Skip to main content
. 2023 May 23;13:1139026. doi: 10.3389/fcimb.2023.1139026

Table 1.

Topography modifications and their biological efficacy to control growth/biofilm on surfaces.

Surface Inspiration & topography Surface considered Tested pathogens Outcomes Inference References
Anti-bacterial Psaltoda claripennis wings- nanostructured surface Magicicada ssp.,(Brd II) Tibicen ssp., (DD), Pogomphus obscurus spp (DF) wings 1. S.cerevasiae 1. Reduced viability
2. Loss of membrane integrity
1. Greater cell rupturing in higher aspect ratio nanoscale features (DD & DF) (Pogodin et al., 2013; Nowlin et al., 2015)
Psaltoda claripennis wings- with longer & shaper nanopillar topography - 1. P.aeruginosa
2. S.aureus
1. Killed 95% of P.aeruginosa & 83% of S.aureus 1. Bactericidal efficiency higher than normal pillar topography due to high mechanical energy (Ivanova et al., 2020)
Nanopillar topography, with random spacing Titanium black metal surface 1. E. coli
2. P. aeruginosa,
3. M. smegmati
4. S. aureus
1. Killed all tested pathogens (< 4h, 90% - 98%) except S.aureus
2. Less effect on S. aureus (22% - 4 h & 76% -24 h)
3. Proliferation of hMSCs
1. High efficiency due to the different geometry of the nano architecture when compared to the cicada wing surface (Hasan et al., 2017)
Dragonflies & cicada wings - nanopillar topography Titanium dioxide (TiO2) 1. E. coli
2. K.pneumoniae
3. S. aureus
1. Induced oxidative stress response
2. E. coli & K. pneumoniae (1000 fold reduction- < 6h) compared to S.aureus
1. Penetrate into S. aureus at a lower frequency due to high turgor pressure & rigidity (Jenkins et al., 2020)
Nanoknives or nano blades Graphene sheets 1. E.coli
2. S.aureus
1. E.coli less susceptible compared to S.aureus 1. Due to the extra outer membrane in gram-positive bacteria (Akhavan and Ghaderi, 2010)
Anti-adhesive Sharkskin - Sharklet micropatterned topography poly(dimethyl siloxane) elastomer (PDMSe) 1. S.aureus 1. Sharklet AF™ prevented early biofilm colonisation (>21 days) (Chung et al., 2007; Graham and Cady, 2014)
Sharklet micropattern 1. S.aureus
2. P.aeruginosa
1. Adherence was reduced (92.3 -99%)
2. Restricted transference (>90%)
(Xu et al., 2017)
Super-hydrophobic Lotus leaf- air entrapment between the Micro/
nanostructures
TiO2 nanotubes 1. S.aureus
2. E.coli
1. Prevents bacterial adherence & biofilm (Patil et al., 2018)
1H,1H,2H,2H-perfluorooctyltriethoxysilane, P25 TiO2 nanoparticles 1. S.aureus
2. E.coli
3. MRSA 4742
1. Prevents bacterial attachment (<4h)
2. After 24 h 93–99% adherence
1. Loss of air-bubble interface, less superhydrophobicity (Hwang et al., 2018)
Cicada wings 1. B. subtilis
2. B. catarrhalis
3. E. coli
4. P. maritimus
5. P. aeruginosa
6. P. fluorescens
7. S. aureus
1. Irregular morphology in gram-negative bacteria exhibiting lethal conditions.
2. Morphologies remained unchanged in gram-positive
1. Thick peptidoglycan layer provides rigidity to gram-positive bacteria (Hasan et al., 2013)
Slippery liquid-infused porous surface (SLIPS-omniphobic) Nepenthes pitcher plant - Thin lubricating film coating Polyfluoroalkyl- silanised enamel surface was infused with Fluorinert FC-70 lubricant 1. S.mutans 1. Sparse and isolated bacteria growth (24h)
2. Minimal growth by 48h.
3. Less dental plaque in SLIPS incisors
1. Overcome the drawback of the superhydrophobic layer.
2. Lubricating thin film coating for the liquid droplets to slide away.
(Yin et al., 2016)
Polycarbonate, polysulfone and polyvinyl chloride (PVC) tethered with liquid perfluorocarbon surface (TLP) 1. E. coli
2. P. aeruginosa
1. Suppressed biofouling & biofilm formation (Leslie et al., 2014; Abdulkareem et al., 2022)
Photocatalytic Glass surfaces and glass microfibre filters coated with crystalline nanostructured TiO2 1. S.aureus
2. P.putida
1. After 2 h of visible/near UV light irradiation cells
2. Membrane damage.
1. Membrane damage due to ROS, intermediates of oxygen-dependent photosensitised reactions. (Jalvo et al., 2017)
Phosphorus (P)- Fluorine (F) modified TiO2 1. E.coli
2. S. epidermidis
3. P. fluorescens
1. Reduced colonisation (99%) (Yan et al., 2020)
copper (Cu)-doped TiO2 (Cu-TiO2) 1. E.coli
2. S.aureus
1. No significant change in the dark.
2. Bacterial reduction under visible light irradiation (5-Log reduction)
(Mathew et al., 2018)
Self-polishing Prevention of biofouling on the marine hull Alternative layer-by-layer (LbL) deposition of dextran aldehyde (Dex-CHO) and carboxymethyl chitosan (CMCS) on Stainless steel 1. E.coli
2. S.aureus,
3. Amphora coffeaeformis
1. Attachment & lethality were directly proportional to the number of assembled bilayers 1. Increase in Dex-CHO/CMCS bilayers is directly proportional to surface hydrophilicity
2. Decrease in surface roughness, antimicrobial & antifouling surface
(Xu et al., 2018)