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1  |  INTRODUCTION

Immunotherapy is currently being used more and more 
often to treat malignant tumors. Immunotherapy strat-
egies such as tumor vaccines and immune checkpoint 
inhibitors have achieved substantial therapeutic effects 
and achievements. Numerous studies are trying to iden-
tify genes involved in regulating the tumor microenvi-
ronment that could be safely targeted by these drugs. 
Small noncoding single- stranded ribonucleic acid (RNA), 
known as microRNA (miRNA), are found in large quan-
tities in eukaryotes.1 These molecules have an important 
role in the control of vital cellular processes such as the 

cell cycle, differentiation, and death.2,3 Numerous stud-
ies have demonstrated that the majority of malignant 
tumors have dysregulated miRNA expression, which can 
lead to the initiation and growth of malignancies.4– 6 The 
micro- ribonucleic acid- 34(miR- 34) family is one of the 
three major miRNA families. The miR- 34 family is made 
up of three molecules: miR- 34a, miR- 34b, and miR- 34c.7 
Numerous malignant tumors lack its expression, includ-
ing lung cancer, pancreatic cancer, and prostate cancer.8 
Apoptosis and senescence are two processes that are in-
hibited by an increase in miR- 34a, which prevents carcino-
genesis and cancer growth when it is inhibited. Relevant 
studies have indicated that miR- 34a may be a prospective 
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Abstract
Malignant tumors pose a serious threat to human health. The development of ma-
lignant tumors is characterized by uncontrolled cell division and immune evasion. 
The micro- ribonucleic acid- 34a (miR- 34a) is a small noncoding single- stranded 
ribonucleic acid that is ubiquitously present in normal human tissues. However, 
it has been confirmed to be dysregulated in a variety of tumor cells. Numerous 
research have revealed the importance of miR- 34a in the treatment of various ma-
lignancies. MiR- 34a deletion can hasten the growth of tumors whereas miR- 34a 
overexpression suppresses the proliferation, invasion, and migration of cancer 
cells. Moreover, more recent studies have highlighted its role in immunity and 
investigated its applicability to particular tumors. Through various immune cells, 
factors, and other mechanisms, miR- 34a can inhibit tumor carcinogenesis. In view 
of the important role of miR- 34a in tumors, this research reviewed the aspects of 
miR- 34a regulation of tumor immune microenvironment to exert anti- tumor ef-
fects in order to clarify the potential immunotherapy value of miR- 34a in tumors.
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candidate gene for cancer immunotherapy. This paper 
provides a review of studies related to how miR- 34a reg-
ulates the tumor immune microenvironment to influence 
cancer progression in various cancers.

2  |  THE EFFECT OF MIR- 34A ON 
THE TUMOR IMMUNE MICRO ENV 
IRO NMENT

2.1 | Tumor immune microenvironment

The tumor microenvironment surrounds tumor tissues 
and capillaries, and consists of tumor cells, fibroblasts, 
immune and inflammatory cells, glial cells, various cy-
tokines, and chemokines (Figure  1). Due to its signifi-
cance in the initiation, growth, progression, and prognosis 
of cancer, the tumor immune microenvironment has re-
cently emerged as one of the most prestigious disciplines 
in cancer research. Some studies have explored the func-
tion of the immune microenvironment in regulating im-
munotherapy and the prognosis of patients.9 miR- 34a 
has an important role in regulating the production and 

activation of various immune cells, including the tumor- 
infiltrating lymphocytes (TILs), CD8+ cytotoxic T lym-
phocytes, regulatory T cells (Tregs), tumor- associated 
macrophages (TAMs), and the myeloid- derived suppres-
sor cells (MDSCs).

2.2 | TAMs

Macrophages develop from monocytes. Monocytes cir-
culate in the bloodstream and can migrate out of the 
bloodstream into tissues and differentiate into mac-
rophages under the influence of the local microenvi-
ronment. TAMs are the fundamental constituents of 
the tumor microenvironment.10 TAMs can penetrate 
the tumor immune microenvironment and promote im-
munosuppression, angiogenesis, chemical tolerance, 
tumor progression, and metastasis. There are different 
subpopulations of macrophages, including CD169(+) 
macrophages and TCR (+) macrophages, in addition 
to TAMs that can be polarized into M1 or M2 mac-
rophages.11 M1 macrophages are typically activated by 
pro- inflammatory cytokines and are responsible for 

F I G U R E  1  Composition of tumor microenvironment.
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developing an inflammatory response and the destruc-
tion of harmful bacteria and tumor cells. Conversely, 
M2 macrophages are activated by anti- inflammatory cy-
tokines and tissue repair factors, and can suppress the 
inflammatory response, induce tissue repair, and pro-
mote cancer development. TAMs are not present in nor-
mal conditions and their appearance is associated with 
specific pathological settings with M1 and M2 polari-
zation. Macrophage polarization and penetration into 
the tumor microenvironment are key determinants of 
tumor progression.

There has been research into how miR- 34a affects mac-
rophage differentiation. For example, miR- 34a- expressing 
MDA- MB- 231 breast cancer cells can more potently cause 
THP- 1 monocytes to polarize into M1 macrophages. Anti- 
miR- 34a transfection caused M2 macrophages to form in 
cancer cells while inhibiting M1 macrophage develop-
ment.12 Similar effects were observed for head and neck 
cancer,13 uterine leiomyosarcoma,14 and lung cancer.15 The 
role of TAM polarization in tumor formation and progres-
sion is an active area of research, as it is believed to play a 
critical role in modulating the tumor microenvironment.

2.3 | MDSCs

Numerous immunosuppressive cytokines, including the 
transforming growth factor beta (TGF- β), interleukin- 10 
(IL- 10), vascular endothelial growth factor, and prosta-
glandin E2, are secreted by tumor cells. The presence of 
these cytokines in the tumor immune microenvironment 
can stimulate bone marrow precursor cells to differenti-
ate into dendritic cells (DCs), macrophages, granulocytes, 
and mast cells. Although MDSCs and DCs share the same 
bone marrow precursor cells, they play very different roles 
in the immune response. While DCs are critical for the 
initiation and regulation of the tumor immune responses, 
MDSCs have an immunosuppressive function and can 
promote tumor growth and immune evasion.

MDSCs were first identified in tumor tissues and 
lymph nodes of tumor- bearing mice16 and represent a 
mixed population of immature bone marrow cells, includ-
ing DC precursors. Relevant studies17 have shown that 
the ability of bone marrow precursors to enter MDSCs is 
influenced by variations in miR- 34a levels in liver cancer 
and colon cancer cells. As a result, miR- 34a upregulation 
decreases the capacity of the tumor supernatant to stimu-
late bone marrow precursors to enter MDSCs. Conversely, 
the downregulation of miR- 34a can increase the ability of 
tumor supernatant to induce bone marrow precursors to 
enter MDSCs. Additionally, TGF- β and IL- 10 have been 
shown to induce the entrance of bone marrow precursor 
cells into MDSCs. These cytokines can activate signaling 

pathways that promote the differentiation and expansion 
of MDSCs, contributing to the immunosuppressive envi-
ronment of the tumor microenvironment. Targeting these 
pathways and molecules involved in the differentiation 
and function of MDSCs could provide a potential strategy 
for the development of cancer immunotherapy.

2.4 | TILs

TILs are immune cells in the microenvironment of tumor 
tissue, indicating the presence of antitumor immune re-
sponses.18 CD4+ and CD8+ T cells are the two main types 
of TILs. The cytotoxic CD8+ T lymphocytes are activated 
by proteins in tumor cells. Upon activation, the CD8+ cells 
release cytotoxic molecules that induce cell death. Tregs 
are responsible for suppressing the activity of CD8+ cells 
through the deactivation of antigen- presenting cells via 
the downregulating of costimulatory proteins.19 Therefore 
the subpopulation of TILs is often used clinically to pre-
dict treatment outcomes. Researchers have found that20 
miR- 34a may regulate the activity of CD4+ T cells in triple- 
negative breast cancer (TNBC) by controlling the expres-
sion of specific genes that influence T- cell infiltration into 
tumors.

2.5 | Tregs

FoxP3- expressing Tregs are often the major immune 
system inhibitors in the tumor microenvironment and 
actively uphold immunological homeostasis and self- 
tolerance by suppressing a variety of immune responses. 
Treg cells often accumulate in tumor masses and ascites.21 
Recent research has shown that several chemokines can 
attract Treg cells to control the immune responses dur-
ing cancer.22 MiR- 34a exerts its cellular nonautonomous 
tumor suppressor effect by regulating the expression of 
the chemokine CCL22 and the recruitment of Treg cells. 
The migratory activity of Treg cell is increased when miR- 
34a is inhibited, demonstrating that increased Treg re-
cruitment is linked to decreased miR- 34a expression.

3  |  ROLE OF MIR- 34A IN THE 
REGULATION OF ANTI- TUMOR 
IMMUNITY AND THE TUMOR 
IMMUNE MICRO ENV IRO NMENT

MiR- 34a plays a key role in regulating the immunologi-
cal microenvironment of many malignancies, including 
breast, gastric, lung, glioma, liver, cervix, and head and 
neck cancer (Figure 2; Table 1).
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3.1 | MiR- 34a and breast cancer

Breast cancer is one of the most prevalent tumors and the 
second most common cause of cancer- related deaths in 
women worldwide, accounting for around 25% of all female 
cancer cases. Despite the advancements in detecting and 
treating breast cancer, the clinical results remain dismal, 
with low 5- year survival rates for women with metastatic 
breast cancer. The miR- 34 family includes tumor suppres-
sor proteins that promote apoptosis, restrict cell migration 
and proliferation, and regulate the p53 signaling path-
way.27,28 There are few therapeutic options available for 
TNBC, a breast cancer with a dismal prognosis that lacks 
the estrogen receptor, progesterone receptor, and human 
epidermal growth factor receptor 2. The majority of TNBC 
cases also include p53 mutations.29,30 Although miR- 
34a was found to be highly expressed in healthy human 

mammary epithelial cells, its expression was inhibited in 
some TNBC cells known as MDA- MB- 231 cells.12 Multiple 
Copies in T- cell Malignancy 1 (MCT- 1) can destabilize 
p53,31 and Yueh- Shan Weng et al. demonstrated that miR- 
34a could inhibit IL- 6R expression in the MCT- 1 pathway. 
In addition, the researchers also co- cultured TNBC cells 
transfected with miR- 34a with monocytes THP- 1, they 
found that MDA- MB- 231 cells overexpressed with miR- 
34a made monocytes more likely to polarize into M1- type 
macrophages. These findings imply that miR- 34a is crucial 
for controlling the immunological microenvironment in 
TNBC. Not only that, some investigators performed gene 
expression analysis of T- cell infiltration in breast cancer, 
and the results showed20 that miR- 34a may be associated 
with CD4+ T- cell infiltration, which may provide new tar-
get ideas for immunotherapy of breast cancer. In addition, 
Chen et al.32 showed that the stem gene LIN28B promotes 

F I G U R E  2  Targeted pathways of miR- 34a in the immune microenvironment of many cancers.
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MYC expression and suppresses miR- 34a levels, thereby 
promoting glycolysis and affecting the prognosis of breast 
cancer patients. Additionally, evidence for it exists that this 
hypothesis was further supported by Xiao et al.,33 who also 
showed that miR- 34a overexpression might directly inhibit 
the ability of breast cancers to grow and metastasize via 
reducing the production of the lactate dehydrogenase en-
zyme responsible for glycolysis in cancer cells.

3.2 | MiR- 34a and gastric cancer

Gastric cancer has become the most challenging malignant 
cancer; it has the fifth highest morbidity and third highest 
mortality worldwide.34 The development of gastric cancer 
has been linked with Helicobacter pylori infection, genetic 
variation and environmental factors.35,36 Currently, even 
though significant improvements have been made in the 
areas of surgery, chemotherapy, radiotherapy, and immu-
notherapy, the 5- year survival rate is still poor due to the 
difficulty of early detection and early diagnosis of gastric 
cancer, which can easily metastasize to other organs.37 
Therefore there is a need to identify novel biomarkers that 
can be used for the early detection, diagnosis, and thera-
peutic targets. Based on previous studies, miRNAs have 
been shown to influence gastric cancer tumorigenesis.38– 40 
Among them, miR- 34a41 antagonizes the development of 
gastric cancer. According to an experimental study by Yong 

et al.,23 it was found that the inhibition of the programmed 
death ligand 1 (PD- L1), a crucial regulator of tumor im-
mune evasion, can reduce the expression of miR- 34a and 
the proliferation, migration, and invasion of gastric cancer 
cells.42 These findings suggest that the overexpression of 
miR- 34a can inhibit the immune evasion of cancer cells.

3.3 | MiR- 34a and lung cancer

Lung cancer is the most common cause of death worldwide, 
with the highest incidence and mortality rates. Smoking is 
widely acknowledged to be the primary cause of lung can-
cer.43 About 85% of instances of lung cancer among them are 
non- small cell lung cancer (NSCLC). It has been found that 
SART3 overexpression increases miR- 34a levels and thus 
affects the cell cycle of NSCLC. p53, in turn, regulates PD- 
L1 through miR- 34a (targeting EGFR) and inhibits NSCLC 
tumor growth and metastasis.24,44,45 In addition, miR- 34a is 
seen as a potential target in the fight against lung cancer.46,47 
MiR- 34a targets the Krüppel- like factor 4 to re- educate 
M2- type macrophages to M1- type macrophages, as dem-
onstrated by Shweta Arora et al.15 To further confirm the 
effect of miR- 34a on the immunological milieu of lung can-
cer, the researchers co- cultured pulmonary cancerous cells 
implanted with miR- 34a with macrophages and observed a 
decrease in usual markers for M2 and an increase in charac-
teristic markers for M1. These findings imply that miR- 34a 

T A B L E  1  List of miR- 34a targets in the tumor microenvironment of various cancers.

Cancer type Immuno
Involved 
molecule Involved target Function Reference

Breast cancer TAM/M2 IL- 6R MCT- 1 Reprograms EMT and 
macrophages as well as 
inhibits tumor progression

12

CD4+ T cell CAPN6 / Regulates cellular activities 
associated with CD4+ T cell 
infiltration

20

Gastric cancer T, B, and NK cells PD- L1 / Suppresses the proliferation as 
well as the migration and 
invasion of tumor

23

Lung cancer TAM KLF4 / Modulation of macrophage 
polarization reverses the 
processes of tumorigenesis

15

macrophages and Treg 
cells

PD- L1 p53 Regulates tumor immune 
evasion

24

Glioma MSCs SIRT1 p53, Cdkn1a, and 
Cdkn2c

Induces glioma cell senescence 25

Liver cancer Treg cells CCL22 / Promotes tumor cells to escape 
from immune surveillance

26

Head and neck 
squamous cell 
carcinoma

pro- B cells, CD8 naïve T 
cells, Th1 cells

PD- L1 MET Suppresses oncogenic MET and 
restores tumor immunity

13
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can exert its tumor- killing activity through influencing the 
polarization of TAMs in NSCLC. In addition, although 
smoking is the primary cause of lung cancer, roughly 25% 
of patients worldwide do not currently smoke, and patients 
with lung cancer who have never smoked have the seventh- 
highest mortality rate of all cancer patients worldwide.48 
According to Sui et al.,49 miR- 34a tends to be overexpressed 
in lung cancer patients who never smoked and may there-
fore contribute to the development of this disease.

3.4 | miR- 34a and glioma

The most frequent primary malignant tumors of the adult 
central nervous system are gliomas, which are brain tu-
mors caused by the malignant transformation of oligo-
dendrocytes and astrocytes.50 Glioblastoma multiforme 
(GBM), the most prevalent kind, has a very bad progno-
sis.51 The typical course of treatment for gliomas involves 
the maximum amount of surgical resection, followed by 
radiotherapy and chemotherapy.52 Unfortunately, the 
complete surgical excision of malignant gliomas is diffi-
cult due to their diffuse nature. In addition, since GBM is 
insensitive to chemotherapy and radiotherapy,53,54 tumor 
recurrence is inevitable in the vast majority of patients. 
In order to address this issue, there is a growing research 
trend toward the development of non- viral biotechnologies 
that employ safe and effective gene and cell- based treat-
ments for gliomas. Mesenchymal stem cells (MSCs) can se-
crete a number of immunomodulatory compounds, such 
as cell chemokines. Relevant studies25 demonstrated that 
the transfer of miR- 34a from human bone marrow- derived 
mesenchymal stem cells could be used to target and inhibit 
SIRT1 (an anti- aging factor), thereby suppressing the pro-
liferation, invasion, and migration of glioma. Moreover, it 
can also induce glioma cell senescence and increase DNA 
damage. Therefore the delivery of miR- 34a by MSCs may 
provide a new therapeutic approach for glioma. Rathod 
et al. demonstrated that compared with normal brain tis-
sue, miR- 34a expression is lower in glioma stem cells and 
primary gliomas.55,56 Similarly, analysis of the data by Yin 
et al.57 also showed that miR- 34a could inhibit the develop-
ment of GBM cells in vitro and in vivo by controlling the 
expression of cell cycle- related proteins and EGFR.

3.5 | MiR- 34a and liver cancer

Hepatocellular carcinoma (HCC) is a serious health issue 
that affects people all over the world. Because HCC is di-
agnosed at the late stage, many HCC patients present with 
symptoms of intrahepatic metastasis or postoperative recur-
rence. The 5- year survival rate is only approximately 33%. 

Numerous studies indicate that exposure to carcinogens or 
toxins, hereditary factors, or infection with the hepatitis B 
and C viruses (HBV, HCV) can contribute to the develop-
ment of HCC. Relevant researches26 have discovered that 
the decline in miR- 34a expression is connected to HBV- 
induced HCC throughout the development of liver cancer. 
The HBV infection changes the perihepatic milieu by in-
creasing the level of TGF- β, which block miR- 34a expres-
sion and trigger the production of CCL22. The Treg cells are 
then attracted toward the tumor, thus promoting tumor im-
mune evasion and metastasis. These findings suggest that 
miR- 34a- targeted therapy could potentially be used to treat 
HCC. However, further research is required to determine 
the exact mechanism of action of miR- 34a in HCC.

3.6 | MiR- 34a and cervical cancer

Cervical cancer is the gynecological cancer that strikes 
women most frequently and fatally, ranking fourth.1 
However, since cervical cancer is a widely heterogeneous 
disease, traditional cancer treatment methods, such as sur-
gery, chemotherapy, and radiotherapy, are often ineffective 
due to the multifactorial characteristics of genetic het-
erogeneity and drug resistance. Recently, targeted cancer 
therapy has been considered to be a promising treatment 
method because of the high expression of surface receptors 
on cervical cancer cells. In HPV- positive cells, downregula-
tion of miR- 34 family expression has been reported, which 
may cause p53 instability and lead to the proliferation of 
tumor cells.58 Similarly, Wang et al.59 showed that miR- 
34a expression was noticeably downregulated in both the 
serum and tumor tissue of cervical cancer patients. In con-
trast, miR- 34a overexpression may result in cell cycle arrest, 
decrease cell growth, and increase cell death.60 Widespread 
expression of PD- L1, a miR- 34a target,24 in cervical cancer 
is a crucial mechanism by which the disease manipulates 
the immune system.61,62 It has been shown63 that the com-
bination of anti- PD- L1 antibody and miR- 34a can inhibit 
cervical cancer tumor progression, while the two can act 
synergistically. It has not yet been determined if miR- 34a 
and PD- L1 are directly related to cervical cancer. However, 
due to their close connection with tumor development, 
miR- 34a has gradually become a key biomarker and target 
for anti- cancer therapy in cervical cancer.64

3.7 | MiR- 34a and head and neck 
squamous cell carcinoma (HNSCC)

MiR- 34a is a biomarker that can be utilized in HNSCC 
for both diagnosis and prognosis.65,66 Studies have 
found a link between the downregulation of miR- 34a 
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and the angiogenesis and cell proliferation in HNSCC.67 
Additionally, Wu et al.13 found that miR- 34a levels were 
markedly decreased in the tumor tissue of HNSCC patients. 
On the other hand, patients with miR- 34a overexpression 
had improved immune function via the blocking of PD- 
L1. MiR- 34a also controlled the cell proliferation, proto- 
oncogene MET, and tumor suppressor function. Therefore 
miR- 34a may provide a direct target for the proto- oncogene 
while retaining the anti- tumor immune function.

4  |  CONCLUSION AND 
PERSPECTIVE

This paper reviewed the antitumor effect of miR- 34a 
through regulation of the immunosuppressive micro-
environment. miR- 34a has potent antitumor effects. 
Numerous investigators have confirmed its effectiveness 
in many tumor cell lines through in vivo and in vitro ex-
periments, enabling the creation of matching inhibitors 
or enhancers for use in clinical therapeutics. Due to the 
complexity and diversity of the internal environment for 
tumor cell survival, how miR- 34a can be used in immuno-
therapy has received extensive attention.

However, although studies on the combination of 
miR- 34a and immunotherapy continue to emerge, the 
translation of this research to clinical practice has been 
challenging. The high heterogeneity and complexity of 
the tumor microenvironment make it difficult to develop 
single effective drug targets. More research is required to 
understand the impact of miR- 34a on the regulation of 
the tumor immune microenvironment. One of the main 
challenges is the efficient delivery of miRNA- based thera-
peutics to target tissues, as miRNAs have poor pharmaco-
kinetics and require delivery systems that can protect them 
from degradation and facilitate their uptake into target 
cells. Finally, most in vivo studies have been conducted on 
tumor mouse models, which lack the complexity of human 
tumors. Treatments that work in mice may not be effec-
tive in humans. Although miR- 34a- targeted therapies are 
showing great potential in preclinical studies, further re-
search is required to validate its role in cancer biology and 
to optimize its delivery and efficacy as a therapeutic agent.
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