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Abstract

Background: Evidence suggests that changes in advanced glycation end‐products
(AGEs) may influence body weight. Previous studies have focused on cooking

methods as the primary way how to reduce the dietary AGEs but little is known

about the effects of a change in diet composition.

Objective: The aim of this study was to assess the effects of a low‐fat plant‐based
diet on dietary AGEs and test the association with body weight, body composition,

and insulin sensitivity.

Methods: Participants who were overweight (n = 244) were randomly assigned to

an intervention (low‐fat plant‐based) (n = 122) or control group (n = 122) for

16 weeks. Before and after the intervention period, body composition was

measured by dual X‐ray absorptiometry. Insulin sensitivity was assessed with the

predicted insulin sensitivity index (PREDIM). Three‐day diet records were analyzed
using the Nutrition Data System for Research software and dietary AGEs were

estimated, using a database. Repeated measure ANOVA was used for statistical

analysis.

Results: Dietary AGEs decreased in the intervention group by 8768 ku/day on

average (95% −9611 to −7925; p < 0.001), compared with the control group

(−1608; 95% CI −2709 to −506; p = 0.005; treatment effect −7161 ku/day [95% CI

−8540 to −5781]; Gxt, p < 0.001). Body weight decreased by 6.4 kg in the inter-

vention group, compared with 0.5 kg in the control group (treatment effect −5.9 kg

[95% CI −6.8 to −5.0]; Gxt, p < 0.001), largely due to a reduction in fat mass, notably

visceral fat. PREDIM increased in the intervention group (treatment effect +0.9

[95% CI + 0.5 to +1.2]; p < 0.001). Changes in dietary AGEs correlated with changes

in body weight (r = +0.41; p < 0.001), fat mass (r = +0.38; p < 0.001), visceral fat

(r = +0.23; p < 0.001), and PREDIM (r = −0.28; p < 0.001), and remained significant

even after adjustment for changes in energy intake (r = +0.35; p < 0.001 for body

Abbreviations: AGEs, advanced glycation end‐products; BMI, body mass index; HOMA‐IR, homeostasis model assessment insulin resistance.
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weight; r = +0.34; p < 0.001 for fat mass; r = +0.15; p = 0.03 for visceral fat; and

r = −0.24; p < 0.001 for PREDIM).

Conclusions: Dietary AGEs decreased on a low‐fat plant‐based diet, and this

decrease was associated with changes in body weight, body composition, and insulin

sensitivity, independent of energy intake. These findings demonstrate positive ef-

fects of qualitative dietary changes on dietary AGEs and cardiometabolic outcomes.

Clinical Trial Registry Number: NCT02939638.
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1 | INTRODUCTION

From 2000 to 2018, the prevalence of obesity among U.S. adults

increased to over 42%.1,2 The extra weight is frequently associated

with hyperglycemia, dyslipidemia, hypertension and insulin resistance

in a cluster known as the metabolic syndrome, which is associated

with chronic oxidative stress and inflammation.3 Although over-

nutrition is considered a major cause of obesity, not all obese in-

dividuals develop the metabolic syndrome; more research is needed

to clarify the relevant pathophysiologic mechanisms. One possible

mechanism in the development of the metabolic syndrome is an

accelerated production of advanced glycation end products (AGEs).

AGEs are a large heterogenous group of compounds resulting

from the spontaneous, non‐enzymatic reaction of the carbonyl

groups of sugars with free amino groups in protein; this is the

classical Maillard reaction but many other reactions, even in the

absence of hyperglycemia, can lead to AGE formation.4 AGEs are

important because they cause inflammation and oxidative stress,

processes that eventually lead to chronic diseases, particularly type

2 diabetes and cardiovascular disease. While AGEs are generated

constantly during normal metabolism, their rate of formation is

markedly enhanced during hyperglycemia and/or conditions char-

acterized by increased oxidative stress. They may also be ingested

through the diet.5,6 Thermally prepared foods, particularly of animal

origin, are rich in AGEs, which are perceived as flavorful, therefore

enhancing palatability and consumption, promoting weight gain.

Excessive intake of dietary AGEs, identified by at least one distinct

marker, carboxymethyllysin, has been linked to high serum AGEs,

oxidative stress and inflammation, reduced innate immune defenses,

and insulin resistance in humans.7 This has led to a postulated

model in which both endogenous and exogenous AGEs contribute

to oxidative stress and inflammation, which represent underlying

mechanisms of chronic diseases, including metabolic syndrome and

type 2 diabetes.4,8,9

Plant‐based diets have been shown to cut the risk of developing

the metabolic syndrome and type 2 diabetes by about a half.10,11

Since plant foods are generally lower in dietary AGEs than animal‐
derived foods,6 it is plausible that a plant‐based diet would reduce

the dietary AGEs. Two randomized interventional trials have shown

that dietary AGE restriction ameliorated insulin resistance in obese

people with metabolic syndrome.7,12 These trials were performed in

individuals who at baseline had a spontaneous high dietary AGE

intake with a mixed diet, and their consumption of animal‐derived
foods was significant. The dietary AGE reduction was achieved sim-

ply by changing the cooking technique of the same foods, for

example, from grilling, roasting, and frying to stewing or poaching, so

as to decrease the level and duration of heat application, as well as

using more water in the cooking medium. However, studies exploring

the effect of changing the actual food composition of the diet as it

happens in the transition to a plant‐based diet on levels of dietary

AGE intake are lacking.

The effects of a plant‐based diet on weight loss, improved body

composition and insulin sensitivity, were previously assessed in a 16‐
week randomized trial in 244 people who were overweight.13 This

secondary analysis tested the effect of this plant‐based nutrition

intervention on dietary AGE intake, and evaluated the potential role

of dietary AGEs in changes in body weight, body composition, and

insulin sensitivity previously observed. It was hypothesized that the

dietary AGEs would decrease on a low‐fat plant‐based diet and that

this reduction would be associated with the previously observed

weight loss, reduction in body fat, visceral fat, and increase in insulin

sensitivity.

2 | METHODS

2.1 | Study design and eligibility

The methods have been previously described.13 In brief, this ran-

domized, open parallel controlled study was conducted for four

replications between February 2017 and February 2019 in Wash-

ington, D.C. Enrolled participants were men and women (n = 244),

aged 25–75 years, with a body mass index between 28 and 40 kg/m2.

Exclusion criteria included history of diabetes, pregnancy or lacta-

tion, recent or current smoking, alcohol or drug abuse, and current

use of a vegan diet. The study protocol was reviewed and approved

by the Chesapeake Institutional Review Board and all participants

provided written informed consent.
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2.2 | Randomization and study groups

Using a computer‐generated system, participants were randomly

assigned to an intervention or control group in a 1:1 ratio. The

intervention group was asked to follow an ad libitum low‐fat vegan
diet (~75% of energy from carbohydrates, 15% protein, and 10% fat)

consisting of fruits, vegetables, grains, and legumes (beans, peas, and

lentils), while the control group was requested to make no diet

changes. Energy intake was not limited for either group. Participants

in the intervention group were instructed to avoid all animal products

and added fats and to take a vitamin B12 supplement (500 μg/day).
For both groups, no meals were provided, and alcoholic beverages (of

any type) were limited to one per day for women and two per day for

men. All participants were asked not to alter their exercise habits and

to continue their preexisting medication regimens for the duration of

the study, except as modified by their personal physicians.

2.3 | Outcomes

Measurements were performed at baseline and week 16. A 3‐day
dietary record (two weekdays and one weekend day) was

completed by each participant at each assessment. Dietary intake

data were collected and analyzed by a staff member certified in

the Nutrition Data System for Research, developed by the

Nutrition Coordinating Center at the University of Minnesota,

Minneapolis, MN.14

In a post‐hoc analysis of above data, AGE scores were assigned

to each food item from the above database, using a published data-

base of AGE content in about 560 food items that has been previ-

ously used in epidemiologic studies to estimate dietary AGE

intake.15–17 Consistent with previously published methodology,15–17

each food item identified was assigned a dietary AGE value in kilo-

units/gram of food, which was then multiplied by the number of

grams of this food consumed per day. The dietary AGE values for

each and all foods consumed during the day were then added up to

provide a total dietary AGE value in kilounits/day per participant.

Whenever a food present in the original database was not listed in

the dietary AGE database, a value was assigned based on the simi-

larity of nutrient ingredients and cooking methods with foods listed

in the dietary AGE database. This was done by a co‐author (JU) who
was completely masked regarding dietary intervention assignment. In

the database, carboxymethyllysin‐AGE content was estimated using

ELISA based on monoclonal anti‐carboxymethyllysin antibody.6

Physical activity was assessed by the International Physical Ac-

tivity Questionnaire.18 All laboratory assessments were measured

after a 10–12 h overnight fast, with only water allowed ad libitum.

Height, at baseline only, and weight were measured using a stadi-

ometer and a calibrated scale accurate to 0.1 kg, respectively. Body

composition and visceral fat volume were assessed using dual energy

X ray absorptiometry (iDXA; GE Healthcare), which has been vali-

dated both against X‐ray computed tomography19 and magnetic

resonance imaging.20 Predicted insulin sensitivity index (PREDIM)

was used to assess insulin sensitivity, which has been previously

validated against clamp‐derived measures of insulin sensitivity,21 and
was determined through a calculation of dynamic postprandial insulin

sensitivity following a liquid breakfast (Boost Plus, Nestle, Vevey,

Switzerland; 720 kcal, 34% of energy from fat, 16% protein, 50%

carbohydrate).

2.4 | Statistical analysis

For baseline characteristics, all enrolled participants were included;

between‐group t‐tests were performed for continuous variables and

X2 or Fisher's exact test for categorical variables. A repeated mea-

sure ANOVA model was used with between‐subject and within‐
subject factors and interactions. Factors group, subject, and time

were included in the model. Interaction between group and time

(Gxt) was calculated for each variable. Data from only those with

measurements at both timepoints were included in the ANOVA

model. Within each group, paired comparison t‐tests were calculated
to test whether the changes from baseline to 16 weeks were sta-

tistically significant. Pearson correlations were calculated to test the

association between changes in dietary AGEs and changes in body

weight, fat mass, visceral fat, and insulin sensitivity in both study

groups combined, first unadjusted and then and then Pearson partial

correlations controlling for the effect of energy intake. All results are

presented as means with 95% confidence intervals (CI).

3 | RESULTS

3.1 | Participant characteristics

Of 3115 people screened by telephone, 244 met participation criteria

and provided informed consent. Using a computer‐generated system,
they were randomly assigned (in a 1:1 ratio) to the intervention

(n = 122) or control (n = 122) groups. The baseline characteristics of

the study population has been reported earlier.13 Mostly for reasons

unrelated to the study, 21 participants dropped out (5 from the

intervention and 16 from the control group), leaving 223 (91.0%)

study completers, who were included in the repeated measure

ANOVA model.

3.2 | Body weight, body composition, and insulin
sensitivity

As described previously,13 mean body weight decreased by 6.4 kg in

the intervention group from 93.6 to 87.2 kg, which represents a 7%

reduction in body weight, compared with a nonsignificant weight loss

of 0.5 kg in the control group (treatment effect −5.9 kg [95% CI −6.7
to −5.0]; p < 0.001). This was largely due to a reduction in body fat

(treatment effect −4.1 kg [95% CI −4.7 to −3.5] kg; p < 0.001) and

visceral fat volume (treatment effect −209 cm3 [95% CI −304 to
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−114]; p < 0.001). Insulin sensitivity, measured by PREDIM,

increased significantly in the intervention group (treatment effect

+0.9 mg/min/kg [95% CI, +0.5 to +1.2]; p < 0.001). Physical activity

decreased slightly in both groups, with no difference between the

groups. Self‐reported energy intake was reduced in both groups

(from 1834 to 1344 kcal/day in the intervention and from 1793 to

1657 kcal/day in the control group), more so in the intervention

group (treatment effect −355 kcal/day [95% CI, −519 to −19;
p < 0.001).

3.3 | Dietary AGEs

Dietary AGEs decreased in the vegan group by 79%, that is, by 8768

ku/day on average (95% −9611 to −7925; p < 0.001), compared with

the control group (decrease by 15%, i.e., by 1608 ku/day; 95% CI

−2709 to −506; p = 0.005; treatment effect −7161 ku/day [95% CI

−8540 to −5781]; Gxt, p < 0.001; Figure 1). About 55% of the

reduction of the dietary AGEs in the intervention group was due to

the reduction of meat intake, 26% thanks to decreased dairy intake,

and 15% was attributable to the decreased use of added fats. Most of

the dietary AGEs from meat were due to white meat consumption

(59%), followed by processed meat (27%). The dietary AGEs in all

major food groups are shown in Table 1.

Changes in dietary AGEs correlated with changes in body weight

(r = +0.41; p < 0.001), fat mass (r = +0.38; p < 0.001), visceral fat

(r = +0.23; p < 0.001), and PREDIM (r = −0.28; p < 0.001), and

remained significant after adjustment for changes in energy intake

(r = +0.35; p < 0.001 for body weight; r = +0.34; p < 0.001 for fat

mass; r = +0.15; p = 0.03 for visceral fat; and r = −0.24; p < 0.001 for

PREDIM).

4 | DISCUSSION

This 16‐week randomized clinical trial found that the dietary AGEs

decreased on a low‐fat plant‐based diet and that this reduction was

associated with weight loss, reduction in body fat, and increase in

insulin sensitivity in people who were overweight, even after

adjustment for changes in energy intake.

Several studies have shown that a diet low in dietary AGEs is

associated with reduced circulating AGE markers, weight loss,

improved body composition, and other cardiometabolic out-

comes.12,15,16,22 A 2016 randomized clinical trial in 138 adults who

were overweight with the metabolic syndrome found that a reduc-

tion in dietary AGEs by modifying the cooking methods, using boiling,

stewing or steaming instead of frying, baking or grilling, keeping the

diet composition otherwise constant, ameliorated insulin resistance

in these individuals.7 While that study changed cooking methods

while encouraging participants to use the same foods as before, the

current study achieved the reduction of AGEs by changing the diet

composition so as to avoid the richest sources of dietary AGEs, that

is, meat and high‐fat foods.6 Both approaches reduced dietary AGEs,

but the low‐fat plant‐based diet was more effective (the modified

cooking methods reduced the dietary AGEs by 65% from about

15,000 to about 5200 ku/day, and the low‐fat vegan diet by 79%,

from about 11,100 down to about 2300 ku/day), and both ap-

proaches also improved insulin sensitivity in individuals who were

overweight. In addition, the low‐fat plant‐based diet resulted in

weight loss and improved body composition (i.e., reduced fat mass

and volume of visceral fat). In practice, the two approaches could be

combined. However, changing dietary composition has practical ad-

vantages since plant‐based options are readily available at many

restaurants and grocery stores, while it is more challenging to find

establishments preparing foods without frying, baking, or grilling.

The present study showed that about 55% of the reduction of

the dietary AGEs in the intervention group was attributable to the

reduction in meat intake, 26% to decreased dairy intake, and 15% to

decreased consumption of added fats. This is in accordance with the

previous findings that meat and high‐fat foods contribute signifi-

cantly to dietary AGEs, especially when prepared using dry heat

(frying or baking).6 Surprisingly, the reduction in white meat con-

sumption made the biggest difference in dietary AGEs coming from

meat (59%), followed by processed meat (27%). The reason lies

mainly in the quantity of ingested white meat. The Dietary Guidelines

for Americans (2020–2025) state that a healthy dietary pattern can

include lean meats and poultry, but should involve “relatively lower

consumption of red and processed meats”.23 This recommendation is

likely further re‐enforcing the upward trend in white meat con-

sumption in the U.S.,24 despite the fact that observational studies

have found an increased risk of incident cardiovascular disease both

for red and white meat,25 which is also supported by the findings

F I GUR E 1 Change in total dietary advanced glycation end‐
products (AGEs) in the intervention (green symbols and line) and
the control group (orange symbols and line) from week 0 to week

16. The data are shown as means with 95% confidence intervals
(CI).
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from a randomized clinical trial that found similar effects of white

and red meat on blood lipids and lipoproteins,17 suggesting no benefit

for choosing white over red meat for reducing cardiovascular risk.

Since AGEs are a modifiable risk factor for insulin resistance,

metabolic syndrome, type 2 diabetes, and cardiovascular disease26

and reducing dietary AGEs is effective in reducing the circulating

levels of AGEs and improving markers of cardiometabolic health,27

it is important to identify effective strategies that will help achieve

these improvements, both in the prevention and treatment of

chronic diseases. This study suggests that a low‐fat plant‐based
diet is an effective strategy for reducing dietary AGEs, with

associated cardiometabolic benefits for individuals who were

overweight.

The potential mechanisms for the beneficial effects of a diet low

in dietary AGEs include the less expressed direct metabolic effects of

AGEs, but also the interplay with satiety hormones and inflammatory

markers. In a meta‐analysis and systematic review of 13 articles, the

comparative effects of diets low and high in dietary AGEs on obesity

and satiety hormones were elucidated. Diets low in dietary AGEs

were associated with a significant weight loss, a decrease in circu-

lating levels of leptin, and an increase in adiponectin,28 which would

further support weight loss and long‐term weight management.

Another meta‐analysis found that diets low in AGEs significantly

decreased inflammatory markers, such as TNF‐α and 8‐isoprostnes in
healthy individuals.29

The strengths of the current study include a randomized, parallel

design. The participants started the study concomitantly, accounting

for seasonal effects. The duration of the study was reasonable to

allow adaptation to the diet. The assessment of dietary AGEs is novel

in a clinical trial using a plant‐based diet. In addition to tracking body
weight, body composition and insulin sensitivity were measured,

giving a broader picture of cardiometabolic health. A low attrition

rate suggests that the plant‐based diet was sustainable, confirming

the results of a prior long‐term study.30

The study also has important limitations. The dietary AGEs were

calculated based on self‐reported dietary intake records, which have

well‐known limitations.31 However, it is encouraging that the re-

ported dietary changes correspond with weight loss, improved body

composition, and increased insulin sensitivity. The dietary AGE

database used to estimate dietary AGE intake includes about 560

food items and therefore some items consumed in the current cohort

were not listed in it; in such cases a dietary AGE value was assigned

based on the similarity of nutrient ingredients and methods of

cooking with foods listed in the dietary AGE database. Moreover,

dietary AGEs in the database used for this study were based on

ELISA measurements, which have been criticized for being less pre-

cise than methods using mass spectrometry.32 While the randomized

trial was rigorously carried out, the detailed food group AGEs anal-

ysis is hypothesis‐generating, and no formal correction for the mul-

tiple food groups assessed was performed. Nevertheless, the high

statistical magnitude (p < 0.001) of reported treatment effects and

associations suggests that our findings are unlikely to be due to

chance.T
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5 | CONCLUSION

In conclusion, the dietary AGEs decreased after 16 weeks of a low‐fat
plant‐based diet, and this reduction was associated with weight loss,

reduced body fat, and increased insulin sensitivity in people who

were overweight, even after adjustment for changes in energy intake.

These findings support prior observations of the favorable effects of

low‐AGE diets on weight, adiposity, and insulin resistance, and

extend them to show that such effects can be achieved with quali-

tative dietary changes alone. Further research to confirm the out-

comes of the study is warranted.
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