

Pathways of N₂O production by marine ammonia-oxidizing **archaea determined from dual-isotope labeling**

Xianhui S. Wan^{a,1}[,](https://orcid.org/0000-0002-8598-1500) Lei Hou^{b[,](https://orcid.org/0000-0003-0895-0126)c}, Shuh-Ji Kao^b, Yao Zhang^{b @}, Hua-Xia Sheng^b, Hui Shen^b, Senwei Tong^{b @}, Wei Qin^{c @}, and Bess B. Ward^{a,[1](https://orcid.org/0000-0001-7870-2684)}

Edited by Donald Canfield, Syddansk Universitet, Odense M, Denmark; received December 13, 2022; accepted February 7, 2023

The ocean is a net source of the greenhouse gas and ozone-depleting substance, nitrous oxide (N₂O), to the atmosphere. Most of that N₂O is produced as a trace side product during ammonia oxidation, primarily by ammonia-oxidizing archaea (AOA), which numerically dominate the ammonia-oxidizing community in most marine environments. The pathways to N₂O production and their kinetics, however, are not **completely understood. Here, we use 15N and 18O isotopes to determine the kinetics of N2O production and trace the source of nitrogen (N) and oxygen (O) atoms in N2O produced by a model marine AOA species,** *Nitrosopumilus maritimus***. We find that during ammonia oxidation, the apparent half saturation constants of nitrite and N2O production are comparable, suggesting that both processes are enzymatically controlled and tightly coupled at low ammonia concentrations. The constituent** atoms in N₂O are derived from ammonia, nitrite, O_2 , and H₂O via multiple pathways. Ammonia is the primary source of N atoms in N_2O , but its contribution varies with ammonia to nitrite ratio. The ratio of $\rm ^{45}N_2O$ to $\rm ^{46}N_2O$ (i.e., single or double **labeled N) varies with substrate ratio, leading to widely varying isotopic signatures** in the N_2O pool. O_2 is the primary source for O atoms. In addition to the previously **demonstrated hybrid formation pathway, we found a substantial contribution by hydroxylamine oxidation, while nitrite reduction is an insignificant source of N2O.** Our study highlights the power of dual ${}^{15}N-{}^{18}O$ isotope labeling to disentangle \overline{N}_2O **production pathways in microbes, with implications for interpretation of pathways** and regulation of marine N₂O sources.

nitrous oxide | ammonia-oxidizing archaea | dual isotope | marine N₂O production pathways | kinetics

Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant members of the marine plankton; they are almost exclusively responsible for ammonia oxidation in the world ocean (1, 2). Globally, over 80% of marine nitrous oxide (N_2O) is estimated to be produced as a side product of ammonia oxidation (3–5), indicating a dominant role of marine AOA in determining N_2O distribution and its flux from ocean to atmosphere. Compared to their bacterial counterparts, ammonia-oxidizing bacteria (AOB), marine AOA lack the genes encoding the known bacterial machineries for N_2O production (6) and exhibit lower N_2O yield (7–9), implying distinct mechanisms of N_2O production between AOA and AOB (10–12). The marine AOA demonstrate significantly higher affinity toward total ammonia $(NH_3$ plus NH_4^* , hereafter referred to as NH_4^*) for ammonia oxidation during nitrite (NO₂⁻) production than AOB (2), but the cellular kinetics of N₂O production have not been explored. Hydroxylamine ($NH₂OH$) and nitric oxide (NO) have been identified as key intermediates in AOA metabolism (13–15), implying multiple potential pathways for N_2O production as both NH₂OH and NO are likely precursors of N₂O. However, the explicit pathways of archaeal \bar{N}_2O production are still incompletely known and remain controversial (10–12). The hybrid $N₂O$ formation pathway (in which the two N atoms in $N₂O$ are derived from different sources via the abiotic reaction between NH₂OH and NO) has been experimentally demonstrated and is considered the dominant pathway for N_2O production in AOA cultures and natural environments (Fig. 1*A*) (10–12). Other AOA pathways may include N₂O production via NO_2^- reduction at low pH (16) and a novel NO dismutation pathway in marine AOA under anaerobic conditions (17). In contrast, no experimental evidence that AOA can directly convert $NH₂OH$ to $N₂O$ via $NH₂OH$ oxidation, either enzymatically or abiotically, has been reported. It is important to determine which pathways occur during archaeal ammonia oxidation and which are relevant in various environmental conditions because 1) the pathway and rate of $N₂O$ production might vary with NH_4^+ and NO_2^- availability, as both are involved in N_2O formation; and 2) different sources of N and O used by AOA to produce N_2O may impart distinct isotope signatures, which are used to deduce the sources of $N₂O$ in natural and man-made systems.

Elucidation of all potential sources of N_2O , however, remains a challenging task. To date, most investigations on $AOA N₂O$ production pathways have focused on the source

Significance

Ammonia-oxidizing archaea (AOA) are the major source of marine nitrous oxide (N_2O) ; however, the cellular kinetics and pathways of archaeal N_2O production remain unclear. We characterize N_2O production kinetics of a model marine AOA species *Nitrosopumilus maritimus* at low ammonia concentrations and quantify the relative contributions of multiple N_2O production pathways using dual ¹⁵N-¹⁸O isotope labeling. We provide direct evidence for the enzymatic regulation of N_2O production by AOA. We found hydroxylamine oxidation contributes substantially to N_2O production, which had not been previously recognized, and that nitrite reduction is not a significant source of N_2O . These findings are important for the interpretation of pathways and regulation of N_2O production in the ocean.

Author contributions: X.S.W., W.Q., and B.B.W. designed research; X.S.W., L.H., H.-X.S., H.S., and S.T. performed research; S.-J.K., and Y.Z. contributed new reagents/ analytic tools; X.S.W., L.H., W.Q., and B.B.W. analyzed data; and X.S.W. and B.B.W. wrote the paper with input from all authors.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS. This article is distributed under [Creative Commons](https://creativecommons.org/licenses/by-nc-nd/4.0/) [Attribution-NonCommercial-NoDerivatives License 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/) [\(CC BY-NC-ND\).](https://creativecommons.org/licenses/by-nc-nd/4.0/)

¹To whom correspondence may be addressed. Email: xianhuiw@princeton.edu or bbw@princeton.edu.

This article contains supporting information online at [https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.](https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2220697120/-/DCSupplemental) [2220697120/-/DCSupplemental](https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2220697120/-/DCSupplemental). Published March 8, 2023.

Fig. 1. Summary of N₂O production pathways during marine archaeal ammonia oxidation. (A) The hybrid pathway, which combines one N atom from NH₂OH and one from nitrite (either ambient or newly produced inside the cell), has been observed previously (10–12). Black arrows represent known pathways for N atoms; dashed pathways represent hypothesized pathways involving NO. (B) Potential N₂O pathways and the N and O atom sources identified in the current study. Five N₂O pathways are identified: 1) NH₂OH oxidation; 2) hybrid pathway a: NH₂OH reaction with NO that was sourced from the reduction of newly produced NO₂⁻; 3) hybrid pathway b: NH₂OH reaction with NO that was sourced from ambient NO₂⁻; 4) reduction of newly produced NO₂⁻; and 5) reduction of ambient NO $_2^-$. Color of the N and O atoms depicts the sources: red and black denote N atoms from NH $_4^+$ and ambient NO $_2^-$, respectively; blue, purple, and gray denote O atoms from O₂, H₂O, and ambient NO₂⁻, respectively; green represents O atoms of newly produced NO₂⁻, which is a mixture of H₂O and O₂. The gray square denotes the membrane and periplasmic space of the AOA cell. The black arrows represent the ammonia oxidation pathway, the red arrows show the potential N₂O production processes, and the dashed arrows indicate potential pathways that are unresolved in our study. (C) Summary of the N, O atom sources of N₂O and the fractional contribution of each pathway during marine archaeal ammonia oxidation with initial NH $_4$ *: NO $_2^-$ ratio of 1:1.

of the nitrogen (N) atoms (13, 16–18). However, using N isotopes alone is insufficient to distinguish multiple $N₂O$ production pathways that occur simultaneously and to quantitatively estimate the relative contribution of each pathway. For instance, the $^{15}{\rm N\text{-}NH}_{4}^+$ isotope labeling approach cannot completely distinguish N_2O production through NH₂OH oxidation, hybrid formation, or NO_2^- reduction, because all these precursors of N_2O could ultimately be sourced from NH_4^+ 18 O-labeling approach provides an independent avenue to identify the source of \overline{N}_2 O by tracking the oxygen (O) atom in N_2 O. A few studies have used ¹⁸O-H₂O to show that the O atom in N₂O can be partly derived from $H₂O$ in lab culture and field studies (9, 19, 20). However, the alternative sources of the O atom in $N₂O$ are still unknown. Importantly, because the O atom source differs among the various N-containing precursors, i.e., $NH₂OH$, $NO₂$ ⁻, and NO, dual ¹⁵N and ¹⁸O isotope labeling is a powerful method to disentangle the complex and interconnected N_2O production pathways in AOA. In this study, using a model marine AOA species *Nitrosopumilus maritimus* strain SCM1 (hereafter refer to as SCM1), we conducted a comprehensive set of dualisotope labeling incubation experiments to systematically investigate $N₂O$ production kinetics and the associated pathways during archaeal ammonia oxidation under various substrate conditions (*SI [Appendix](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials)*, Table S1).

Results and Discussion

Kinetics of N2O Production during Archaeal Ammonia Oxidation. Marine AOA have a remarkably high affinity for NH_4^+ , which is consistent with their dominant role in ammonia oxidation to NO₂⁻ in oligotrophic marine environments (2). However, the

effect of NH_4^+ concentrations on N_2O production by AOA remains unknown. If $N₂O$ is primarily generated via abiotic hybrid reactions between intermediates of archaeal ammonia oxidation, N₂O production by AOA may not follow normal enzyme kinetics. We found that both NO_2^- and N_2O production rates varied with NH₄⁺ concentration (Experiment 1) and both followed Michaelis-Menten-type kinetics (Fig. 2 *A* and *B*). The apparent half saturation constants ($K_{\text{m (app)}}$) for NO₂⁻ production (220 ± 50 nmol $L^{-1}NH₄$ ⁺) were comparable to those that were previously determined for ammonia (132 nmol $L^{-1}NH_4^*$) and oxygen uptake (133 nmol L−1 NH4 +), suggesting all essential enzymatic steps for ammonia oxidation and respiration are highly efficient and tightly coupled at low ammonia concentrations in marine AOA. Likewise, although the maximum rate (V_{max}) for N₂O production (0.97 ± 0.02 amol N cell⁻¹ d⁻¹) was more than three orders of magnitude lower than that for NO_2^- production (7.14 ± 0.25 fmol $\rm N$ cell⁻¹ d−1), *K*m(app) values for the two rates were comparably low. The comparable $K_{\text{m (app)}}$ values for ammonia during NO_2^- and N_2O production imply that both are controlled by enzyme activity in SCM1 at low NH_4^+ concentrations. This implies that enzyme activity provides the key intermediates $NH₂OH$ and NO for both $NO₂⁻$ and $N₂O$ production, i.e., there is no separate completely abiotic reaction that is responsible for $N₂O$ production. The $K_{\text{m (app)}}$ for N₂O production is four orders of magnitude lower than the K_m reported for NO production by SCM1 measured during ammonia oxidation (measured at >2 mol $L^{-1}NH_4^+$) (14). Therefore, the supply of NO is unlikely to be a limiting factor in determining the kinetics of $N₂O$ production, implying a critical role for $NH₂OH$ in determining the observed kinetics.

NH₂OH is enzymatically produced by ammonia monooxygenase and rapidly converted to $\overline{\mathrm{NO_2}^-}$ (15). The tight coupling of its

Fig. 2. Experiment 1. Kinetics of ammonia oxidation and N₂O production by SCM1. (A) Michaelis-Menten-type plot of substrate-dependent rate of ammonia oxidation to NO₂⁻ (normalized to per cell per day). (*B*) Michaelis-Menten plot of substrate-dependent rate of N₂O production. Error bars represent SD from triplicate samples. The black lines and gray shadows show the Michaelis-Menten type regressions and the 95% CIs, respectively.

production and consumption in AOA species at low NH_4^+ concentrations results in its limiting conversion to N_2O as a side product. However, a small fraction of $NH₂OH$ can escape from being oxidized by the enzymatic reaction, providing the key precursor for N_2O production. For example, only 0.46% of $NH₂OH$ was released during ammonia oxidation by the AOA *Nitrososphaera* gargensis even at very high NH₄⁺ concentrations [2 mmol L⁻¹ (21)], which is one to two orders of magnitude lower than the reported NO accumulation ratio during ammonia oxidation by SCM1 (14). The similarly high affinities (low $K_{\rm m}$) for NO₂⁻ and N_2O production further suggest that both kinetics were determined by the $NH₂OH$ supply; if the conversion of $NH₂OH$ to NO_2^- was the rate-limiting step, the production of N_2O should increase continuously with the accumulation of $NH₂OH$. These results suggest that the SCM1-like marine AOA effectively use the trace level NH_4^+ in the vast N-depleted ocean for both $\mathrm{NO_2^-}$ and N2O generation, providing direct evidence for the capability of marine AOA to dominate $N₂O$ production in the ocean and its subsequent release to the atmosphere.

Impact of NH4 + : NO2 − Ratio on Pathways of N2O Production. Both NH_4^+ and NO_2^- are involved in N_2O production by AOA (9, 18), but the rates and pathways might vary depending on relative substrate availability. Therefore, we investigated $N₂O$ production under a wide range of ${}^{15}NH_4$ ⁺: ${}^{14}NO_2$ ⁻ ratios (from

0.05 to 10) (Experiments 1 and 2). The ratio of single labeled N_2O to double labeled N₂O (⁴⁵N₂O: ⁴⁶N₂O) decreased from 5.82 ± 2.58 to 0.37 \pm 0.05 as the ¹⁵NH₄⁺: ¹⁴NO₂⁻ ratio increased from 0.05 to 10 (Fig. 3*A* and *[SI Appendix](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials)*, Fig. S1). This dependence on substrate ratio indicates that ⁴⁵N₂O: ⁴⁶N₂O ratio is not a constant but is highly variable and implies that more than one pathway contributes to N_2O production in AOA. The strong and significant correlation ($R^2 = 0.97$, $P < 0.0001$) between the ⁴⁵N₂O: ${}^{46}\mathrm{N}_2\mathrm{O}$ ratio and substrate ${}^{15}\mathrm{NH}_4^*$: ${}^{14}\mathrm{NO}_2^-$ ratio implies that the relative contributions of different pathways to N_2O production and the source of the N atoms in $\rm N_2O$ should vary with $\rm NH_4^+$: NO2 − ratio in the environment (Fig. 3*B*).

 $\mathrm{NH}_4{}^+$ and $\mathrm{NO_2}{}^-$ are highly dynamic nitrogen cycle components that rarely accumulate in the global ocean. However, $\rm N\tilde{H}_{4}^{\;+}$ and $NO₂⁻$ can accumulate in specific regions (e.g., oxygen minimum zones and eutrophic waters) and depths (e.g., $\overline{\text{NH}}_{4}^{\,*}$ maximum, primary NO_2^- maximum), leading to substantial variation of NH_4 ⁺: NO_2 ⁻ ratio in these biogeochemically active marine environments (22). Our data indicate that $N₂O$ can be produced via distinct pathways by marine AOA and sourced from different N atoms in waters with different ratios of NH_4^4 : $\mathrm{NO_2}^-$, even though the main source process is always archaeal ammonia oxidation. For example, at the primary $\overline{\text{NO}_2}^-$ maximum where NO_2^- accumulates, the low NH_4^+ : NO_2^- ratio might lead to the higher contribution of NO_2^- to N_2O production via the hybrid pathway. In

Fig. 3. Experiment 2. ¹⁵N-N₂O production and isotope composition under different ${}^{15}NH_4$ ^{+ 14}NO₂⁻ ratios. (*A*) ${}^{45}N_2O$ (single labeled) and ${}^{46}N_2O$ (double labeled) production rate under different ¹⁵NH₄* and ¹⁴NO₂ concentrations (normalized to per cell per day). All of the ⁴⁵N₂O represents hybrid formation. (*B*) Regression between 45 N $_2$ O: 46 N $_2$ O production rate against 15 NH $_4^{\ast}$ 14 NO $_2^{\circ}$ concentration ratio. Error bars represent SD from triplicate samples.

contrast, at the NH_4^+ maximum and certain hotspots of NH_4^+ supply such as zooplankton excretion or decay of phytoplankton blooms (23), NH_4^+ would dominate N₂O formation under the elevated $NH_4^{\, *}$: $\rm NO_2^-$ ratio. These findings provide new insights in interpreting the natural abundance isotope signature of N_2O in the water column of the global oligotrophic oceans, where a subsurface dual-isotope minimum is consistently observed and has been widely interpreted as resulting from N_2O production via nitrifier-denitrification (24–27). These new data would suggest, however, that low $\mathrm{NH}_4^{\mathrm{+}}$: $\mathrm{NO_2}^{\mathrm{-}}$ ratio (i.e., relatively higher $\mathrm{NO_2}^{\mathrm{-}}$ concentration) would also lead to the observed dual-isotope minimum by the incorporation of more isotopically depleted $\mathrm{\dot{NO}_2}^-$ by the hybrid pathway during the ammonia oxidation process.

Our results are also important for the interpretation of isotope labeling patterns observed in isotope tracer experiments in the ocean, where production of ${}^{45}N_2O$ has been generally attributed to the hybrid N₂O formation pathway (one N from NH₄⁺, one N from NO_2^-). We suggest that $^{46}_{15}N_2$ O could also be partially hybrid, from the combination of ${}^{15}NH_4^+$ hybrid, from the combination of ¹⁵NH₄⁺ and newly produced ¹⁵NO₂⁻. The contribution of the hybrid pathway would be underestimated by ignoring ${}^{46}N_2O$ production. However, our results cannot fully explain the high fraction of ⁴⁵N₂O production (i.e., >70%) in the ocean (24, 28–30), nor the finding that the %⁴⁶N₂O is insensitive to short-term experimental $\text{NO}_2^$ enrichment (31) (comparison to field observations; *SI [Appendix](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials)*, Text 1). Nevertheless, the variable N_2O atom composition by SCM1 under different NH_4^4 : NO_2^- ratio provides new insights into marine $N₂O$ pathways and interpretation of its isotope composition. These pathways and the relative contributions of N and O from multiple sources are explored in experiments described below.

Contribwutions of NH_4^+ **and** NO_2^- **to** N_2 **O Production.** The potential pathways and relative contributions of the two substrates, $\rm \dot{N}H_{4}^+$ and $\rm NO_2^-$, via various pathways of $\rm N_2O$ formation in AOA were explored using multiple tracer combinations (Experiment 3). NH_4^+ and NO_2^- concentrations were controlled by adding the substrates to cells that had first been washed and resuspended in substrate-free fresh medium. When ${}^{15}NH_4^+$ was added without ¹⁴NO₂⁻, double labeled ⁴⁶N₂O was the main product (93.4 ± 10.1% of the total labeled N_2O production rate) (Fig. 4*A*). $^{15}NH_4$ was the only N source in the experiment, so the small production of $^{45}N_2O$ (6.6% of the total labeled N₂O production) can be attributed to trace amounts of intracellular 14NH_4^+ and/ or 14NO_2^- , or to carry over from the inoculum. When equimolar amounts of

 ${}^{15}NH_4^+$ and ${}^{14}NO_2^-$ were provided, the fractional contribution of ⁴⁵N₂O increased to 28.9%, indicating that ambient NO_2^- is involved in ${}^{45}N_2O$ production, although the labeled N₂O pool was still primarily ${}^{46}N_2O$. This hybrid N_2O formation indicates involvement of ambient NO_2^- in N_2O production, but the process varies among AOA strains (18) and with substrate ratio (Fig. 3*B*). Newly produced (presumably intracellular, or at least in the pseudo-periplasmic space) and ambient NO_2^- might both be involved in N2O hybrid formation (pathways 2, 3 in Fig. 1*B*). Total labeled N_2O (combined ⁴⁵ N_2O and ⁴⁶ N_2O) production rate in the ¹⁵NH \tilde{H}_4^+ tracer incubation (8.7 ± 0.7 nmol N L⁻¹ d⁻¹, Fig. 4A) was comparable to the rate in the ${}^{15}NH_4^+ + {}^{14}NO_2^$ incubation (9.6 ± 1.5 nmol N L⁻¹ d⁻¹, Fig. 4*B*), indicating no discernible difference between the effects of ambient and newly produced NO_2^-

oduced NO₂ on N₂O production rate by SCM1.
¹⁵N-labeled N₂O production from ¹⁵NO₂ tracer was negligible $(0.3 \pm 0.2 \text{ nmol} \tilde{\text{N}} \text{L}^{-1} \text{d}^{-1})$ in the absence of $\tilde{\text{NH}}_4^+$ (Fig. 4*C*). By comparison, when ¹⁴NH₄⁺ was added with ¹⁵NO₂⁻, the ¹⁵N-labeled N₂O₁ production rate increased significantly to 2.6 ± 0.3 nmol N L⁻¹ d⁻¹ $(P < 0.001)$, which is strong evidence for a hybrid N₂O formation mechanism that involves both intermediates from ammonia oxidation and NO_2^- reduction (Fig. 4*D*). It is not surprising that N_2O production rate decreased greatly in the absence of NH_4^+ , as NH_4^+ is the substrate for energy generation and the source of the key N_2O precursor NH₂OH. Thus, N₂O can be produced from NH₄⁺ alone in the absence of $\overline{NO_2}$, but N_2O cannot be produced from $\overline{NO_2}^-$ alone. When $\overline{NH_4}^+$ is present, however, NO_2^- contributes to N_2O formation via a hybrid pathway. In contrast to the ${}^{15}NH_4^+$ tracer experiment, ${}^{45}N_2O$ dominated the ¹⁵N-N₂O pool in the ¹⁵NO₂⁻ + ¹⁴NH₄⁺ incubation (92.1 ± 16.8%). The small fraction (7.9 \pm 3.4%) of ⁴⁶N₂O detected in this treatment indicated a minor contribution of the chemo-denitrification-like pathway (i.e., both N atoms from NO_2^- , pathways 4, 5 in Fig. 1*B*) to N_2O production (Fig. 4*D*) (13). However, the ⁴⁶N₂O production rate from $\mathrm{^{15}NO_2}^-$ measured here was two orders of magnitude lower than rates measured when external oxygen was exhausted (5 to 22 nmol L^{-1} h⁻¹) (17), indicating production of N₂O in AOA by the proposed NO_2^- reduction-NO dismutation pathway is restricted to anoxic conditions.

The Role of NH₂OH as Key Precursor for N₂O Production. Although $NH₂OH$ is not an important N source in the marine environment (its reactivity guarantees a very low ambient concentration) (32), it is a critical intracellular intermediate in archaeal ammonia oxidation and N_2O production. Experiments using ¹⁵NH₂OH and ¹⁵NO₂⁻ + ¹⁴NH₂OH were used to explore the pathways by

Fig. 4. Experiment 3. ¹⁵N-N₂O production during ¹⁵NH₄* and ¹⁵NO₂⁻ labeling incubations using viable cells. (A–D) ^{I5}N labeled N₂O production rate from ¹⁵NH₄* **Fig. 4.** Experiment 3. '⁵N-N₂O production during '⁵NH₄' and '⁵NO₂' labeling incubations using viable cells. (A–D) ⁵N labeled N₂O production rate from '⁵NH₄',
¹⁵NH₄' + ¹⁴NO₂', ¹⁵NO₂', and ¹ N₂O (⁴⁵N₂O + ⁴⁶N₂O). Approximately, 6 nmol N L^{−1} d^{−1 44}N₂O must have been produced in the ¹⁵NO₂^{−+14}NH₄⁺ incubation (*D*), but the amount of ⁴⁴N₂O could not be determined in these experiments due to lack of sensitivity in small volume incubations. ⁴⁴N₂O would not have been present in the other three experiments because in A all the NH $_4^+$ was labeled; in *B* we have shown that N₂O cannot be formed from NO₂ $^-$ alone, and *C* all the NO₂ $^-$ was labeled.

which $NH₂OH$ participates in $N₂O$ production during ammonia oxidation (Experiment 4). Notably, here we used 1 µmol L^{-1} of $NH₂OH$ concentration, which was two orders of magnitude lower than previous studies that explored N_2O pathways by AOA (i.e., 200 μmol L^{-1}) (13), thus closer to environmental concentrations but also ensuring the sensitivity of the assays to probe the potential mechanisms. Moreover, no discernible difference was observed for NO_2^- production with or without NH_2OH amendment, suggesting no detectable inhibition of 1 µmol L^{-1} of NH₂OH on archaeal ammonia oxidation (*P* > 0.05) (SI *[Appendix](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials)*, Fig. S2).

 $^{45}N_2O$ increased slowly but continuously over 12 h from tracer − in viable cells, while no discernible 46N2O accumulation was detected (Fig. 5*A*). ¹⁴NH₂OH added with ¹⁵NO₂⁻ stimulated ⁴⁵N₂O production from ¹⁵NO₂⁻ in viable cells, indicating $^{14}NH_{2}OH$ was directly involved in the reaction with ¹⁵NO₂⁻ to produce hybrid $^{45}N_2O$ (Fig. 5*B*). In contrast, $^{45}N_2O$ production nearly stopped after removing the cells by filtration. The fact that the viable cells produced more ${}^{45}N_2O$ from the ${}^{15}NO_2^-$ tracer than the filtrate indicates that cellular metabolism facilitated N_2O production from the hybrid pathway, and that abiotic formation rate of N₂O by NO₂⁻ and NH₂OH was low (Fig. 5*C*).

Much higher labeled $\rm N_2O_1$ production rates occurred in incubations supplemented with ¹⁵NH₂OH (Fig. 5 *D* and *E*) than in incubations supplemented with either ¹⁵NO₂⁻ alone or ¹⁵NO₂⁻ + ¹⁴NH₂OH, despite the concentration of ¹⁵NO₂⁻ (10 µmol L⁻¹) $^-(10 \text{ }\mu\text{mol }\text{L}^{-1})$ being tenfold higher than ¹⁵NH₂OH (1 µmol L⁻¹), demonstrating active involvement of $NH₂OH$ in N₂O production. In the presence of viable cells, both $^{45}N_2O$ and $^{46}N_2O$ were produced

(Fig. 5*D*), while for the filtrate, only ${}^{46}N_2O$ production was observed (⁴⁵N₂O accounted for <5% of the total labeled N₂O production) (Fig. 5*E*). The comparable ⁴⁶N₂O production between viable cell and filtrate groups indicated that $46N_2O$ was mainly produced via abiotic NH₂OH oxidation, and NO₂⁻ is not involved in that reaction. In contrast, viable cells are needed for the production of ⁴⁵N₂O from ¹⁵NH₂OH and ¹⁴NO₂⁻, suggesting the hybrid reaction may require enzymatic activity to produce NO from NO_2^- . Therefore, it appears that the ambient $\rm NO_2^-$ can enter the periplasmic space of the cell for the production of NO that is most likely catalyzed by a putative periplasmic copper-containing nitrite reductase (10, 11). These results indicate the central role of NH₂OH as a precursor of N₂O (pathways 1, 2, 3, and 4 in Fig. 1*B*). Moreover, the co-production of ⁴⁵N₂O and ⁴⁶N₂O from 15 NH₂OH shows that hybrid N₂O formation and oxidation of $NH₂OH$ both contributed to $N₂O$ production in viable cells. Note that the high affinity for NH_4^+ and the typical dependence of N_2O production rate on NH_4^+ concentration (Experiment 1) implicate enzymatic control of N_2O production, even though the last step in both pathways (hybrid and $NH₂OH$ oxidation) is abiotic.

Taking all the results with $\mathrm{^{15}N}\text{-}$ labeled substrates together, these findings demonstrate that N derived from both NH_4^+ and $\mathrm{NO_2^-}$ is involved in $\mathrm{N}_2\mathrm{O}$ production by AOA, but that NH_4^+ is the major N source. Under the initial NH_4^+ : NO₂⁻ ratio of 1:1, NH₄⁺ accounts for ~85% of N atoms to N₂O. Paired analysis of ${}^{43}\text{N}_2\text{O}$: $^{46}N_2O$ further implied that an additional N_2O formation pathway solely sourced from NH_4^+ was required to explain the dominance

Fig. 5. Experiment 4. ¹⁵N-N₂O production from NH₂OH. ^{I5}N labeled N₂O production rate from (*A*) viable cells with ¹⁵NO₂ tracer (10 μmol L^{−1}); (*B*) viable cells with ¹⁵NO₂ (10 μmol L^{−1}) + ¹⁴NH₂OH (1 μmol L^{−1}); (*C*) filtrate with ¹⁵NO₂ (10 μmol L^{−1}) + ¹⁴NH₂OH (1 μmol L^{−1}); (*C*) viable cells with ¹⁵NH₂OH (1 μmol L^{−1}) + ¹⁴NO₂ (50 μmol L^{−1}); (*E*) filtrate with ¹⁵NH₂OH (1 μmol L^{−1}) + ¹⁴NO₂[−] (50 μmol L^{−1}). Error bars represent SD from triplicate samples.

of NH $_4^{\ast}$ as the source of N atoms in N₂O. Thus, apart from the hybrid formation pathway, $NH₂OH$ oxidation might be an important and previously overlooked pathway that contributes to archaeal $N₂O$ production. However, it is difficult to discriminate all the associated pathways and to quantify the contributions of each process using N isotopes alone, because all N atoms in N₂O precursors could be directly or indirectly sourced from NH_4^+ .

Tracing the O in N₂O: Contributions of H₂O, O₂, and NO₂ $^-$ as the **Source of O in N₂O.** $^{18}_{5}$ O leaves footprints in N₂O and NO₂⁻ that are independent of $15N$ and can thus provide further information on the pathways to N₂O. We developed a comprehensive set of 18 O-labeling experiments to determine the source of O atoms in both NO_2^- and N_2O , and to quantify potential N_2O production pathways from \overline{H}_2O , NQ_2 , and O_2 (Experiment 5). The isotopic enrichment of $\delta^{18} \text{O-NO}_2$ showed an approximately linear increase over time in the 24 h abiotic O atom exchange experiment, i.e., from ${}^{18}O-H_2O$ in the absence of viable cells (Fig. 6*A*). The measured values of $\delta^{18}O-NO_2^-$ agreed well with the amount of $\delta^{18}O-NO_2$ ⁻ predicted using an exchange rate constant of 0.117 (33) under the experimental conditions (pH: 7.8; temperature: 30°C).

This correction for abiotic O atom exchange was applied to determine the $\delta^{18}O$ of the produced NO_2^- in incubations with viable cells. O atoms from both H_2O and O_2 were incorporated into NO_2^- during archaeal ammonia oxidation (and the amount of $\delta^{18}O-NO_2^-$ was proportional to the amount of labeled substrate in both ¹⁸O-H₂O and ¹⁸O-O₂ labeling incubations) (Fig. 6 *B* and *C*). The slope of $\delta^{18}O-NO_2$ vs. $\delta^{18}O-H_2O$ (63 \pm 3%) was significantly greater than the slope of $\delta^{18}O-NO_2$ ⁻ vs. $\delta^{18}O-O_2$ (26 ± 2%) $(P < 0.001)$. The significantly higher contribution of $H₂O$ than O_2 to the O atoms in $\mathrm{NO_2}^-$ is consistent with the hypothesis that NH₂OH and NO act as co-substrates to produce two molecules of $\overline{{NO_2}}$. Then one $\overline{{NO_2}}$ molecule is reduced back to $\overline{{NO}}$ and another O atom from H_2O is incorporated into NO_2^- (13). Alternatively, an intracellular O atom exchange could occur during NO2 − production by AOA (*SI [Appendix](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials)*, Text 2).

 δ^{18} O of the produced N₂O increased with increasing δ^{18} O-H₂O, δ^{18} O-O₂ and δ^{18} O-NO₂⁻, indicating that O atoms from all three potential sources were incorporated into N_2O (Fig. 6) *D*–*F*) with different contributions. Interestingly, in contrast to the O atom source structure in $\mathrm{NO_2^-}, \mathrm{O_2}$ contributed the largest fraction of O atoms to N₂O (44 ± 2%), followed by NO₂ (30 \pm 3%) and H₂O (14 \pm 1%). Because the O atoms in NH₂OH are sourced from O_2 and no further exchange occurs between $NH₂OH$ and $H₂O$ (34), the fact that $O₂$ (via $NH₂OH$) contributed most to O atoms in $N₂O$ supports our finding of a substantial role for NH₂OH oxidation in producing N₂O (pathway 1 in Fig. 1*B*). The incorporation of O atoms from $\overline{NO_2}^-$ and H_2O into N_2O indicated internally produced and externally added (ambient) NO_2^- can both be involved in N_2O production. In the absence of known nitric oxide reductase catalyzing NO reduction to N_2O through nitrifier-denitrification, potential N_2O pathways associated with NO_2^- in marine AOA include abiotic $NO_2^$ reduction (chemo-denitrification-like) and hybrid formation. However, our ${}^{15}\mathrm{NO_2}^-$ labeling incubations showed that $\mathrm{NO_2}^-$ was involved in N₂O production only in the presence of NH₄^{$+$}, and $\mathrm{NO_2}^-$ alone did not contribute substantially to $\mathrm{N_2O}$ production (Fig. 4 *C* and *D*). Therefore, hybrid formation is the dominant pathway by which NO_2^- contributes to N_2O production.

Fig. 6. Experiment 5. δ^{18} O of the produced NO₂⁻ and N₂O during the 24 h ¹⁸O-labeling incubations. (A) Change of δ^{18} O-NO₂⁻ due to abiotic O atom exchange.
(*B* and *C*) δ^{18} O of the produced NO experiments, respectively. Dashed lines denote the best linear regression, and gray shadow represents 95% CIs. Error bars represent SD from triplicate samples.

Moreover, the incorporation of O atoms from H_2O and ambient $\mathrm{NO_2}^-$ further revealed that during hybrid formation, O atoms in NO_2^- or NO, rather than NH₂OH, were retained in the N₂O molecule. If the O atom was sourced from $NH₂OH$ during the hybrid process, all the O atoms should be contributed by O_2 . The incorporation of the O atom from ambient $\rm NO_2^-$ into $\rm N_2\bar{O}$ also shows that at least some NO was produced via $\mathrm{NO_2}^-$ reduction, as previously hypothesized (11, 14).

Quantifying Multiple N2O Sources during Archaeal Ammonia Oxidation. The dual-isotope labeling method enabled us to fully resolve multiple N₂O production pathways in AOA. Combining results from ¹⁵N and ¹⁸O-labeling incubations (Experiments $\overline{3}$ to 5), we can quantitatively estimate the fractional contribution of the five potential N_2O production pathways (Fig. 1*B*). $\text{NO}_2^$ reduction (pathways 4 and 5) is an insignificant N_2O source under aerobic growth conditions when both NH_4^+ and $NO_2^$ are present in equimolar amounts (Fig. 4). $NH₂OH$ is revealed as the main contributor to $N₂O$ production (Fig. 5) via both hybrid pathway and $NH₂OH$ oxidation. In $NH₂OH$ oxidation (pathway 1), 100% of O atoms in N_2O were sourced from O_2 , while in hybrid formation (pathways 2 and 3), the O atom was derived from NO_2^- via reduction to NO. The NH_2OH involved in hybrid $N₂O$ formation contributed an N atom but not the O atom. There were two sources of $NO₂⁻$: the original ambient NO_2^- (100% of O atoms were sourced from ambient NO_2^-) and the $\mathrm{NO_2}^-$ newly produced from ammonia oxidation (63% of O atoms from H_2O and 26% from O_2) (Fig. 6). Under these conditions, we calculated the following contributions to O atoms in N₂O: 38.2% from NH₂OH oxidation (pathway 1), 59.8% from the hybrid source (22.2% by pathway 2 and 37.6% by pathway 3), and 2.1% from NO_2^- reduction (pathways 4 and 5) (Fig. 1*C*). This combination best fits the observed results that 14% of O atoms in N₂O were from H₂O and 44% of O atoms were from O_2 under our experimental conditions. Although the fractional contribution of the pathways might vary with various substrate concentrations (i.e., different NH_4^* : $\mathrm{N}\mathrm{O}_2^-$ ratios), the comprehensive $^{15}\mathrm{N}$ - $^{18}\mathrm{O}$ dual-isotope labeling technique developed here provides a novel avenue to disentangle and quantify the relative contribution of multiple pathways to $N₂O$ production in both lab and field studies.

Archaeal ammonia oxidation is the primary source of marine N_2O , yet the mechanistic understanding of archaeal N_2O production remains elusive. We present the first study determining the kinetics of archaeal $N₂O$ production and provide strong evidence of the capability of marine AOA in producing $N₂O$ at trace levels of NH₄⁺, supporting their dominant role in contributing to N₂O production in the ocean. We further show a direct control of $\mathrm{N}\mathrm{H}_4^+$ and NO_2^- concentrations on the sources of N_2O , providing new insights into understanding the varying isotope composition of $N₂O$ in the ocean. The increased incorporation of N and O atoms from NO_2^- into N_2O by marine AOA at low $NH_4^{\; *}: NO_2^-$ ratios suggests a new mechanism for interpreting the ubiquitous N_2O isotope minimum without the need to invoke nitrifier-denitrification by AOB, which are rarely detected in the oligotrophic open ocean. Our comprehensive dual 15N-18O-labeling techniques identify a substantial contribution of $NH₂OH$ oxidation to archaeal N2O production that was previously not recognized. These explicit descriptions of the N_2O production pathways and kinetics in AOA should improve our understanding of marine $N₂O$ production, and the multiple N and O atom sources of N_2O identified here should inform biogeochemical models that aim to resolve the marine nitrogen cycle and constrain the air-sea N_2O flux. Moreover, our dual-isotope labeling technique could be applied

in combination with manipulative experiments, such as temperature, pH, and dissolved oxygen (DO), to explore rates and pathways of archaeal N_2O production in response to ocean warming, acidification and deoxygenation.

Materials and Methods

SCM1 Cultivation and Isotope Labeling Incubation. *N. maritimus* strain SCM1 was cultured in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered Synthetic Crenarchaeota Medium (SCM) (pH: ~7.8) at 30 °C in the dark following Qin et al. (2014) (35). Six sets of incubations were carried out (*[SI Appendix](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials)*, Table S1). The SCM1 cells were grown and maintained in 2-L bottles containing 600 mL SCM for the preservative test and experiments 3 to 5 and were grown in 100-mL bottles containing 40 mL SCM for experiments 1 to 2. The medium contains FeNaEDTA and other trace metals including, Cu, Ni, Zn, and Co. The approximate concentrations of the trace metals can be found in Amin et al. (2013) (36). The medium was supplemented with NH4Cl at different initial concentrations for each of the experiments: Initial concentrations were 1,000 μ mol L⁻¹ in the preservative test experiment, 500 μmol L⁻¹ in experiments 3 and 5, 200 μmol L⁻¹in experiment 1 and 2, and 100 μ mol L⁻¹ in experiments 4. Growth was monitored both by measuring NO_2^- concentration and NH_4^+ consumption and by performing cell counts using flow cytometry (Accuri C6, BD Biosciences). After determining the best strategy for terminating the incubation to preserve the concentration and isotopic content of analytes (Preservative Test), the five experimental incubations were carried out to 1) test the kinetic response of $N₂O$ production during SCM1 ammonia oxidation; 2) examine the impact of NH $_4^+$: NO₂⁻ substrate ratio on the pathways and composition of N atoms in N₂O; 3) track N atom sources through ¹⁵N labeling experiments; 4) test the contribution of ambient $NH₂OH$ to N_2O production; and 5) track O atom sources through multiple ¹⁸O-labeling experiments. All labeling incubation experiments were performed using midto late-exponential phase cultures.

Preservative test. A total of ~1.0 L of culture was collected and aliquoted into two groups in the mid-exponential phase: 1) viable cells and 2) killed control (autoclaved at 120°C for 30 min and cooled overnight). In each group, each $15N$ tracer ($15NH_4$ + and $15NO_2$, 99% $15N$, Cambridge, United States) was added to separate bottles to a concentration of 50 μ mol L⁻¹. For the viable cells, one additional treatment (100 μ mol L⁻¹ of ¹⁵NO₃⁻, 98% ¹⁵N, Cambridge, United States) was performed. After tracer addition, 10 mL of sample was dispensed into triplicate 20-mL serum bottles and sealed with 20-mm butyl stoppers and aluminum crimp seals (Wheaton, United States). Two preservatives (20 μL of saturated HgCl₂ and 500 μL of 10 mol L⁻¹ of NaOH) were used to compare the effect of preservatives on terminating biological activity and archaeal N_2O production. For the viable cells, the incubations were performed at 30°C in the dark and terminated at 0 and 24 h. For the autoclaved samples, the preservatives were added only at 0 h. All incubations were performed in triplicate. Our results showed that HgCl₂ induces artifacts of N_2O production from pathways involving NO_2^- . Such artifacts are negligible when using NaOH as a preservative (*SI Appendix*[, Fig. S3 and Text 3\)](http://www.pnas.org/lookup/doi/10.1073/pnas.2220697120#supplementary-materials). Thus, NaOH was chosen as the preservative for all further experiments.

Experiment 1: Kinetic test. When all amended NH₄⁺ (200 μmol L⁻¹) was completely consumed (i.e., below the substrate threshold of SCM1, \sim 10 nmol L⁻¹ NH_4^+), 1% inoculum was transferred into NH $_4^+$ free fresh medium supplemented with labeled tracers. The initial cell abundance was around 1.39 \times 10⁵ cells ml⁻¹, which is comparable to AOA cell abundance in the ocean, and initial carry over ¹⁴NO₂⁻ concentration was ~2 μmol L⁻¹. A total of eight ¹⁵NH₄⁺ concentrations (0.1, 0.5, 1, 1.5, 2, 5, 8, 10 μ mol L⁻¹) were used for the kinetic test. Immediately after tracer amendment, 50 mL aliquots of sample were dispensed into 60-mL serum bottles and sealed with 20-mm butyl stoppers and aluminum crimp seals (Wheaton, United States). The incubation was performed at 30°C in the dark. Depending on the initial 15 NH₄⁺ concentration, the incubation was terminated at 0 h, ~2 h (0.1 μmol L^{−1}), ~6 h (0.5 μmol L^{−1}), and ~12 h (>0.5 μmol L^{−1}) by adding 2.5 mL of 10 mol L⁻¹ of NaOH. A third time point (~24 h) was also applied for all treatments. However, the third time point was only used for rate calculation in the high NH₄⁺ treatments (>1.5 μ mol L⁻¹) because the substrate was nearly completely consumed or exhausted before 24 h in those low substrate treatments. The incubations were carried out in triplicates at each time point.

 ϵ xperiment 2: Substrate ratio experiment. When 100 μ mol L $^{-1}$ of NH $_4^+$ was consumed, 1% inoculum was transferred into NH $_4^+$ free medium. The initial cell abundance was around 6.2 \times 10⁴ cells mL⁻¹. Three NH₄⁺: NO₂⁻ ratios were achieved by adding different amounts of 15 NH $_4^+$ and 14 NO $_2^-$ (10 and 1 μ mol L $^{-1}$ of NH₄⁺ and NO₂⁻, 5 and 5 μ mol L⁻¹ of NH₄⁺ and NO₂⁻, and 1.5 and 15 μ mol L^{-1} of NH₄⁺ and NO₂⁻, respectively). Immediately after tracer amendment, 40 mL aliquots of sample were dispensed into 60-mL serum bottles and sealed with 20-mm butyl stoppers and aluminum crimp seals (Wheaton, United States). The incubation was performed at 30°C in the dark and terminated by adding 2 mL of 10 mol L^{-1} of NaOH at 0, 6 and 24 h with triplicates at each time point.

Experiment 3: Source of N atoms in N₂O. A total of ~4 L of culture was harvested by gentle filtration onto two 0.2 μm pore size Sterivex filters (Millipore). Immediately after the filtration, the filters were flushed using 2-L fresh substrate-free medium to collect the cells and to remove the high background NH₄⁺ (~210 µmol L⁻¹) and NO₂⁻ (~330 μmol L⁻¹). The cell densities before (4 L original culture) and after the filtration (resuspended in 2 L medium) were 1.15 \times 10⁷ and 2.10 \times 10⁷ cells mL⁻¹, respectively, demonstrating a good recovery efficiency (~60%) of the pre-concentration process. The measured ammonia oxidation rate of the washed cells (\sim 16 μ mol N L^{-1} d⁻¹) was lower than the rate of unwashed cells measured on the same day $(-84 \mu$ mol N L⁻¹ d⁻¹). This reduced oxidation rate indicates that the manipulation process caused physiological stress on the SCM1 cells and resulted in decreased cellular activity. Nevertheless, the activity of the washed cells was high enough to allow precise measurement of rates of ammonia oxidation and $N₂O$ production in the experiments. The recovered cells were aliquoted into eight acid washed 250-mL PC bottles (Nalgene) and for four groups of tracers (15 NH $_4$ ^{+, 15}NH $_4$ ⁺ + 14 NO₂⁻, ¹⁵NO₂⁻ bottles (Nalgene) and for four groups of tracers ($15NH_4^+$, $15NH_4^+ + 14NO_2^-$, $15NO_2^-$, $15NO_2^-$, $15NO_2^-$, $15(O_2^-$, $15(O_2^-)$ were dispensed into 20-mL serum bottles and sealed with 20-mm butyl stopper and aluminum crimp seals (Wheaton, United States). The incubation was performed at 30°C in the dark and terminated by adding 500 μL of 10 mol L⁻¹ of NaOH at 0 and 24 h with triplicates at each time point.

Experiment 4: Role of NH₂OH in N₂O production. Around 1 L of culture was aliquoted into five groups when 50 μ mol L⁻¹ of NH₄⁺ had been oxidized: 1) viable cells amended with 15 NO $_2^-$ (10 μ mol L $^{-1}$); 2) viable cells amended with 15 NO $_2^-$ (10 μmol L^{−1}) + ¹⁴NH₂OH (1 μmol L^{−1}); 3) filtrate (through 0.2 μm PES filter) amended with $^{15}_{15}$ NO₂⁻ (10 μmol L⁻¹) + ¹⁴NH₂OH (1 μmol L⁻¹); 4) viable cells amended with ¹⁵₂MH₂OH (1 µmol L^{−1}); and 5) filtrate (through 0.2 µm PES filter) amended with ¹⁵NH₂OH (1 μmol L^{−1}). After tracer amendment, 10 mL aliquots of sample were dispensed into 20-mL serum bottles and sealed with 20-mm butyl stoppers and aluminum crimp seals (Wheaton, United States). Time-course incubation (0, 1, 3, 6, 12 h) was carried out for all the groups, and the incubation was performed at 30°C in the dark with triplicates and terminated by adding 500 $μL of 10 mol L⁻¹ of NaOH at each time point.$

Experiment 5: Source of O atoms in N_2 **O.** A total of \sim 7.2 L of culture was harvested by gentle filtration onto two 0.2-μm pore size Sterivex filters (Millipore). Immediately after the filtration, the filters were back flushed using 2.5 L fresh substrate-free medium to collect the cells and to remove the high background NH_4^+ and NO_2^- . Three groups of tracers ($H_2^{18}O$, $^{18}O_2$ and $N^{18}O_2^-$) were used to track the source of the O atom. For the 18 O-H₂O labeling experiment, a range of δ¹⁸O-H₂O tracer amendments (−13 to 1003‰) were made by adding 0.2 mL of 18O-H₂O stocks with different ¹⁸O enrichment into the samples (¹⁸O-H₂O stocks were made by mixing the H₂¹⁸O (99% ¹⁸O, Sigma-Aldrich, United States) with distilled deionized H₂O). Similarly, six levels of δ^{18} O-O₂ (24 to 714‰) were made by adding 0.2 mL of $180-0_2$ stocks with different 180 enrichment ($180-0_2$ stocks) were made by mixing the $^{18}O_2$ (99% $^{18}O_3$ Sigma-Aldrich, United States) with He) into the samples. For the ¹⁸O-NO₂⁻ labeling experiment, five levels of ¹⁸O-NO₂⁻ (4 to 539‰) were made by using the O atom exchange between NO₂ $^-$ and H₂¹⁸O. In each treatment, 20 mL of sample was dispensed into 60 -mL serum bottles and sealed with 20-mm butyl stoppers and aluminum crimp seals (Wheaton, United States). The ¹⁸O-labeled substrates were injected into the serum bottles. Both the NH₄⁺ and NO₂⁻ were set at 20 µmol L⁻¹ in each incubation. For ¹⁸O₂ labeled incubations, after ¹⁸O₂ injection, the bottles were shaken at ~120 rpm for 15 min to equilibrate the $^{18}O_2$ with the dissolved oxygen (DO) in water. The incubation was performed at 30°C in the dark and terminated by adding 1 mL of 10 mol L−1 NaOH. A time-course (0, 6, 12, 24 h) incubation was performed in selected tracer treatments (δ^{18} O-H₂O of 129‰; δ^{18} O-O₂ of 110‰; δ^{18} O-NO₂ $^$ of 276‰), and the remaining treatments were terminated at 0 and 24 h; all experiments were performed in triplicates at each time point. An additional set of experiments was performed to examine the rate of abiotic O atom exchange between NO₂⁻ and H₂O. Briefly, NH₄⁺ and NO₂⁻ were added into ~10 mL of fresh medium to a concentration of 20 µmol L^{-1} , and ~0.1 mL of ¹⁸O-H₂O stock was added to get δ^{18} O-H₂O of ~76‰. The incubation was performed at 30°C in the dark and terminated by adding 500 μL of 10 mol L⁻¹ of NaOH at 0, 6, 12, and 24 h with duplicates at each time point.

Sample Analysis. The samples for NH₄⁺ and NO₂⁻ concentration measurement were stored at -20° C until analysis. The concentration of NH₄⁺ and NO₂⁻ was measured by colorimetric methods with an AA3 nutrient analyzer or a spectrophotometer. The detection limit for NH₄⁺ and NO₂⁻ was 0.5 and 0.03 μ mol L⁻¹, and the analytical precision was better than $\pm 3\%$ and $\pm 1\%$, respectively (37).

The N_2O samples were stored at $4^{\circ}C$ after incubation. For the preservative test and experiments 3 and 4, before measurements, 1.5 nmol of $N₂O$ of known isotope composition ($\delta^{15}N = -3.2 \pm 0.1\%$ relative to air N_2 , $\delta^{18}O = 36.6 \pm 0.1\%$ relative to Vienna Standard Mean Ocean Water) was introduced into each serum bottle to provide enough mass for isotopic analysis. For experiments 1, 2, and 5, the samples were measured directly without $N₂O$ carrier addition. Concentration and isotopes of $N₂O$ were measured using a modified Gas Chromatograph-Isotope Ratio Mass Spectrometer (GC-IRMS) (38). Briefly, two needles were used for He pressurization and N_2O purging. For the 20-mL bottles, sample was purged for 6.7 min at a flow rate of 40 mL min−1, and for 60-mL bottles, the purge time was 30 min. The extracted gases were passed through an ethanol trap with dry ice and a chemical trap filled with magnesium perchlorate and Ascarite to remove H_2O and CO_2 . N₂O was trapped by liquid nitrogen twice for purification and concentration and then injected into the GC-IRMS with He as carrier gas. N₂O mass was determined by ion peak area [m/z of 44, 45, 46] with standard gases of 199.6, 501.0, and 1,000.2 ppmv N₂O/He, which were run at ten sample intervals. The precision of this method for N_2O mass measurement was estimated to be better than $\pm 3\%$. δ^{15} N and δ^{18} O were calibrated against two reference tanks (R1: 199.6 ppmv N₂O/He, $\delta^{15}N = -3.2 \pm 0.1\%$, $\delta^{18}O$ $= 36.6 \pm 0.1\%$; R2: 501.0 ppmv N₂O/He, δ^{15} N = $-1.6 \pm 0.1\%$, δ^{18} O = $36.6 \pm 1.0\%$ 0.3‰). The precision of $\delta^{15}N$ and $\delta^{18}O$ measurements with 2 nmol N₂O reference gas was better than 0.3‰ and 0.4‰, respectively ($n = 20$) (30). All the samples were measured within 2 wk after the incubations.

After N_2O measurement, the samples were stored at $4^{\circ}C$ before further analysis. δ^{15} N and δ^{18} O of NO₂⁻ were determined using the bacterial denitrifier method (39, 40) using a Thermo Finnigan Gasbench system with cryogenic extraction and purification system interfaced to a Delta V^{PLUS} isotopic ratio mass spectrometer. Briefly, \sim 5 to 10 nmol of NO₂⁻ was quantitatively converted to N₂O using the bacterial strain *Pseudomonas aureofaciens*. The produced N2O was then introduced to the GC-IRMS through an online N₂O cryogenic extraction and purification system. δ^{15} N of NO₂ values were calibrated against NO₃ $^-$ isotope standards USGS 34, IAEA N3, and USGS 32; δ^{18} O of NO₂⁻ values were calibrated against NO₃⁻ isotope standards USGS 34, IAEA N3 and USGS 35. The standards were run before, after, and at ten sample intervals. Because of the different branching effect during NO_3^- and NO_2^- reduction by *P. aureofaciens* (i.e., 38‰ vs. 12‰), the δ^{18} O of NO₂⁻ was further calibrated by taking account of the branching effect between NO_3^- and NO_2^- (26‰) (41). Accuracy (pooled SD) was better than \pm 0.2‰ for δ^{15} N and \pm 0.4‰ for δ^{18} O according to analyses of these standards with an injection of a similar amount of $NO₃⁻$. Quality control was also conducted by analyzing laboratory working reference material (3,000 m deep sea water from the South China Sea).

 δ^{18} O of H₂O was measured following McIlvin and Casciotti (2006) (42) using the full exchange of O atom between H_2O and NO_2^- under acidic conditions (pH: 6) at room temperature (~25°C) for 2 wk. δ^{18} O of NO₂⁻ was measured as described above, and δ^{18} O of H₂O was calculated based on the isotope effect of 13‰ between the O atom exchange at room temperature (33).

 δ^{18} O of O₂ was not measured directly. The δ^{18} O of the 18 O₂ tracer was calculated from the mixing ratio of air (assuming δ^{18} O air O₂ is 24‰) and 18 O₂ tracer. Briefly, during our incubation, the DO concentration in the medium was near equilibration with air (~244 µmol L⁻¹); thus, a total of ~348 µmol of O₂ was present in the bottle (20 mL of medium and 40 mL of air in the headspace). During the ¹⁸O-O₂ labeling incubation, 0 to 12 μ L of ¹⁸O₂ gas was introduced into the headspace and was then fully equilibrated with the water to attain different enrichments of ¹⁸O in the incubation, and the δ^{18} O was then calculated from the ¹⁸O/¹⁶O after tracer addition.

Calculations. Rate of labeled N_2O production from the ¹⁵N-labeled substrate was calculated based on the accumulation of ${}^{45}N_2O$ (single labeled) and ${}^{46}N_2O$ (double labeled) during the incubation. Total labeled N_2O production rate was defined as the ¹⁵N from both ⁴⁵N₂O and ⁴⁶N₂O (Eq. **1**). ¹⁵NH₄⁺ oxidation rate was calculated from the increase of ${}^{15}NO_2^-$.

$$
^{15}N - N_2O = {}^{45}N_2O + 2 \times {}^{46}N_2O,
$$
 [1]

where the total ¹⁵N-N₂O includes ¹⁵N atom from ⁴⁵N₂O (one ¹⁵N atom) and ⁴⁶N₂O (two $15N$ atoms in each molecule).

 δ^{18} O of the produced N₂O during the incubation was calculated using a two-endmember mixing model (Eq. **2**) (43).

$$
\delta^{18}O - N_2O_P = \frac{M_{t24} \times \delta^{18}O_{N_2O_{t24}} - M_{t0} \times \delta^{18}O_{N_2O_{t0}}}{M_{t24} - M_{t0}},
$$
 [2]

where δ^{18} O-N₂O_P, δ^{18} O-N₂O_{t24}, and δ^{18} O-N₂O_{t0} denote the δ^{18} O-N₂O value of the net produced N_2O during the ¹⁸O-labeling incubation, $\delta^{18}O\text{-}N_2O$ at the end and beginning of incubation, respectively. M_{t24} and M_{t0} denote the measured N₂O mass at the end and beginning of incubation, respectively.

 δ^{18} O of the produced NO₂⁻ during the ¹⁸O-H₂O and ¹⁸O-O₂ incubations was calculated using Eq. 2 after calibrating the abiotic O atom exchange between $NO_2^$ and H_2O (9, 33). Briefly, the abiotic O atom exchange rate was derived from the time-course experiment using cell-free medium, which was then used to calibrate the contribution of abiotic O atom exchange during our incubation (Eq. **3**). The difference between the measured 18 O-NO $_2^-$ and the predicted 18 O-NO $_2^-$ by abiotic

- 1. A. E. Santoro, R. A. Richter, C. L. Dupont, Planktonic marine Archaea. *Ann. Rev. Mar. Sci.* 11, 131–158 (2019).
- 2. W. Martens-Habbena, P. M. Berube, H. Urakawa, J. R. de la Torre, D. A. Stahl, Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. *Nature* 461, 976–979 (2009).
- 3. E. T. Buitenhuis, P. Suntharalingam, C. Le Quéré, Constraints on global oceanic emissions of N₂O from observations and models. *Biogeosciences* 15, 2161–2175 (2018).
- 4. A. Freing, D. W. R. Wallace, H. W. Bange, Global oceanic production of nitrous oxide. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 367, 1245–1255 (2012).
- 5. Q. Ji, E. Buitenhuis, P. Suntharalingam, J. L. Sarmiento, B. B. Ward, Global nitrous oxide production determined by oxygen sensitivity of nitrification and denitrification. *Global Biogeochem. Cy.* 32, 1790–1802 (2018).
- 6. C. B. Walker *et al.*, Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. *Proc. Natl. Acad. Sci. U.S.A.* 107, 8818–8823 (2010).
- 7. L. Hink *et al.*, Kinetics of NH₃-oxidation, NO-turnover, N₂O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. *Environ. Microbiol.* 12, 4882–4896 (2017).
- 8. W. Qin *et al.*, Influence of oxygen availability on the activities of ammonia-oxidizing archaea. *Environ. Microbiol. Rep.* 9, 250–256 (2017).
- 9. A. E. Santoro, C. Buchwald, M. R. McIlvin, K. L. Casciotti, Isotopic signature of N₂O produced by marine ammonia-oxidizing archaea. *Science* 333, 1282–1285 (2011).
- 10. J. I. Prosser, L. Hink, C. Gubry-Rangin, G. W. Nicol, Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. *Glob. Chang. Biol.* 26, 103–118 (2020).
- 11. L. Y. Stein, Insights into the physiology of ammonia-oxidizing microorganisms. *Curr. Opin. Chem. Biol.* 49, 9–15 (2019).
- 12. L. Y. Stein *et al.*, Comment on"A critical review on nitrous oxide production by ammonia-oxidizing Archaea" by Lan Wu, Xueming Chen, Wei Wei, Yiwen Liu, Dongbo Wang, and Bing-Jie Ni. *Environ. Sci. Technol.* 55, 797–798 (2021).
- 13. J. A. Kozlowski, M. Stieglmeier, C. Schleper, M. G. Klotz, L. Y. Stein, Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. *ISME J.* 10, 1836–1845 (2016).
- 14. W. Martens-Habbena *et al.*, The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. *Environ. Microbiol.* 17, 2261–2274 (2015).
- 15. N. Vajrala *et al.*, Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. *Proc. Natl. Acad. Sci. U.S.A.* 110, 1006–1011 (2013).
- 16. M. Y. Jung *et al.*, Indications for enzymatic denitrification to N₂O at low pH in an ammonia-oxidizing archaeon. *ISME J.* 13, 2633–2638 (2019).
- 17. B. Kraft *et al.*, Oxygen and nitrogen production by an ammonia-oxidizing archaeon. *Science* 375, 97–100 (2022).
- 18. M. Stieglmeier *et al.*, Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. *ISME J.* 8, 1135–1146 (2014).

exchange was then used to calculate the δ^{18} O of newly produced NO_2^- during the incubation. The slopes of the newly produced δ^{18} O-NO₂⁻ and δ^{18} O-N₂O against δ^{18} O of different substrates (H₂O, O₂, NO₂⁻) were identified as the fraction contribution of O atom from various substrates to the NO_2^- and N_2O (9, 33).

$$
\delta^{18}O_{NO_{2ab\acute{o}}} = (\delta^{18}O_{NO_{2r0}^-} - \delta^{18}O_{NO_{2eq}^-}) \times \exp(-k \times t) + \delta^{18}O_{NO_{2eq}^-} \quad [3]
$$

where δ^{18} O-NO $_2^-$ _{abio}, δ^{18} O-NO $_2^-$ _{t0}, and δ^{18} O-NO $_2^-$ _{eq} are δ^{18} O value of NO $_2^-$ at the end, beginning, and the equilibrated NO_2^- with H_2^0 O due to abiotic O exchange. t is the incubation length in hours and k is the rate constant.

Data, Materials, and Software Availability. All data needed to evaluate the conclusions in the paper are deposited in Zenodo database that can be accessed through ([https://doi.org/10.5281/zenodo.7378577\)](https://doi.org/10.5281/zenodo.7378577) (44).

ACKNOWLEDGMENTS. We gratefully acknowledge advice, scientific discussions, and comments on the manuscript from Michael L. Bender. We appreciate Xiangpeng Li, Long Q. Ngo, Li Liu, Junyi Ni, and Tingyuan Liu's assistance during cell culture and harvest, Lili Han for the nutrient measurements, and Sergey Oleynik for maintaining the mass spectrometers at Princeton. This work was funded by the Simons Foundation through award No. 675459 to B.B.W. and was supported by National Natural Science Foundation of China through grants 42125603, 92058204, and 41890802 and by the start-up funding of the University of Oklahoma to W.Q.

Author affiliations: ^aDepartment of Geosciences, Princeton University, Princeton, NJ 08544; ^bState Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China; and ^cDepartment of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019

- 19. D. M. Kool, C. Müller, N. Wrage, O. Oenema, J. W. Van Groenigen, Oxygen exchange between nitrogen oxides and H2O can occur during nitrifier pathways. *Soil Biol. Biochem.* 8, 1632–1641 (2009).
- 20. N. Wrage, J. W. van Groenigen, O. Oenema, E. M. Baggs, A novel dual-isotope labeling method for distinguishing between soil sources of N₂O. Rapid Commun. Mass Spectrom. **19**, 3298-3306 (2005).
- 21. S. Liu *et al.*, Abiotic conversion of extracellular NH₂OH contributes to N₂O emission during ammonia oxidation. *Environ. Sci. Technol.* 51, 13122–13132 (2017).
- 22. N. Gruber, "The marine nitrogen cycle: Overview and challenges" in *Nitrogen in the Marine Environment*, D. G. Capone, D. A. Bronk, M. R. Mulholland, E. J. Carpenter, Eds. (Elsevier, ed. 2, 2008), pp. 1–50.
- 23. S. Hernández-León, C. Fraga, T. Ikeda, A global estimation of mesozooplankton ammonium excretion in the open ocean. *J. Plankton Res.* 30, 577–585 (2008).
- 24. F. Breider et al., Response of N₂O production rate to ocean acidification in the western North Pacific. *Nat. Clim. Chang.* 12, 954–958 (2019).
- 25. J. Charpentier, L. Farias, N. Yoshida, N. Boontanon, P. Raimbault, Nitrous oxide distribution and its origin in the Central and Eastern South Pacific Subtropical Gyre. *Biogeosciences* 4, 729–741 (2007).
- 26. B. N. Popp *et al.*, Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the pligotrophic Subtropical North Pacific Gyre. *Global Biogeochem. Cy.* 16, 1064 (2002).
- 27. G. L. Zhang *et al.*, Distribution of concentration and stable isotopic composition of N₂O in the shelf and slope of the Northern South China Sea: Implications for production and emission. *J. Geophys. Res. Oceans* 124, 6218–6234 (2019).
- 28. C. Frey *et al.*, Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru. *Biogeosciences* 17, 2263–2287 (2020).
- 29. Q. Ji, B. B. Ward, Nitrous oxide production in surface waters of the mid-latitude North Atlantic Ocean. *J. Geophys. Res. Oceans* 122, 2612–2621 (2017).
- 30. X. S. Wan *et al.*, Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump. *Nat. Geosci.* 16, 29–36 (2023).
- 31. C. Frey *et al.*, Kinetics of nitrous oxide production from ammonia oxidation in the Eastern Tropical North Pacific. *Limnol. Oceanogr.* 68, 424–438 (2022), [10.1002/lno.12283.](https://doi.org/10.1002/lno.12283)
- 32. F. Korth, A. Kock, D. L. Arevalo-Martinez, H. W. Bange, Hydroxylamine as a potential indicator of nitrification in the open ocean. *Geophys. Res. Lett.* 46, 2158–2166 (2019).
- 33. C. Buchwald, K. L. Casciotti, Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. *Nat. Geosci.* 6, 308–313 (2013).
- 34. K. L. Casciotti, M. McIlvin, C. Buchwald, Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. *Limnol. Oceanogr.* 55, 753–762 (2010).
- 35. W. Qin *et al.*, Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. *Proc. Natl. Acad. Sci. U.S.A.* 111, 12504–12509 (2014).
- 36. S. A. Amin *et al.*, Copper requirements of the ammonia-oxidizing archaeon *Nitrosopumilus maritimus* SCM1 and implications for nitrification in the marine environment. *Limnol. Oceanogr.* 58, 2037–2045 (2013).
- 37. A. Han *et al.*, Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling. *Limnol. Oceanogr.* 57, 486–502 (2012).
- 38. M. R. McIlvin, K. L. Casciotti, Fully automated system for stable isotopic analyses of dissolved nitrous oxide at natural abundance levels. *Limnol. Oceanogr.-Meth.* 8, 54–66 (2010).
- 39. K. L. Casciotti, D. M. Sigman, M. G. Hastings, J. K. Böhlke, A. Hilkert, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. *Anal. Chem.* 74, 4905–4912 (2002).
- 40. M. A. Weigand, J. Foriel, B. Barnett, S. Oleynik, D. M. Sigman, Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. *Rapid Commun. Mass Spectrom.* 30, 1365–1383 (2016).
- 41. K. L. Casciotti, J. K. Böhlke, M. R. McIlvin, S. J. Mroczkowski, J. E. Hannon, Oxygen isotopes in nitrite: Analysis, calibration, and equilibration. *Anal. Chem.* 79, 2427–2436 (2007).
- 42. M. R. McIlvin, K. L. Casciotti, Method for the Analysis of δ18O in Water. *Anal. Chem.* 78, 2377–2381 (2006).
- 43. B. Fry, Steady state models of stable isotopic distributions. *Isotopes. Environ. Health. Stud.* 39, 219–232 (2003).
- 44. X. S. Wan *et al.*, Dataset of SCM1 N2O production. Zenodo (2022). [https://doi.org/10.5281/](https://doi.org/10.5281/zenodo.7378577) [zenodo.7378577](https://doi.org/10.5281/zenodo.7378577). (Deposited 29 November 2022).