
11960  |   	﻿�  Cancer Medicine. 2023;12:11960–11970.wileyonlinelibrary.com/journal/cam4

1   |   INTRODUCTION

Cancer prognosis is one of the most important feats of 
cancer researchers, as a more precise prediction can 

promote proper clinical treatment for patients. However, 
cancer prognosis is challenging, as the heterogeneity and 
environment of different cancer types significantly affect 
their prognoses.1 With the development of sequencing 
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Abstract
Background: In identifying prognostic markers in cancer, the roles of tumor-
adjacent normal tissues are often confined to drawing expression differences be-
tween tumor and normal tissues rather than being treated as the main targets of 
investigations. Thus, differential expression analysis between tumors and adja-
cent normal tissues is performed prior to prognostic analysis in previous studies. 
However, recent studies have suggested that the prognostic relevance of differ-
entially expressed genes (DEGs) is insignificant for some cancers, contradicting 
conventional approaches
Methods: This study investigated the prognostic efficacy of transcriptomic data 
from tumors and adjacent normal tissues using The Cancer Genome Atlas data-
set. Prognostic analysis using Cox regression models and survival prediction 
using machine-learning models and feature selection methods were employed.
Results: The results revealed that for kidney, liver, and head and neck cancer, 
adjacent normal tissues harbored higher proportions of prognostic genes and ex-
hibited better survival prediction performance than tumor tissues and DEGs in 
machine-learning models. Furthermore, the application of a distance correlation-
based feature selection method to kidney and liver cancer using external datasets 
revealed that the selected genes for adjacent normal tissues exhibited higher pre-
diction performance than those for tumor tissues. The study results suggest that 
the expression levels of genes in adjacent normal tissues are potential prognostic 
markers. The source code of this study is available at https://github.com/DMCB-
GIST/Survi​val_Normal.
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technologies, several genomic and transcriptomic data 
from cancer patients have been obtained and are publicly 
available.2,3 Therefore, deep learning has made advance-
ments in the biomedical domain, including survival anal-
ysis and prediction. Recently, machine learning-based 
survival models have been developed and applied to ad-
dress nonlinear survival data; however, the Cox propor-
tional hazards model is traditionally one standard.4–6

Transcriptomic data derived from tumor-adjacent 
normal tissues are often used as “control” to draw the 
expression differences of genes between tumor and nor-
mal tissues. Conventionally, analysis of gene expression 
differences has been performed prior to survival analysis, 
and it resulted in identifying genes that are related to both 
diagnosis and prognosis. For example, several studies have 
identified prognostic genes only among differentially ex-
pressed gene (DEG) sets.7–11 However, the effectiveness of 
DEGs in survival analyses is understudied.

Most transcriptomic data are generated from tumor 
tissues, whereas tumor-adjacent normal tissues have 
been ill-studied, making obtaining normal tissue data 
difficult.12 However, recent studies have reported that 
tumor-adjacent normal tissues may provide predictive in-
formation on patient survival or cancer progression.12–14 
For example, using The Cancer Genome Atlas (TCGA) 
data, An et al. demonstrated that differential expres-
sions between tumors and adjacent normal tissues were 
unrelated to the corresponding survival of cancer pa-
tients.15,16 In addition, several studies have suggested 
that noncancerous liver tissues improved survival pre-
diction in hepatocellular carcinoma patients, suggesting 
that tumor-adjacent normal tissue might hold significant 
prognostic information.17–19 Similarly, Zhou et al. studied 
the relationship between tumor-adjacent normal tissues 
and recurrence-free survival of prostate cancer patients 
and suggested a potential role for the tumor microenvi-
ronment.20 However, most previous studies mainly prior-
itized a single cancer type and did not systemically study 
multiple cancer types. Also, most studies did not focus on 
the efficacy of the feature selection steps according to the 
tumor or adjacent normal tissues.

In this study, the prognostic efficacy of tumor and ad-
jacent normal tissue samples from various cancer patients 
were investigated, and their performances were compared 
using transcriptomic and prognostic data from TCGA.15 
Additionally, the efficacy of the feature selection methods, 
such as gene expression differences and distance correla-
tion, was compared in a prognostic manner. For screening 
steps based on distance correlation, kidney and liver can-
cer datasets were obtained from the International Cancer 
Genome Consortium (ICGC).21 The biological functions 
of survival-related gene sets derived from the distance cor-
relation method were explored using enrichment analysis.

2   |   MATERIALS AND METHODS

2.1  |  Study design

This study was designed to investigate the prognostic ef-
ficacy of transcriptomic profiles of tumors and adjacent 
normal tissues of cancer patients and analyze the prog-
nostic value of gene expression differences calculated 
using tumor and normal tissues. Transcriptomic pro-
files of tumor and adjacent normal tissues and prognos-
tic information of cancer patients were obtained from 
TCGA and ICGC datasets. Machine learning-based sur-
vival prediction models were employed to compare the 
prognostic relevance of the transcriptomic profiles of 
each tissue and their ratio of DEGs (Figure 1A). Model 
performances were measured using the concordance 
index (C-index). Next, feature selection methods were 
applied for kidney and liver cancer datasets to identify 
prognostic genes and improve survival prediction per-
formance. For feature selection, distance correlation 
and fold-change-based methods were used for gene 
ranking, and their prognostic efficacy was investigated 
based on the performance of the survival prediction 
models (Figure 1B).

2.2  |  Datasets and preprocessing

TCGA-Kidney Renal Clear Cell Carcinoma (KIRC), liver 
hepatocellular carcinoma (LIHC), head and neck squa-
mous cell carcinoma (HNSC), breast cancer (BRCA), lung 
adenocarcinoma (LUAD), and lung squamous cell carci-
noma (LUSC) from the TCGA database were studied as 
they contained a sufficient number of tumor and paired 
normal samples and prognostic events. Transcriptome 
and clinical data were obtained from TCGA Data Portal 
via the “TCGAbiolinks” package in R.22 From the tran-
scriptomic data, Fragments Per Kilobase of transcript 
per million mapped reads upper quartile (FPKM-UQ) 
values of 19,962 protein-coding genes were used. The 
FPKM-UQ method is preferred to obtain a more reliable 
value than including genes with high variability. Each 
gene expression matrix was standard normalized using 
columns (genes). External datasets for kidney cancer 
(Renal Cell Cancer-European Union [RECA-EU]) and 
liver cancer (Liver Cancer-RIKEN, Japan [LIRI-JP]) 
from the ICGC database were also employed for screen-
ing.21 They contained RNA-seq data from the tumor and 
paired adjacent tissues and prognostic information. The 
numbers of samples for each data and characteristic are 
listed in Table 1.

In the screening steps, genes with zero mean in the 
TCGA datasets were discarded, and those that existed 
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in the TCGA and ICGC datasets were retained. For kid-
ney cancer, 16,904 and 17,100 genes were retained for 
tumor and adjacent normal tissues, respectively, whereas 
for liver cancer, 11,264 and 11,965 genes were retained, 
respectively.

2.3  |  Identification of differentially 
expressed genes and their expression ratio

DESeq2 was used to calculate fold changes and identify 
DEGs.23 Given that only paired tumor and normal data 

F I G U R E  1   Workflow of the study. (A) The prognostic relevance of transcriptomic profiles of tumor and adjacent normal tissues and 
gene expression differences were investigated using survival prediction models. (B) Feature selection methods based on distance correlation 
and fold-change were applied to kidney and liver cancer datasets to identify prognostic genes and investigate their efficacy in survival 
predictions.

T A B L E  1   Sample size and data characteristics.

Cancer cohorts
Number of 
samples

Number of 
deceased samples

Age in years 
(median)

Tumor stage

I II III IV

TCGA 
(Paired)

KIRC 72 27 (38%) 38–90 (62) 27 14 29 2

HNSC 42 32 (76%) 29–87 (64) 3 18 9 12

LIHC 50 34 (68%) 20–81 (68.5) 20 14 13 3

BRCA 112 44 (39%) 30–90 (56.5) 29 65 11 7

LUAD 57 26 (46%) 42–86 (66) 18 36 2 1

LUSC 49 30 (61%) 45–85 (69) 9 34 5 1

ICGC RECA-EU
(Normal)

45 17 (38%) 38–83 (62) 26 5 13 1

RECA-EU
(Tumor)

91 30 (33%) 35–83 (60) 54 13 22 2

LIRI-JP
(Normal)

202 40 (20%) 31–86 (68) 26 93 65 18

LIRI-JP
(Tumor)

240 43 (18%) 31–89 (69) 36 109 74 21
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of patients were used, tissue type and patient identifier 
were used as factor variables in constructing models. 
A gene was considered a DEG based on an absolute log 
2-fold-change value of ˃2 and an adjusted p-value of ˂0.05.

DEG expression ratio was calculated for each patient to 
compare the prognostic value with the expression values 
of tumor and normal tissues. The expression ratio of the i-
th patient of j-th for identifying DEG was calculated using 
two methods:

To calculate the log ratio, the normal expression of 
each patient was used in Equation (1), whereas the me-
dian of normal expressions of all patients was used in 
Equation (2). A comparative analysis between these two 
approaches was used to investigate the potential survival 
prediction efficacy of the individuality of normal tissues.

2.4  |  Data screening via distance 
correlation

Data screening steps were applied to select more reliable 
survival-related genes using external datasets from ICGC 
via distance correlation.24,25 Distance correlation measures 
linear and nonlinear associations between two random 
variables. The distance correlation between gene expres-
sion level and the linear predictor values of Cox regres-
sion models using clinical variables, such as patient age 
and tumor stage, were calculated. Metastasis was only em-
ployed for kidney cancer analysis because the LIRI-JP did 
not include metastasis information. Genes were ranked 
according to their distance correlations by tissue type. The 
“energy” package in R was used for computation.26

2.5  |  Survival prediction 
model and evaluation

Neural networks (NN), random survival forest (RSF), and 
survival support vector machine (SSVM) were used for 
cancer prognosis using high-dimensional RNA-seq data.27 
For each data type, a prediction model was trained and 
tested using 70% of the randomly selected samples and 
the remainder, respectively. The specific training and test 
set split were maintained for each model type to control 
randomness effects. These steps were repeated 50 times 
to calculate average performances. Model performances 

were measured using the C-index, which indicates the 
proportion of concordant pairs divided by the total num-
ber of possible evaluation pairs. The C-index ranged be-
tween 0 and 1, and 0.5, indicating that the performance of 
a model is equivalent to random guessing.

For RSF and SSVM, the models were fitted with hyper-
parameters searched by threefold cross-validation. For 
the RSF models, the number of estimators (n_estimators) 
and the minimum number of samples required to be at a 
leaf node (min_samples_leaf) and split an internal node 
(min_samples_split) were searched. For the SVM models, 
the kernel type, weight of penalizing the squared hinge 
loss (alpha), and degree for poly-kernels (gamma) were 
searched. Moreover, NN models, including DeepSurv 
and Cox-nnet, were designed according to previous stud-
ies.28,29 The NN models were constructed with two hid-
den layers, where the dimensions were the square roots of 
the input dimension. A rectified linear unit (ReLU) and a 
hyperbolic tangent (Tanh) function were used as activa-
tion functions. The models had partial log-likelihood with 
regularization as the loss function. With the output of the 
network ĥ�(x), the objective function is set as

where E(i) denotes event occurrence, ti denotes the observed 
time for the i-th patient, and λ denotes the regularization pa-
rameter of the L2 penalty.

2.6  |  Functional annotation

g:Profiler was used to determine the biological roles of 
survival-related genes30; it offers a functional profiling 
tool that discovers statistically significantly enriched 
terms of Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases on the input gene 
list.31–35 The top 1000 ranked genes were made based on 
the distance correlations for each data type as input lists. 
Biological terms with g:SCS adjusted p-value <0.05 were 
considered statistically significant.

3   |   RESULTS

3.1  |  Survival analysis with clinical 
data, gene expression data of tumor and 
normal tissues, and expression ratio of 
DEGs

Before we examine the prognostic performances of gene 
expressions, we first examined the relationships between 
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survival and basic clinical variables, including tumor stage 
and diagnostic age. The Cox regression models were fitted 
to examine the performance of the clinical variables for 
each cancer type, as shown in Figure 2A. The prediction 
performances represented by the C-index of the fitted Cox 
regression models showed diverse aspects and difficulties 
for each cancer type. Statistically, Cox coefficients of tumor 
stage in the univariate Cox regression models showed p-
values of 0.04 and 0.01 by Wald test for TCGA-KIRC and 
BRCA, respectively, indicating significant relationships 

between patient survival. Moreover, patient age showed a 
significant relationship only for TCGA-KIRC (p = 0.002).

Next, relative proportions of informative genes be-
tween tumors and adjacent normal tissues were ex-
plored in a prognostic manner (Figure 2B). Given that 
a C-index of approximately 0.5 indicates a minute rela-
tionship with survival, genes with a C-index of approx-
imately 0 or 1 were considered informative genes. The 
C-index of every gene from the tumor and adjacent nor-
mal tissues was investigated, and the number of genes 

F I G U R E  2   Prognostic information of six The Cancer Genome Atlas (TCGA) datasets. (A) The C-index of the clinical variables was 
investigated using the Cox PH model. The significance evaluated by the likelihood-ratio test is indicated by asterisks above the bars. (B) 
Stacked density plot of informative genes in a prognostic manner for each tissue type. (C) The survival prediction performance of neural 
networks (NN), random survival forest (RSF), and survival support vector machine (SSVM), which uses different data types. Yellow boxes 
indicate the performance ranges using log2 fold-change of DEGs where the normal tissue expression of the patient was used, whereas gray 
boxes indicate median normal tissue expression for fold-change calculation.
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corresponding to specific C-index values was compared. 
Adjacent normal tissues of TCGA-KIRC, LIHC, HNSC, 
and LUSC had a higher ratio of informative genes than 
tumor tissues, whereas TCGA-BRCA and LUAD exhib-
ited contrasting results.

Based on these observations, the prognostic efficacy of 
gene expression between normal and tumor tissues was 
compared using three survival prediction models (NN, 
RSF, and SSVM) for each tissue type; the best model con-
figuration and data types varied according to the cancer 
type. One of the most crucial findings was that the pro-
portion of informative genes between normal and tumor 
tissues affected the prediction performance ranges for 
each cancer type (Figure 2C). For TCGA-KIRC, LIHC, and 
HNSC, adjacent normal tissues showed higher average 
performance than tumor tissues regardless of the predic-
tion model type, consistent with the ratio of informative 
genes in each tissue. Statistical differences between tissues 
were validated using the Wilcoxon test, showing adjusted 
p-values ˂ 0.05 on NN models. For TCGA-KIRC and HNSC, 
significant p-values were observed in the SSVM and RSF 
models. For KIRC and LIHC, adjacent normal tissues ex-
hibited higher prediction performances than tumor stages 
and ages combined. Although TCGA-BRCA tumor tissues 
showed higher proportions of informative genes, adjacent 
normal tissues exhibited a better performance range in the 
NN and SVM models. However, lung cancers had different 
results compared to other cancer types. For TCGA-LUAD, 
tumor tissue had a higher performance than adjacent nor-
mal tissue, consistent with the proportions of informative 
genes. In addition, no significant differences were ob-
served between the tissues for TCGA-LUSCs.

To investigate the prognostic efficacy of DEGs, the 
expression ratio of DEGs in machine-learning models 
was employed. Two DEG expression ratios were calcu-
lated using Equations  (1) and (2) in the Method sec-
tion, which were referred to as “individual ratio” and 
“median ratio.” The prognostic relevance of DEGs was 
surmised by the survival prediction results of the NN 
models (Figure  2C). Although DEGs exhibited better 
performance than single gene expression data types 
(normal or tumor tissues) for TCGA-BRCA, LUAD, and 
LUSC, they were ineffective for TCGA-KIRC, LIHC, and 
HNSC, consistent with the previous results observed. 
For TCGA-KIRC and HNSC, adjacent normal tissue ex-
hibited better performance than the expression ratio of 
DEGs, with a significant p-value (0.011 and 4.84 × 10−4 
for individual ratio and median ratio in KIRC, 7.76 × 10−4 
and 6.06 × 10−9 in HNSC, respectively). For LIHC, ad-
jacent normal tissue showed optimal performance in 
NN models, whereas the individual ratio of DEGs was 
best in SVM models. In contrast, the individual ratio of 
DEGs in TCGA-BRCA showed optimal performance in 

NN models, whereas adjacent normal tissue was best in 
SVM models.

The prediction performances were compared using the 
individual and median ratios to investigate the importance 
of the paired adjacent normal tissue data of a patient. For 
TCGA-KIRC, LIHC, HNSC, and BRCA, the individual 
ratio of DEGs was slightly better than the median ratio. 
Particularly, the individual ratio of TCGA-HNSC was sig-
nificantly higher than the median ratio in the NN and 
SVM models, as validated by the Wilcoxon test. However, 
for lung cancer, the individual ratio of DEGs was worse 
than the median ratio, indicating that paired normal tis-
sue from lung cancer patients was ineffective for survival 
prediction.

The correlations between log-fold changes in each gene 
expression in tumor and normal tissues and their corre-
sponding Cox coefficients were investigated (Figure  S1–
S3). TCGA-BRCA and LUAD had Pearson correlation 
coefficients of 0.153 and 0.207, respectively, whereas 
TCGA-LUSC had a correlation coefficient of −0.134. 
However, TCGA-KIRC, LIHC, and HNSC showed correla-
tion coefficients of approximately zero, indicating irrele-
vant correlations.

3.2  |  Prognostic values of selected 
features for kidney and liver cancer

To select survival-related gene sets and explore their prog-
nostic efficacies, two feature selection methods were ap-
plied: log fold-change and distance correlation. For the log 
fold-change method, the calculation results from DESeq2 
were used. Genes were ranked by each method, and the 
different feature sizes selected from the highest rankings 
were employed in survival prediction models to investi-
gate feature selection efficacy.

For distance correlation-based feature screening, 
RECA-EU and LIRI-JP datasets from ICGC, which contain 
transcriptomic data from tumors and adjacent normal tis-
sues of kidney and liver cancer patients and correspond-
ing prognostic data, were employed. Distance correlation 
scores were measured between expression levels and pre-
dictor variables derived from the Cox regression fitted by 
clinical variables. The selected genes by ICGC datasets 
were clustered into favorable or unfavorable genes for 
survival, as depicted in Figure S2, and they were listed in 
Table S1.

3.2.1  |  Efficacy of feature selection

The NN model training and testing were performed with 
different input sizes of selected features in sorted order for 
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each method. Adjacent normal tissues exhibited higher 
performance ranges than tumor tissues, regardless of dif-
ferent feature sizes and prediction models, confirming 
previous observations (Figure  3A and Figure  S2). The 
optimal performances of adjacent normal tissues in kid-
ney and liver cancers were 0.773 and 0.651, respectively; 
they showed improvements compared to those without 
the feature selection steps. In contrast, log fold changes of 
DEGs showed intermediate performance ranges between 
tumor and adjacent normal tissues for kidney and liver 
cancers in NN models. The selected features in adjacent 
normal tissues also exhibited better performance ranges 
in the SVM and RSF models, whereas tumor tissues did 
not (Figure S3).

To determine the effectiveness of feature selection 
based on distance correlation, patients were grouped into 
high or low risk group by median of output values of the 
NN models with or without the feature selection step, 
respectively. Input feature sizes were determined based 
on the observations with the highest performances. For 
KIRC, input feature sizes were 1300 and 5800 for normal 
and tumor, respectively, and for LIHC, those were 2300 
and 10,200, respectively. As illustrated in Figure 3B, the 
feature selection process made patients grouped clearer 
in most cases. Especially, feature selection worked more 
effectively for adjacent normal tissues. The p-values of the 
Kaplan–Meier estimators decreased less than 0.05 after 
the feature selection steps were applied. Specifically, p-
values were dropped to 0.05 to 0.0001 for KIRC and 0.06 
to 0.007 for LIHC. However, the results with tumor tissues 

did not exhibit the noteworthy difference after feature 
selection. For KIRC tumor data, p-value was dropped 0.3 
to 0.2 while LIHC tumor data remained the same as 0.4, 
which were not significant in both cases.

3.2.2  |  Screening steps were more effective 
for adjacent normal tissues than tumor tissues

For adjacent normal tissues, patients were more clearly 
separated with screening steps. Also, specific ranges of 
feature sizes were observed where the performance was 
better than without it. However, screening steps were in-
effective for tumor tissues. Therefore, it was hypothesized 
that tumor tissue heterogeneity between TCGA and ICGC 
datasets might influence feature selection during the 
screening steps. Univariate Cox regression models were 
fitted using expression values of each gene in the ICGC 
dataset, and using the corresponding gene in the TCGA 
dataset, the C-index was tested using the Cox regression 
models. Pearson correlation coefficients were measured 
between the training C-index and test C-index. Adjacent 
normal tissues from kidney and liver cancer datasets ex-
hibited higher similarities (0.293 and 0.262, respectively) 
between TCGA and ICGC datasets than tumor tissues, 
which showed almost no correlation (0.085 and 0.091, re-
spectively) (Figure  3C). These differences in similarities 
explain that the better efficacy of feature selection meth-
ods on adjacent normal tissues using external datasets is 
anticipated.

F I G U R E  3   Effectiveness of feature selection for kidney and liver cancer. (A) Survival prediction performance of NN models produced 
using selected features with different feature sizes. Each dot represents the average performance of 20 iterations. Blue and red solid lines 
indicate the average performance of adjacent normal and tumor tissues, respectively, without feature selection. Blue boxes show the range 
in which screening steps exhibited better performance than the baseline for adjacent normal tissues. The yellow boxes include DEGs. (B) 
Patients are grouped by the median of the NN model output with or without distance correlation-based screening process, respectively. The 
screening steps worked more effectively on adjacent normal tissue of kidney and liver cancers. (C) Correlation between fitted C-index using 
the screening dataset and test C-index using TCGA dataset by univariate Cox PH models.
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3.3  |  Functional annotation of survival-
related genes

Biological functions of the top 1000 screened genes based 
on distance correlations for each category were inves-
tigated based on GO and KEGG databases, and notable 
terms are presented in Figure 4. The results revealed that 
cell movement and immune-related pathways were en-
riched by normal tissue gene sets from the kidney and 
liver; relationships between tumor microenvironments 
and cell movements have been reported in several previ-
ous studies, along with immune responses.36,37 However, 
cell cycle, DNA repair, and protein ubiquitination-related 
pathways were enriched by tumor tissue gene sets; the as-
sociations between these pathways and cancers are well-
known.38–40 Apoptosis-related pathways were enriched by 
the normal kidney and liver tumor gene sets.

In addition to the terms depicted in Figure 4, metabolic 
and catabolic process-related pathways were frequently 
enriched by all gene sets. Lipid and sugar metabolic 
process-related pathways were enriched by normal liver 
tissue gene sets.

4   |   DISCUSSION

Recently, the effects of tumor microenvironment on can-
cer progression and prognosis have been investigated in 
various aspects including the immune system or cross-
talk between tumor tissues.41–43 In addition, diagnostic 
or prognostic markers have been discovered from tumor-
adjacent normal tissues. For example, aging-related genes 
identified from normal kidney tissues were validated in 
vivo by cancer invasion.44 Despite these interests in tumor 

microenvironment, few cancer patients produce tran-
scriptomic profiles from tumor-adjacent normal tissues.

In this study, we collected individual adjacent normal 
tissues from the TCGA database and investigated the po-
tential patient survival prediction efficacy. Initially, we 
utilized gene expression data of protein-coding genes 
without selecting features to verify whether adjacent nor-
mal tissues worthy for prognostic analysis. For TCGA-
KIRC, LIHC, and HNSC, gene expression data from 
adjacent normal tissues exhibited better survival predic-
tion performance than tumor tissues across multiple types 
of machine-learning models, suggesting that adjacent 
normal tissues might harbor predictive information. In 
contrast, for lung cancers, adjacent normal tissues exhib-
ited a worse performance than tumor tissues, implying 
that simple utilization of normal lung tissue data could 
interrupt survival prediction.

Gene expressions of adjacent normal tissues were usu-
ally employed for calculating expression differences be-
tween expression levels of corresponding tumor tissues or 
producing immune infiltration levels.45–47 Instead of these 
previous applications, we adopted the distance correlation 
method to identify prognostic genes. For kidney and liver 
cancer, screening datasets (RECA-EU and LIRI-JP, respec-
tively) were employed. Feature selection by the distance 
correlation method exhibited performance improvements 
only in adjacent normal tissues. Across TCGA and screen-
ing datasets, adjacent normal tissue data had higher sim-
ilarities than tumor tissue data in prognosis, suggesting 
that they share more common features than tumor tis-
sues, which resulted in the efficacy of feature selection. 
We suppose that heterogeneity across normal tissues was 
less than that of tumor tissues, making feature selection 
effective.

F I G U R E  4   Functional annotation 
of top 1000 screening genes based on 
distance correlations.
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We underwent the literature search for top ranked 
genes in normal tissues. For kidney cancer, it was reported 
that the expression of CD74 is increased in diseased kid-
ney and promotes an inflammatory response and may 
protect from interstitial kidney fibrosis.48,49 GRAMD1A 
is related to immune infiltration in tumor microenviron-
ments, and expression of GRAMD1A is significantly re-
lated to the survival of kidney cancer patients.50 In fact, 
GRAMD family expression was associated with the sur-
vival outcome of the KIRC cohort.51 Next, the expression 
of CYP3A in normal kidney tissue might be involved in 
tumor development.52 KRT8 overexpression in renal can-
cer was associated with cell migration and invasion, and 
was significantly related to poor survival of patients.53 For 
liver cancer, suppression of HPD promotes tumorigenesis 
and cell proliferation.54 P4HA1 expression was correlated 
with infiltration levels of immunosuppressive cells in 
most cancer types.55 High ARID3C expression reduced 
the survival of hepatocellular carcinoma patients, and the 
ARID family of genes are known to contribute to the de-
velopment of tumors.56

Selected prognostic genes discovered from adjacent 
normal tissues were frequently related to cell motility. 
Several studies discovered that the motility of both tumor 
and normal cells affects to tumor metastasis in several 
ways, such as invading of basement membrane, escape 
from the primary tumor of origin, migration to blood and 
lymphatic vessels.57,58 We suppose that the motility of 
cells near tumor tissues might cause metastasis, reducing 
the chance of survival.

Given that transcriptomic data from adjacent normal 
tissues and prognostic information are rare, obtaining var-
ious types and large amounts of data was difficult. This 
study was limited by the scarcity of these data. Given that 
an external dataset for screening only kidney and liver 
cancer was obtained, the distance correlation method 
could not be applied to other cancer types. In addition, 
the survival prediction performance of machine-learning 
models fluctuated significantly owing to the small sam-
ple sizes, making the observation of stable performance 
scores difficult.

For future work, developing a novel way to combine 
both paired tumor and normal tissues is possible. As this 
present work showed, expression differences may not be 
the best way for identifying prognostic genes for multiple 
types of cancers.

5   |   CONCLUSIONS

In this study, the prognostic efficacy of transcriptomic 
data of tumors and adjacent normal samples from 
TCGA datasets were investigated. Higher proportions of 

informative genes were observed in adjacent normal tis-
sues than in tumor tissues for kidney, liver, and head and 
neck cancer. In addition, adjacent normal tissues for these 
cancers exhibited higher survival prediction performance 
than tumor tissues in various machine-learning models. 
These results suggest that adjacent normal tissues hold 
more predictive information on the survival of cancer pa-
tients and can be potentially used as prognostic markers. 
The prognostic efficacy of DEGs, which were considered 
the starting point for identifying prognostic genes in most 
previous studies, was investigated. Although DEGs exhib-
ited good survival prediction in some cancer types, such as 
breast and lung cancers, they were ineffective for kidney, 
liver, and head and neck cancers, suggesting that analyz-
ing differential expression between tumors and adjacent 
normal tissues may not always be the best method for 
identifying prognostic genes.
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