication or 
industrial level is an important consideration.

Conclusions
For the first time, the SCAPS-1D model has explored the potential of In2S3 as an alternate ETM film in OPSCs in 
an effort to increase PV stability, boost efficiency, and reduce hysteresis behavior. Problems with imperfections 
and high temperatures are fundamental to the simulation analysis. Theoretically, In2S3 can substitute TiO2 as 

Table 4.   PV device parameters of OPSCs with varying concentration of the shallow acceptor in CH3NH3PbI3.

NA (cm−3) VOC (V) JSC (mA/cm2) FF (%) PCE (%)

1 × 1016 1.319 15.382 85.548 17.36

1 × 1017 1.319 15.382 85.523 17.35

1 × 1018 1.316 15.381 85.236 17.26

1 × 1019 1.090 24.180 76.469 20.16

1 × 1020 1.386 22.270 86.143 26.60
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ETL in OPSC, and the results showed that defect states have a significant impact on OPSC efficiency at defect 
densities higher than 2.45 × 1015 cm−3. Finally, OPSC works best between 20 and 30 °C. The optimized design 
with an efficiency of 20.15% (VOC = 1.089 V, JSC = 24.18 mA/cm2, and FF = 76.45%) sheds light on the possibility 
of In2S3 as a suitable ETL. This study paves the way towards practical implementation of indium sulfide as the 
potential ETL for MAPbI3 perovskite solar cells.
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Figure 6.   (a) J–V characteristics of the OPSCs with different series resistances. Variations of OPSC performance 
parameters with various series resistances: (b) VOC, (c) JSC, (d) FF, and (e) PCE. (f) J–V characteristics of 
the OPSCs with different shunt resistances with constant series resistance of 3 Ω cm2. Variations of OPSC 
performance parameters with various shunt resistances: (g) VOC, (h) JSC, (i) FF, and (j) PCE.
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Figure 8.   (a) J–V curves of perovskite solar cells with different ETMs, including In2S3 and IGZO films. Band 
offset behaviour of the proposed OPSC based on (b) In2S3 and (c) IGZO. The diagram was calculated using 
optimized thicknesses of ETMs (200 nm) and MAPbI3 layer (700 nm). (d) EQE of OPSCs with various ETMs at 
a thickness of 200 nm.
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