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Phosphoinositide 3-kinases (PI3Ks) play a central role in tumourigenesis with recurrent activating mutations of its p110α subunit
(PIK3CA) identified in several tumours. Although several PI3K inhibitors are approved for haematological malignancies, only alpelisib
was approved in solid tumours and for the treatment of PIK3CA-related overgrowth spectrum (PROS) syndrome. Traditional PI3K
inhibitors inhibit both wild-type and mutant PI3K with almost equal potency, thus limiting their efficacy due to on-target toxicity.
Since the initiation of phase I clinical trials investigating next generation allosteric mutant and isoform selective PIK3CA inhibitors,
there has been a surge in interest in PIK3CA targeting in solid tumours. Preclinical characterisation of these compounds showed that
maximal mutant protein inhibition fails to elicit metabolic and glucose homoeostasis dysregulation, one of the dose limiting
toxicities of both selective and pan PI3K inhibitors. While extreme selectivity can be hypothesised to grant activity and safety
advantage to these novel agents, on the other hand reduced benefit can be speculated for patients harbouring multiple or rare
PIK3CA mutations. This review summarises the current understanding of PI3K alterations and the state-of-the-art treatment
strategies in PI3K driven solid tumours, while also exploring the potential intrinsic and acquired resistance mechanisms to these
agents, and the emerging role of mutant selective PIK3CA inhibitors.
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INTRODUCTION
The understanding of the molecular drivers of tumourigenesis,
leading to the development of targeted therapies that block the
signalling functions of oncogenes, has radically changed cancer care.
It has been more than 30 years since phosphatidylinositol 3-

kinases, also called phosphoinositide 3-kinases (PI3K), were first
discovered, while only in 2004 its somatic mutations, especially
those occurring in its subunit p110α, were identified in different
malignancies [1]. The widespread use of high-throughput
sequencing allowed to recognise genetic dysregulations of the
four members of the PI3K kinase family (α, β, δ, and γ), as one of
the most frequent “driver” mechanisms in cancers, enabling their
choice as prospective therapeutic targets. Various types of
genomic alterations can dysregulate activity of all PI3K proteins,
with PIK3CA/p110α being the most common gene altered
detected in 14% of all solid tumours and rarely in haematological
malignancies [2]. According to MSK-IMPACT Clinical Sequencing
Cohort, endometrial cancer (40%) had the highest prevalence of
PIK3CA mutations followed by breast cancer (34.59%), cervical
cancer (30%), anal cancer (28%), head and neck cancer (24%),
bladder cancer (23.4%) and colorectal cancer (19.17%) (Fig. 1) [3].

Once activated, PI3K mediates signals to a multitude of down-
stream effectors such as AKT1 and MTOR, as well as promoting
additional cancer-benefitting factors such as recruitment of
inflammatory cells and angiogenesis [4, 5] (Fig. 2).
Idelalisib was the first PI3K inhibitor to achieve FDA approval in

2014 in patients with relapsed follicular B-cell non-Hodgkin
lymphoma or relapsed small lymphocytic lymphoma (SLL), and
subsequently many other PI3K inhibitors reached approval in
these diseases. In solid tumours, alpelisib was the first PI3K
inhibitor to be granted FDA approval in 2019 in combination with
fulvestrant in PIK3CA-altered hormone receptor (HR) positive
advanced breast cancer [6]. Despite these successes, further
development of PI3K inhibitors is hampered by poor drug
tolerance and lack of consistent clinical benefit across different
tumour types. However, the development of new isoform-
selective PI3K inhibitors has opened a new era of treatment for
PI3K-alter solid tumours.
Besides oncology, germline occurring PIK3CA mutations have

also been characterised as causative of PIK3CA-related overgrowth
spectrum (PROS), a rare syndrome characterised by overgrowth of
regional tissue carrying this alteration [7].
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This review summarises the current understanding of PI3K
alterations and the state-of-the-art treatment strategies in PI3K-
driven solid tumours, while also exploring the emerging class of
mutant selective P13K inhibitors.

PI3K ALTERATIONS IN CANCER
The most common oncogenic PI3K alterations are PIK3CA mutations
and generally these are somatic and heterozygous dominant [8].
Mutations can occur in all PIK3CA domains. However, more than

80% mutations occur in exon 9 (helical domain: p.E542K and
p.E545K) and in exon 20 (kinase domain: p.H1047R) (Fig. 1).

Mutations in other catalytic isoforms and in regulatory subunits
are rare, among these p85 regulatory subunit is the most
frequently altered in cancer. According to TCGA analysis, somatic
mutations of PIK3R1 (p85α) are commonly detected in endometrial
cancer, metastatic prostate adenocarcinoma, glioblastoma, breast
cancer, and colon adenocarcinoma [3]. Inactivating p85α muta-
tions in the p110α interaction segment or premature truncations
at Q572 can induce loss of activity and mediate indirect oncogenic
transformation via p110α activation suggesting that this regula-
tory subunit acts as a tumour suppressor [9].
In breast and colon cancer, PIK3CA mutations tend to be early

events and thus typically are clonal [10]. In breast cancer, PIK3CA
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Fig. 1 (Top Panel) Inner pie-chart: frequency of PIK3CA gene alterations according to type (Missense mutations, Insertion/deletion
mutations, Fusions, Amplifications, Mutations & amplifications and Miscellanea) in 10945 samples of the MSK-IMPACT Clinical
Sequencing Cohort [3]. Outer bar-plot: cumulative percentage of any given type of PIK3CA alteration according to cancer type, coloured
according to the domain on which alteration is identified (Adaptor binding domain, C2 domain, Helical domain, Kinase domain). When
multiple alterations are detected in the same sample “Multiple mutations” is reported, whereas when alterations affect the gene in its entirety
“Not applicable” is reported. (Bottom Panel) Lollipop plot: putative driver mutation frequencies relative to domain and codon are reported.
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mutations have been reported in ~40% of HR+, human epidermal
growth factor receptor 2 negative (HER2−) [11], in ~30% of HER2
amplified and in ~10% of triple-negative breast cancer (TNBC) [12].
The prognostic role of these mutations is controversial with some
studies reporting a good outcome in patients with HR+HER2−
early breast cancer and poor prognosis in advanced setting [13].
Patients harbouring PIK3CA mutations are less sensitive to and
endocrine therapies [14], but show more sensitivity towards
endocrine therapy when added to a PI3K or mTOR inhibitor [15].
In colorectal cancer, PIK3CA mutations can co-occur with RAS

mutations (in about 50%) and microsatellite instability (MSI), while
no significant association is found with BRAF mutations [16]. A
large retrospective analysis [17] and two additional meta-analyses
[18, 19] showed that exon 20 PIK3CA mutations occurred in
cetuximab-resistant patients and were associated with benefit
loss. These findings suggest that targeting PI3K might be useful in
PIK3CA mutant metastatic colorectal patients (mCRC).
In other solid tumours, the role of PIK3CA mutation is not clearly

defined and does not correlate with any clinic-pathological
characteristics.
Amplification of wild-type PIK3CA gene have been reported

in various malignancies [20]; however, these alterations alone
do not seem to display transforming capacity probably due to
lower stimulation of the PI3K pathway. Gene fusions and

insertion–deletions while rare, induce PIK3CA hyperactivation
and can be found in in a large array of solid malignancies [21, 22].

PI3K INHIBITORS
PI3K inhibitors can be classified according to their isoform
selectivity: pan-PI3K inhibitors and dual-PI3K inhibitors target
either all or two PI3K isoforms at the same time, while isoform
selective inhibitors target one specific isoform of PI3K. Mutant and
isoform specific inhibitors target only mutant proteins of a specific
isoform.
In what follows, we shall focus only on the results of clinical

trials where these PI3K inhibitors were tested in solid tumours with
mentions on other interesting and promising drugs.

Pan-PI3K inhibitors
Many pan-PI3K inhibitors have completed early phase clinical trials
in solid tumours, but further development of most of them has
been halted mainly due to their on-target and off-target toxicities
[23–27]. Currently only two pan-PI3K inhibitors, buparlisib
and copanlisib, are under investigation in clinical trials in solid
tumours (Table 1; chemical structures and preclinical data of
inhibitors are present in the Supplementary Material file named
“chemical_structure_preclinical_info”).

Ligands

PPP

P

P
P

P

P
P

PP

Ligands

RTKs

β/γ β/γ
αα α

GPCRs

PIK3CA

p85

PIK3CB

p85

PIK3CD

p85

PIK3CG

p101

PTEN

PIP2

P

P

PIP3

P

P

P

RAS

RAF

MEK

ERK

TSC1

TSC2

PDK

AKTP P

RHEB mTOR

RAPTOR

4EBP1

GSK3B

TTF1

BAD

FOXO

S6K1

Autophagy

Cell cycle
Glucose metabolism

Transcription

Apoptosis

Dedifferentiation

Angiogenesis

Angiogenesis

mTORC1

mTOR

RICTOR

mTORC2

X

Y

P

Legend
Enzyme

Regulatory subunit

Stimulation

Inhibition

Phosphate
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sclerosis complex 1 and 2 (TSC1 and TSC2). The PI3K/AKT/mTOR signalling pathway exhibits cross-talk with the RAS/MAPK pathway. PI3K
phosphoinositide 3-kinase, RTK receptor tyrosine kinase, GPCR G protein-coupled receptor, PIP2 phosphatidylinositol 4,5 bisphosphate, PIP3
phosphatidylinositol 3, 4, 5 trisphosphate. Created with Biorender.com (accessed on 9 December 2022).
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Buparlisib (BKM120). Buparlisib was tested in combination with
fulvestrant vs fulvestrant plus placebo in two phase III trials in
post-menopausal women with HR+ HER2- breast cancer, progres-
sing to an aromatase inhibitor with (BELLE-3) [28], or without
(BELLE-2) [29] mTOR inhibitors. Both studies [28, 29] met the
primary endpoint of improvement of median progression free
survival (mPFS) in the group receiving buparlisib plus fulvestrant,
albeit by a modest amount (Table 2). However, up to 25% of
patients in both trials discontinued the treatment due to grade ≥3
adverse events (AEs) consisting of transaminitis, hyperglycaemia,
and rash. In addition, in BELLE-3 trial depression, anxiety, and rare
suicidal ideation were reported as drug-related toxicities, probably
explained by buparlisib’s ability to cross the blood brain barrier.
Nevertheless, BELLE-2 and BELLE-3 trials provided information
supporting the combination of fulvestrant plus PI3K inhibitors in
PIK3CA mutated HR+ HER2- breast cancer. Indeed, a subgroup
analysis conducted on both studies confirmed that the presence
of PIK3CA mutations was associated with mPFS improvement
(BELLE-2: mPFS 4.2 vs 1.6 months; HR 0.46; p= 0.0034; BELLE-3:
mPFS 7.0 vs 3.2 months; HR 0.56; p= 0.0005) [28, 29].
Buparlisib was also tested in combination with chemotherapy in

randomised phase II BELLE-4 study [30] in chemo-naive HER2−
advanced breast cancer, but it did not meet the mPFS primary
endpoint. A lack of predictive biomarkers and the high burden of
adverse responsible for treatment discontinuation impacted the
results of the study.
Buparlisib (vs placebo) + paclitaxel was shown to be active in a

phase II trial conducted in patients with platinum-pretreated
recurrent or metastatic head and neck squamous cell carcinoma
(HNSCC) (Table 2) [31]. The median PFS was significantly longer in
the buparlisib arm (4.6 vs 3.5 months, p= 0.01), as well as OS (10.4
vs 6.5 months, p= 0.041). Based on this result, the phase III trial
BURAN (NCT04338399) is evaluating the efficacy of paclitaxel +
buparlisib vs paclitaxel + placebo in patients with advanced
HNSCC progressing after immunotherapy either as monotherapy
or with a platinum-based regimen.

Copanlisib (BAY 80-6946). Copanlisib was tested in the subpro-
tocol Z1F of the phase II tumour-agnostic NCI-MATCH ECOG-
ACRIN (EAY131) platform trial in advanced pretreated solid
tumours, positive for PIK3CA mutation confirmed by NGS [32].
This subprotocol enrolled patients with 20 different tumour types,
with 68% of them receiving 3 or more previous lines of systemic
therapy. The study met its primary endpoint with an ORR of 16%
(4/25 patients, 90% CI 6–33, p= 0.0341) showing promising
clinical activity in tumours harbouring PIK3CA mutation. In line
with other PI3K inhibitors, hyperglycaemia and gastrointestinal
toxicities were the most observed grade 3/4 toxicities. Approxi-
mately 10% of patients discontinued treatment due to AEs, a rate
relatively lower than other PI3K inhibitors (>20%).

Isoform-specific PI3K inhibitors
Isoform-specific PI3K inhibitors display a high potency and
specificity towards one or more (usually two) specific isoform(s)
of PI3K (Table 1), thus providing a better therapeutic window and
tolerability profile. Among them, those targeting PI3Kα are being
evaluated in advanced phase trials in solid tumours, whereas
PI3Kβ, PI3Kγ and PI3Kδ inhibitors are under evaluation in early
phase trials (Table 1).

PI3Kα inhibitors. Many PI3Kα inhibitors are under evaluation in
clinical trials (Table 1), but to date, alpelisib is the only selective
PI3Kα inhibitor approved by FDA in combination with fulvestrant
in men and postmenopausal women with HR+ /HER2–, PIK3CA-
mutated advanced breast cancer [6].

Alpelisib (BYL719): The activity of alpelisib in breast cancer was
clinically validated by SOLAR-1 phase 3 study, which was the basisTa
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of FDA approval of this drug in HR+ HER2− PI3K mutated
advanced breast cancer pretreated with a prior line of endocrine
therapy [6, 33]. The rationale for using this combination stems
from preclinical and clinical studies where PIK3CA signalling was
shown to mediate anti-oestrogen therapy resistance, resulting in
an increase in oestrogen receptor (ER) translation in ER+ breast
cancer cell lines, xenograft models, and patient samples [34–36].
In SOLAR-1 study, 572 patients, 341 of whom harboured PIK3CA
mutations, were randomised to receive fulvestrant with alpelisib/
placebo. The mutant group treated with alpelisib plus fulvestrant
showed an improvement in mPFS compared to fulvestrant plus
placebo not observed in PIK3CA wild type (WT) group (Table 2).
Since the SOLAR-1 study lacked an alpelisib monotherapy arm, it is
not completely clear if the anticancer effect of the combination
therapy is due solely to PI3K inhibition or restoration of cellular
sensitivity to anti-oestrogen therapy. The tolerability profile of
alpelisib was in line with that of other PI3K inhibitors: AEs leading
to discontinuation of treatment were reported in 25% of patients,
compared to 4.2% in the placebo group. The most frequent high-
grade AEs reported in the SOLAR-1 study were G3/G4 hypergly-
caemia (36.6% in alpelisib plus fulvestrant group vs 0.7% in
placebo + fulvestrant group), G3 rash (9.9% vs 0.3%) and G3
diarrhoea (6.7% vs 0.3%).
When SOLAR-1 study was designed, CDK4/6 inhibitors, which

have now become the standard treatment for HR+ /HER2–
advanced breast cancer, were not yet approved. The ongoing
phase 2 trial BYLieve [37] and the phase 3 trial EPIK-B5
(NCT05038735) are evaluating the activity of alpelisib plus
fulvestrant in chemonaïve patient, progressing on or after
previous therapy with CDK4/6 inhibitor and endocrine therapy
in PI3K mutated HR+ HER2− advanced breast cancer.
There are currently ongoing phase II and III clinical trials that are

evaluating alpelisib in different solid tumour in combination with
targeted agents or chemotherapy as shown in Table 1.

CYH-33: Preliminary results of safety and activity of this drug
were reported at the 2021 ESMO congress [38], where it was
tested in pretreated solid tumours with or without PIK3CA
mutations (NCT03544905). In 19 evaluable patients, 5 had PR
(26%) and they belong to PIK3CA mutated group. The toxicity was
comparable to other selective α-inhibitors with hyperglycaemia,
transaminitis and gastrointestinal toxicity as the most
common. These encouraging results have opened the way to
test this drug in combination with other hormone therapies and
targeted therapies in solid tumours in phase I and II studies
(Table 1).

Inavolisib (GDC-0077): This drug was tested as single agent, in
combination with or with letrozole/fulvestrant or letrozole/
fulvestrant and palbociclib in advanced PIK3CA mutant breast
cancer (NCT03006172). This study also included an arm with
inavolisib + palbociclib + fulvestrant + metformin to prevent
PIK3CA induced hyperglycaemia. The rationale for combining
PI3Kinhibitor with cyclin-dependent kinase 4 and 6 (CDK4/6)
inhibitors stems from preclinical studies showing that eukaryotic
initiation factor 4E-binding protein 1 (4E-BP1), one of most
characterised mTORC1 target, is involved both in protein synthesis
and also in translation of key cell cycle regulators such as MYC or
cyclin D1 (CCND1) [39]. When bound to CCND1, CDK4/6
phosphorylates retinoblastoma (RB1) thus causing its uncoupling
from E2F transcription factors, with subsequent translocation into
the nucleus and induction of transcription of genes promoting G1/
S phase transition and cell cycle progression. The safety profile of
inavolisib monotherapy or combinations was comparable to that
reported for other inhibitors with hyperglycaemia as the most
common AE, followed by stomatitis, neutropenia, diarrhoea,
nausea, alopecia, and rash. No toxicity data has been disclosed
for the metformin combination arm.

PI3Kβ inhibitors. Results of phase I trials are available for these
two PI3Kβ inhibitors: SAR260301 [40], whose further testing was
halted because pharmacokinetics and pharmacodynamics studies
showed that this drug has a fast clearance responsible for
inadequate target inhibition [40], and GSK2636771 (Table 2).

GSK2636771: This drug was tested with paclitaxel in PTEN-
altered advanced gastric cancer progressing to frontline che-
motherapy [41]. Out of 37 patients treated with recommended
phase 2 dose (R2PD), mPFS was 12.1 weeks and OS was
33.4 weeks. PTEN-null tumours showed favourable mPFS (18.9 vs
11.6 weeks, p= 0.026) compared to PTEN partial loss tumours. The
initial results of this trial are encouraging and open a new
therapeutic strategy in this subgroup of gastric cancer patients
having poor prognosis with very few therapeutic options
available.

PI3Kγ inhibitors. PI3Kγ inhibitors are the latest addition to the
growing repertoire of selective PI3K inhibitors in solid tumours.
Only preliminary data is available for them, nevertheless, they
could be important in future in combination with immunotherapy
regimens [5]. PI3Kγ inhibitors can stimulate anticancer immunity
by reducing the number of T regulatory (Treg) cells, activating
intra-tumoural infiltration of CD4+ and CD8+ T cells, by inhibition
of macrophages polarisation responsible for suppression of T cell
activation, and by regulation of production of immunostimulatory
cytokines in tumour microenvironment [5, 42].

Eganelisib (IPI-549): It is the only PI3Kγ inhibitor that received
Fast Track designation by FDA in solid tumours in platinum-
refractory, immunotherapy-naive, advanced urothelial cancer
(NCT03980041) and in combination with an immune checkpoint
inhibitor and chemotherapy for the first-line treatment of patients
with advanced/metastatic TNBC [43] (Tables 1 and 2).

PI3Kδ inhibitors. Many PI3Kδ inhibitors are under evaluation in
early clinical trials in solid tumours (Table 1); however, the
principal role of these inhibitors is in the treatment of
haematological malignancies where multiple have reached
regulatory approval. Their role in this setting is well established
considering that idelalisib received FDA approval as early as 2014
for B cell malignancies [44]. PI3Kδ inhibitors, like PI3Kγ inhibitors,
have a role in regulation of immune system by inhibition of Treg
lymphocytes and activation of cytotoxic lymphocytes [5].

Dual PI3K inhibitors
The majority of dual PI3K inhibitors are under evaluation in early
clinical trials in solid tumours (Table 2), with clinical data available
only for taselisib.

Taselisib (GDC-0032). Taselisib (GDC-0032) is a strong inhibitor of
α and γ isoforms exhibiting less potency against β and δ isoform
(Table 1). This drug showed to be active in a phase I trial in locally
advanced or metastatic solid tumours in patients carrying PIK3CA
mutation with an ORR of 36% vs 0% in WT patients [45]. The phase
III SANDPIPER trial evaluated the efficacy of fulvestrant in
combination with taselisib or placebo in HR+ HER2− advanced
breast cancer patients pretreated with a prior endocrine therapy
[46]. The study was prematurely closed due to modest clinical
benefit with only 2-month PFS advantage in taselisib arm and
increased serious AEs (32.0% vs 8.9%) responsible for a high rate
of discontinuations (16.8% vs 2.3%) and dose reductions (36.5% vs
2.3%). However, a retrospective analysis of data from this trial
showed that 19% (n= 66) of patients with PIK3CAmutant tumours
harboured multiple PIK3CA mutations. These patients had
increased tumour shrinkage on taselisib compared to single
mutant group (ORR 30.2% vs 18.1% p= 0.0493), thus suggesting
increased sensitivity to PI3K inhibition in this subset of patients
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[47]. This finding is interesting considering that double PIK3CA-
mutant tumours occur in 4% of all population and 12% in the
PIK3CA mutant group according to MSK-IMPACT cohorts (Fig. 1)

Isoform and mutant selective PIK3CA inhibitors
The observation that most recurrent oncogenic mutations of
PIK3CA occurred far from the ATP binding site sprouted rational
drug design of allosteric inhibitors to engage pockets with altered
tridimensional conformation in presence of specific oncogenic
mutations. The absence of a favourable allosteric binding pocket
on WT target or other isoforms dramatically reduces affinity of
these pharmaceuticals to WT PIK3CA that is responsible for
dysregulations of glucose metabolism, one of the most frequent
dose limiting toxicity of ATP competitive PI3K inhibitors. Currently
two investigational agents of this class have entered early phase 1
clinical trials: RLY-2608 and LOXO-783 and several in pre-clinical
development, e.g. STX-478.

RLY-2608. Based on data presented at the AACR-NCI-EORTC
conference on October 2021, this allosteric isoform-mutant
selective PIK3CA inhibitor shows comparable inhibitory activity
towards helical domain (E542K and E545K) and kinase domain
(H1047R) mutations with an almost 10-fold affinity compared with
WT PIK3CA and more than 200-fold selectivity vs other PI3K
isoforms. This drug is currently under an early phase I clinical trial
(NCT05216432).

LOXO-783. It is an allosteric mutant and isoform selective PIK3CA
inhibitor with high brain penetrance. It displays selective
inhibition of kinase domain PIK3CA H1047R mutation with a 90-
fold selectivity compared to WT PIK3CA and no activity on other
PI3K isoforms. This drug did not display preclinical activity on cell
lines driven by other PIK3CA mutation or PTEN mutation. This
investigational drug is currently undergoing early phase I clinical
trial (NCT05307705).

ST-814 (Mut-Sel H1047 PI3Kα). ST-814 is designed to be a wild-
type-sparing, oral inhibitor of kinase-domain-mutant PI3Kα cap-
able of penetrating the blood-brain barrier. It has shown in vitro
selectivity in multiple head-to-head preclinical studies and dose-
dependent anti-tumour activity in animal models at well-tolerated
doses without causing metabolic dysregulation that leads to
hyperinsulinaemia and hyperglycaemia, key challenges associated
with targeting this mutation [48].

PI3K/AKT/mTOR PATHWAY INHIBITORS
Inhibition of PI3K downstream effectors AKT/mTOR was also
tested as an alternative strategy for targeting PI3K-aberrant
tumours (Fig. 2). While no AKT inhibitor is approved by FDA till
date, two allosteric mTOR inhibitors, temsirolimus and everolimus,
have already been approved in different solid tumours.

Temsirolimus
This mTORC1 inhibitor was approved for the treatment of
advanced-stage RCC patients according to the results of the
phase III Global ARCC trial, which showed to prolong mOS in
treatment-naive metastatic patients compared to IFN-α
(10.9 months vs 7.3 months; HR 0.73, 95% CI 0.58–0.92;
p= 0.008) [49]

Everolimus
This mTORC1 inhibitor was approved for different indications
including advanced RCC, HER2– HR+ breast cancer, pancreatic
neuroendocrine tumours (NETs), and other selected NETs
[15, 50–52]. The phase III RECORD-1 trial tested everolimus vs
placebo in pretreated advanced RCC. A prolonged mPFS (4.0 vs
1.9 months, HR= 0.30, 95%CI 0.22–0.40, p < 0.0001) with

everolimus was reported that did not translate neither in OS
improvement, probably due to the possibility to make crossover in
the placebo arm, nor in ORR that was <5%. The phase III RADIANT-
3 trial tested everolimus vs placebo in advanced pancreatic NETs.
Also here, the mPFS was improved in everolimus arm (mPFS: 11.0
vs 4.6 months, HR 0.35, 95% CI 0.07–0.45, p < 0.001), but the ORR
was less than 5% [51]. The activity of everolimus was also
confirmed in patients with non-functional gastro-intestinal or lung
NETs with improved mPFS compared to placebo (mPFS: 11.0 vs
3.9 months, HR: 0.48, 95% CI: 0.35–0.67, p < 0.00001). In BOLERO-2
trial in HR+ HER2− breast cancer patients pretreated with
aromatase inhibitors, everolimus plus exemestane showed sig-
nificantly increased ORR compared to exemestane plus placebo
(9.5% vs 0.5% p < 0.001) and prolonged mPFS (6.9 vs 2.8 months
HR: 0.43, 95% CI: 0.35–0.54, p < 0.001).
The incidences of adverse events in these studies were similar

with G3/G4 stomatitis (4–8%) and hyperglycaemia (5–15%) as the
most common ones.

Capivasertib
This AKT inhibitor showed to be active in combination with
fulvestrant compared to fulvestrant + placebo in the phase II trial
FAKTION in aromatase resistant HR+ breast cancer. At the ASCO
2022 meeting, an update of this study was reported that
confirmed the better outcome in terms of mPFS and mOS in
capivasertib + fulvestrant group compared to placebo +
fulvestrant (mPFS 10.3 vs 4.8 months, HR 0.56, 95% CI:
0.38–0.81; p= 0.002; mOS 29.3 vs 23.4 months HR 0.66, 95% CI
0.45–0.97; p= 0.035). Response analysis showed greater OS
benefit in patients harbouring PIK3CA, AKT1 and PTEN alterations
compared to WT tumours [53], thus supporting the importance of
tumour molecular analysis in treatment decision. Capivasertib is
also tested in phase III CAPItello-292 trial (NCT04862663) in
combination with fulvestrant + palbociclib vs fulvestrant
+ palbociclib in ER+ breast cancer.
Other than HR+ tumours, capivasertib also showed to be active

in TNBC in combination with paclitaxel vs paclitaxel + placebo,
and the improvement in outcome was particularly evident in PI3K
mutant tumours (mPFS was 9.3 vs 3.7 months, HR 0.30 p= 0.01)
[53]. These results have led to the phase III CAPItello-290
(NCT03997123) trial evaluating combination of capivasertib plus
paclitaxel as first line in advanced TNBC.

Ipatasertib
This AKT inhibitor showed to be active in combination with
abiraterone in a phase III trial in mCRPC. Patients with or without
PTEN loss were randomised to receive placebo + abiraterone vs
ipatasertib + abiraterone [54]. The addition of ipatasertib to
abiraterone resulted in 23% risk reduction for radiological disease
progression or death among patients carrying PTEN loss
compared with placebo plus abiraterone as a first-line treatment.
In addition, mPFS was improved in ipatasertib arm compared to
placebo arm (18.5 vs 16.5 months, HR for progression or death
0.77, 95% CI 0.61–0.98, p= 0.034). In a subgroup of 250 patients
who had an alteration predicted to be pathogenic in PIK3CA/AKT1/
PTEN, the stratified HR for progression or death was 0.63 (95% CI
0.44–0.88) [54].

RESISTANCE MECHANISMS TO PI3K INHIBITION
PI3K inhibitor resistance mechanisms can be classified as primary
resistance, where no initial clinical response is observed either due
to intrinsic refractoriness of the tumour or very rapid adaptation to
PI3K inhibition, and secondary resistance arising during treatment
when prolonged clinical response is followed by tumour escape.
However, to the present date, clinical evidence highlighting
potential resistance mechanisms are scarce, fragmentary, and
non-conclusive both because the vast majority of PI3K inhibitors
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tested in solid tumours did not reach advanced phase clinical trials
and also because of the retrospective nature of these research. A
schematic representation of most frequently characterised resis-
tance mechanisms to PI3K inhibition is available in Fig. 3.

Primary resistance
Primary resistance is characterised by the lack of clinical benefit
and progression of disease. Data from the retrospective analysis of
patients enrolled in the NCT01870505 phase I trial assessing the
aromatase inhibitor and alpelisib combination in PIK3CA mutant
HR+ HER2− BC highlighted loss of function mutations in the
tumour suppressor phosphatase and tensin homologue (PTEN) as
recurring alterations in 25% of patients that showed primary
resistance to therapy, although concomitant ESR1 mutation
conferring resistance to aromatase inhibitor might act as a
confounding factor [55]. The identification of recurrent PTEN loss
in patients lacking benefit from selective PI3K inhibition is
consistent with preclinical evidence of switch in PI3K isoform
dependency (from PI3Kα to PI3Kβ) in PTEN deficient cells with
subsequent downstream signal propagation and inhibition escape
(Fig. 3) [56].

Secondary resistance
Secondary resistance is characterised by an initial clinical benefit
from selective PI3K targeting agent with subsequent evolution of
adaptative resistance. In this setting, independent convergent
evolution of one or more common resistance mechanisms can
highlight their putative role as alterations conferring an evolu-
tionary advantage to escape drug-induced selective pressure.
An analysis of different progressing disease sites donated by a

deceased patient harbouring PIK3CA-mutant BC experiencing
secondary resistance to alpelisib identified PTEN loss of function
alteration as the most frequent shared acquired alteration across
different progressing disease sites [56].

In another retrospective analysis [55] of the patients of
NCT01870505 trial experiencing secondary resistance to alpelisib
and aromatase inhibitor, de novo emergence of PTEN alterations
was a frequent occurrence (up to 22%). Apart from PTEN, the
aforementioned analysis identified many other recurring genomic
aberrations as putative cause of secondary resistance, all of which
can be hypothesised to confer PI3K independency. Consistent with
preclinical rationales, both AKT/mTOR pathway alterations, indu-
cing PIK3CA downstream mediator activation, or RTK/RAS/RAF/
MAPK pathway dysregulation, inducing PIK3CA bypass, or over-
expression of upstream RTKs including epidermal growth factor
receptor (EGFR), HER2 and HER3, platelet derived growth factor
receptor (PDGFRA/B) or fibroblastic growth factor receptor 1
(FGFR1) were enriched after secondary resistance was established
(Fig. 3) [55]. Despite these recurrent observations, traditionally
strategies combining PI3K inhibitors with mTOR inhibitors or other
upstream RTK were not clinically effective with only an increasing
in toxicity [57, 58].
These insights arise only from PIK3CA inhibitor resistance in

breast cancer, and as such it is unknown if these putative
resistance mechanisms could be shared across other solid
tumours or other inhibition escape strategies could also evolve.
An additional important resistance mechanism, the extent of

which still needs to be fully explored, is secondary to the double
effect of PI3K inhibitors on glucose metabolism and cancer cell
growth. Non mutant selective PI3K inhibitors have comparable
inhibitory function both on tumoural and healthy tissue PI3K
proteins. Inhibition of WT protein in liver and other tissues induce
a decrease in glucose uptake due to AKT-mediated down
regulation of glucose transporters (GLUTs). This causes subse-
quent hyperglycaemia and compensatory hyperinsulinaemia and
metabolic disturbances that may activate insulin receptor (INSR) or
the insulin-like growth factor receptor 1 (IGF-1R) on cancer cells
(Fig. 3). In this setting preclinical studies showed that treatment
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with sodium-glucose-co-transporter 2 (SGLT2) inhibitors, decreas-
ing renal reabsorption of glucose and consequently reducing
insulin production, lead to increasing anticancer effects and
tolerability of PIK3CA inhibitors [59].
Based on these observations and evidence arising from

preclinical studies a growing effort is being directed towards
designing combination strategies to overcome either intrinsic or
acquired resistance. A comprehensive summary of active trials
involving PI3K inhibitor combinations with other drugs is available
in Table 1.

DISCUSSION AND CONCLUSIONS
Oncogenic changes in PI3K proteins are common in a variety of
human cancers, with PIK3CA (p110α) mutations being the most
common. The observation of independent convergent evolution
of these alterations across different tumour types, as well as
extensive preclinical and clinical evidence highlight their impor-
tance as major contributors of cancer progression.
The earliest PI3K inhibitors tested in solid tumours were pan-

inhibitors without selectivity to a particular PI3K isoform. These
drugs did not yield promising activities in solid tumours, and they
showed high levels of toxicities due to their on-target and off-
target activities.
The subsequent generation of PI3K inhibitors, designed to

target specific isoforms of PI3K, showed greater efficacies and
better toxicity profiles. In solid tumours, alpelisib was the first
selective PI3Kα inhibitor to be granted FDA approval in combina-
tion with fulvestrant in PIK3CA mutant HR+ advanced breast
cancer [6]. Despite this success, further development of PI3K
inhibitors was hampered due to lack of activity across different
tumour types. It should be noted that PI3K alterations were not a
requirement for inclusion in many of the trials. The efficacy results
were relatively better when trials enrolled only patients with PI3K
mutations or when a subgroup analysis with just PI3K mutant
group was performed, emphasising the need of proper patient
selection. Furthermore, most trials only tested PI3K alterations in
primary tumour lesions, making it difficult to determine whether
tumours spreading on distant sites were responsive to PI3K
inhibition.
The advent of allosteric mutant and isoform selective PIK3CA

inhibitors, some of which are currently being evaluated in early
phase I clinical trials, has revived hope in the search for improved
PI3K inhibitors. This family of drugs are strong inhibitors of only
mutant proteins, sparing the wild-type PI3K, thus avoiding glucose
metabolic dysregulations, one of the most prevalent dose-limiting
toxicities of ATP competitive PI3K inhibitors.
Primary and secondary resistances are a challenging issue in the

development of PI3K inhibitors. The mechanistic data is scarce and
incomplete in this regard; however, loss of PTEN function has
been identified as a frequent mediator of these resistances. Loss of
PTEN activity leads to PIP3 accumulation at the plasma membrane,
which activates the AKT/mTOR pathway to drive cell growth,
proliferation, and survival. As a result, targeting the other critical
players in the AKT/mTOR pathway, which are typically involved in
PI3K resistance, may assist to avoid drug resistance.

FUTURE PERSPECTIVES
Drug resistance is frequently caused by conformational changes in
the targeted protein, which prevents the drug from binding to the
target protein. Orthosteric drugs bind at the active site, whereas
allosteric drugs bind elsewhere on the protein surface and
allosterically change the conformation of the protein binding site.
Allosteric drugs can resensitize an active site and restore the
actions of orthosteric drugs. The strategy of combining allosteric
and orthosteric drugs has been successfully employed to over-
come drug resistances in BCR-ABL1 mutant chronic myeloid

leukaemia (CML) and EGFR mutant lung cancer. Similarly, allosteric
drugs may be explored for overcoming PI3K drug resistance,
either by making it accessible to sterically blocked ATP-
competitive orthosteric drugs, or by producing an altered,
druggable PIP2 binding site [60].
Mutations that can rescue or resensitize a mutant protein to an

allosteric drug by allosterically altering its conformation have been
successfully explored for a few diseases such as Wiskott–Aldrich
syndrome (WAS) and galactosemia [60]. Similar mutations may be
explored in the kinase domain of PI3K. Other targeting strategies
may include inhibiting p85, the non-catalytic subunit of PI3K,
which has been found in breast cancer to dramatically reduce PI3K
activity, induce cell death, and sensitise it to Trastuzumab
treatment [61]. Finally, “molecular glues” that tighten and simplify
the connection of an E3 ligase with a disease-causing protein for
ubiquitination and subsequent degradation have emerged as a
game-changing strategy for novel drug discovery and could be
explored for mutant PI3K protein degradation too [62].
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