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ABSTRACT: Testing for significant differences in quantities at the protein level is a common goal of many LFQ-based mass
spectrometry proteomics experiments. Starting from a table of protein and/or peptide quantities from a given proteomics
quantification software, many tools and R packages exist to perform the final tasks of imputation, summarization, normalization, and
statistical testing. To evaluate the effects of packages and settings in their substeps on the final list of significant proteins, we studied
several packages on three public data sets with known expected protein fold changes. We found that the results between packages
and even across different parameters of the same package can vary significantly. In addition to usability aspects and feature/
compatibility lists of different packages, this paper highlights sensitivity and specificity trade-offs that come with specific packages
and settings.
KEYWORDS: data analysis, imputation and normalization algorithms, mass spectrometry proteomics, protein expression,
protein fold changes

1. INTRODUCTION
Proteomics has become a key technology to understand and
characterize protein expression,1,2 interactions, and sequence
modifications3 in state-of-the-art biology research.2 Quantita-
tive bottom-up proteomics has been dominated by three
different approaches: in vivo metabolic labeling,4 in vitro
labeling,5 and label-free methods.6 In quantitative label-free, no
isotopes or labels are added to the sample and the samples are
not multiplexed in the same runs. Label-free approaches
typically require fewer sample experimental steps, and
differential expression analysis can simultaneously be per-
formed across many samples.7

From the bioinformatics data analysis perspective, label-free
methods and labeled experiments share multiple steps
including mass spectra preprocessing, peptide identification,
and protein inference.8 For peptide/protein identification
tasks, multiple bioinformatics tools are available such as
MaxQuant,9 MS-GF+,10 and PeptideShaker11 as well as cloud-
based workflows like quantms12 or Galaxy proteomics.13,14

However, the quantification step is significantly different,

including multiple substeps such as feature retention time
alignment and feature detection.8,14,15 One of the main
challenges in label-free based experiments is the high number
of missing values across samples and replicates, which makes
other substeps like protein expression normalization diffi-
cult.15,16 The high number of missing values presented in LFQ-
based experiments has triggered the development of multiple
R-packages including different algorithms for intensity normal-
ization and imputation.
In this work, we studied multiple R-packages that enable the

normalization, imputation, and differential expression analysis
on LFQ-based intensity proteomics experiments. Previous
works have mainly focused on evaluating the software that
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performs peptide identification, protein inference,17 and the
generation of protein intensity tables.8,18,19 We first briefly
describe the main packages and tools that enable the statistical
analysis of LFQ data sets from peptide or protein intensity
data. While multiple packages and tools are available for
statistical analysis of these data, we selected some of the most
relevant ones and novel implementations including MSstats,20

Perseus,21 Proteus,22 prolfqua,23 ProVision,24 LFQ-Analyst,25

Eatomics,26 ProStaR,27 and msqrob2.28−30 Finally, we used
three different data sets�UPS spiked data set,31 large-scale
mix data set32 and toxicology data set33�to evaluate the
performance of each tool and discuss some of the advantages
and disadvantages of their use with different types of data sets.

2. R-PACKAGES FOR STATISTICAL ANALYSIS OF
QUANTITATIVE LFQ-BASED DATA

Statistical validation and assessment of protein expression data
have been dominated by the R language. R (https://www.r-
project.org/) is a popular framework for statistics and machine
learning analysis. Many R packages are developed for
bioinformatics analysis and visualization, especially due to
the rapid increase of libraries provided by Bioconductor.34 In
2014, Gatto et al.35 showed that R and Bioconductor are the
perfect environments for statistical analysis of proteomics data
and indispensable for computational proteomics research. In
addition to R-packages, R-Shiny applications are commonly
used in proteomics not only to perform the DE analysis but
also to interactively explore the results.36 R-Shiny is an R
framework to build interactive web apps including dashboards
and interactive plots (https://shiny.rstudio.com/).
Table 1 presents a group of recently published or commonly

used R-packages and R-Shiny tools for statistical analysis of
quantitative LFQ-based data. More details on imputation and
normalization methods can be found in Supplementary Table
1, including the description of each method, and the default
methods for each tool. We selected the packages based on the
number of uses in PubMed, the novelty of the algorithms and
methods employed for the statistical analysis, the maintain-
ability, and the user interface. We will not study independent
scripts or adaptions of other omics packages to the field of
proteomics. We focused the study on the imputation and

normalization algorithms of each tool, other parts of the
algorithms such as multiple testing correction are not explored
because most of these tools use Benjamini-Hochberg by
default.37 Supplementary Tables 2 and 3 show the required
parameters to run each tool and the quality metrics computed
by each tool, respectively.
2.1. MSstats

MSstats20 (https://github.com/Vitek-Lab/MSstats) is an
open-source R-package for peptide and protein quantification
in mass spectrometry-based proteomics. MSstats supports
multiple data acquisition types: data-dependent acquisition
(DDA), both LFQ and label-based workflows, data-independ-
ent acquisition (DIA), and targeted approaches. It uses a set of
flexible linear mixed models to summarize the protein or
peptide abundance in a single biological replicate or condition
and perform the relative quantification of proteins across
conditions. A simple tabular file containing the intensity of the
identified peptides and proteins is needed as input. MSstats
provides multiple adapters to transform the output of
proteomics analysis tools like MaxQuant, Skyline38 or
OpenMS into MSstats input format. Remarkably, MSstats is
one of the most documented and actively maintained tools for
differential expression analysis.
2.2. Proteus and limma

Proteus22 (https://github.com/bartongroup/Proteus) is used
for DE analysis of MaxQuant output data, and differential
expression analysis based on the popular algorithm/package
limma.39 Proteus supports two normalization methods:
equalize median and quantile, and it uses a mean-variance
relationship to estimate variance (limma) where data are
missing. The Proteus Shiny application allows users to perform
the analysis with one click if the data is provided in MaxQuant
format. Shiny-based volcano plots and fold-change intensity
plots enable users to interact with differentially expressed
proteins of interest and to view the significant results in detail.
One of the other advantages of Proteus is that it has a lot of
default data processing parameters that enable nonexpert users
to perform a robust analysis of their data without the need to
try multiple combinations of parameters. However, no quality
control (QC) report is provided by the package making it

Table 1. Comparison of the Nine Evaluated Packages and Tools in Different Metrics and Propertiesa

Open
source

It has been
benchmarked

QC
reports

Input
intensity
data type Normalization method(s) Imputation method(s)

MSstats √ √ √ Pep Equalize median, Quantile, Global standards Accelerated failure time model,
cutoffCensore, censoredInt,
MaxQuantileforCensored

msqrob2 √ √ × Pep quantiles, quantiles.robust, vsn, center.median,
center.mean, max, sum, div.mean, div.median,
diff.median

×

ProStaR √ √ × Pep/Prot Global Quantile alignment and Centering, Column
sums, vsn, LOESS

Det quantile, slsa, KNN, fixed value

Proteus √ √ × Pep/Prot Equalize median, Quantile Mean-variance (by limma package)
prolfqua √ √ √ Pep/Prot robust scale Group mean imputation
ProVision √ × × Prot × Normal distribution like Perseus
LFQ-
Analyst

√ √ √ Prot × Normal distribution like Perseus, KNN, bpca,
QRILC, MLE, MinDet, MinProb, min, zero

Eatomics √ × √ Prot VSN Normal distribution like Perseus, KNN,
MinDet, QRILC

Perseus × √ √ Prot Z-score, remove batch effect, Un-Z-score A down-shifted Gaussian distribution,
constant, ImputeLCMD

aThe input intensity data type refers to the intensity data supported by the package: (Pep) peptide intensity; (Prot) protein intensity.
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difficult to assess the quality of the data and reproducibility of
the experiment.
2.3. prolfqua

prolfqua23 (https://github.com/fgcz/prolfqua) integrates the
basic steps of a differential expression analysis workflow:
quality control, data normalization, protein aggregation,
statistical modeling, hypothesis testing, and sample size
estimation. The modular design of prolfqua enables users to
select the optimal differential expression analysis algorithm.
prolfqua supports four normalization methods: quantile,
variance stabilizing normalization (vsn),40 log2 transform,
and z-scale, and it enables imputation by a group-mean model.
It provides a set of reports for users such as peptide intensity
variance across samples, a scatterplot matrix of intensity
correlation across samples and replicates, and a heatmap of
missing values clustered by samples (example report https://
fgcz.github.io/prolfqua/articles/QCandSampleSize.html).
prolfqua supports the output of multiple tools including
MaxQuant,9 Skyline,38 DIA-NN,41 and MSstats.20

2.4. ProVision

ProVision24 (https://github.com/JamesGallant/ProVision) is
an R-shiny web application to facilitate the analysis of LFQ and
TMT proteomics experiments. ProVision is designed for end-
users (e.g., biologists), with a set of graphical interfaces to
guide the users through data processing, parameter selection,
and result presentation. In addition, it provides several
parameters for users to interact with important filtering and
statistical processes. ProVision only supports the MaxQuant
output format as input and requires users to manually annotate
the experimental design. In addition, the tool lacks QC reports
that enable understanding and assessing the quality of the data.
2.5. LFQ-Analyst

L F Q - A n a l y s t 2 5 ( h t t p s : / / g i t h u b . c o m /
MonashBioinformaticsPlatform/LFQ-Analyst) is an interac-
tive, R-Shiny-based platform for quickly and easily analyzing
and visualizing unlabeled proteomics data preprocessed with
MaxQuant. LFQ-Analyst can process LFQ intensity, and its
quality control report contains multiple visualization plots
(volcano plots, heatmaps, and box plots) of differentially
expressed. However, LFQ-Analyst has fewer statistical
parameters for users to choose from, supports only MaxQuant
format files and needs users to manually annotate experimental
design files before the analysis.
2.6. Eatomics

Eatomics26 (https://github.com/Millchmaedchen/Eatomics)
is also an R-shiny application for the interactive exploration
of quantitative proteomics data from MaxQuant, integrating
quality control, differential abundance analysis, and enrichment
analysis. It has a variety of interactive exploration possibilities
and a unique experimental design setup module that
interactively transforms a given research hypothesis into a
differential abundance and enrichment analysis formula. One
advantage of Eatomics is that it has built-in detailed user
tutorials to help users get started and can be run with one click
after uploading the input file.
2.7. DAPAR and ProStaR

DAPAR and ProStaR27 (http://www.prostar-proteomics.org/)
are two tools dedicated to the discovery of differential analysis
of quantitative data generated by proteomic experiments.
DAPAR is an R-package which provides five processing steps

(filtering, normalization, imputation, aggregation, and differ-
ence analysis), based on those functions, ProStaR provides an
R-Shiny web platform for interactive exploring. The advantage
of ProStaR lies in its ability to do online analysis and embed
detailed user tutorials to help users get started. There are
various types of inputs, such as proteinGroups.txt from
MaxQuant, Proline42 and MSnset43 files. Users need to
manually annotate the condition and select multiple
parameters, and they do not provide QC reports on the
analysis results or the original intensity data.
2.8. msqrob2

msqrob228−30 (https://github.com/statOmics/msqrob2/) is a
free and open-source R package that can handle virtually any
experimental proteomics design. msqrob supports multiple
types of inputs, including MaxQuant,9 moFF,44 and
mzTab.45,46 msqrob2 can use both R script and Shiny
application (https://github.com/statOmics/msqrob2gui) for
analysis and has detailed instruction manuals and videos to
help new users get started. However, no matter which method
is used, users need to manually annotate the condition and
cannot obtain the QC report.
2.9. Perseus

In addition to the open-source R packages and R-Shiny
applications, we explore the performance of the popular tool
Perseus for users familiar with MaxQuant. Perseus21 (https://
maxquant.net/perseus/) is designed for DE analysis of
quantitative results in the MaxQuant ecosystem. Perseus is a
desktop application which offers a wide variety of algorithms
for MaxQuant data normalization, imputation, batch correc-
tion and differential expression analysis. Users need to
manually annotate the condition during data processing and
can choose different types of intensity: raw intensities, LFQ
intensity or IBAQ values. It provides quality control reports
but requires users to generate them manually. The tool
provides an extensive number of supporting materials and
on l i n e t u to r i a l s (h t t p s : //www . you tube . com/@
MaxQuantChannel).

3. EVALUATION FRAMEWORK

3.1. Benchmark Data Sets

Three data sets were used to evaluate each package. The LFQ-
based data set PXD000279 (“UPS spiked dataset”),31 consists
of two E. coli digested samples (with 4 replicates for each
sample); each half of the samples are enriched with one of two
“Universal Protein Standards” (UPS1 and UPS2). Both
samples contained the same 48 recombinant human proteins,
which were either mixed in equal amounts (UPS1) or spanned
multiple orders of magnitude at a determined ratio (UPS2).
Based on the experimental design, 40 of the 48 UPS proteins
and none of the E. coli proteins should be detected as
differentially expressed. This data set has been extensively used
to evaluate LFQ-based differential expression tools14,25,31 and
algorithms.15

In addition, two other more complex data sets were used
PXD00714532 (“large-scale mix dataset”) and PXD02024833

(“toxicology dataset”). The large-scale mix data set contains a
multiple species mixture, in which Yeast proteome was diluted
into fixed ratios of 1:4:10 and added to a background of 1:1:1
human proteome to simulate the real experimental data. Six
technical replicates were used for each sample to measure the
coefficient of variations. The toxicology data set is a cell line
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hepatocytes sample (HepG2) treated with benzo[a]pyrene
(BaP) using a concentration of 2 μM. The original work33

benchmarked TMT and LFQ analytical methods using the
same sample. In the present study, we used the LFQ part to
benchmark the peptide intensity-based tools MSstats, Proteus,
and msqrob2.
3.2. Peptide and Protein Quantitation Tools

MaxQuant. To evaluate each tool’s parameter combina-
tions, algorithms for data processing and protein quantification
analysis, we analyzed the data sets with MaxQuant.9 Raw data
were processed with MaxQuant (version v1.6.10.43) before the
DE analysis with each tool. We used default parameters except
that “the min ratio of LFQ” was set as 1 and “matching
between runs” was enabled. The results from MaxQuant
analysis and the parameters file used can be downloaded from
the following repository (https://github.com/ypriverol/
quantms-research/tree/main/r-research).
quantms. quantms (and its predecessor proteomicsLFQ12)

is a cloud-based workflow that uses OpenMS47 tools and DIA-
NN41 to enable quantitative analysis of LFQ data-dependent
(LFQ-DDA) and independent acquisition (LFQ-DIA) and
TMT data (https://quantms.readthedocs.io/en/latest/). In
the present work, we used the LFQ-DDA subworkflow of
the pipeline on the three data sets to do the peptide
quantification benchmarking. The subworkflow performs
peptide identifications using Comet48 and MSGF+10 and
feature detection using proteomicsLFQ in OpenMS.47

All the scripts and data used to generate the figures and
tables of the paper can be found in the following repository
(https://github.com/ypriverol/quantms-research/tree/main/
r-research). The parameter selections of Shiny tools are shown
in Supplementary Note 1.

4. RESULTS AND DISCUSSION

4.1. Protein-Based Analysis

Table 2 shows the performance of each evaluated R-package
with the UPS spiked and large-scale mix data sets. Both data
sets were analyzed with MaxQuant, and protein intensity tables
were used as the starting point of the DE analysis. For each

protein in the UPS spiked data set, if both the true and
estimated protein abundance ratios are greater than 1 in the
same direction and the adjusted p-value is less than 0.05, we
define it as a “true positive”. If the true protein abundance ratio
is greater than 1, but the estimated ratio is not greater than 1 or
the adjusted p-value is greater than 0.05, this protein is a “false
negative”. All the adjusted p-values we used were corrected by
the Benjamini-Hochberg method for each tool, which is the
common correction method for all tools evaluated. In the
large-scale mix data set, if the estimated protein meets the
previous TP definition and the species belongs to Yeast, we
define it as a “true positive”. If the protein does not satisfy the
numerical condition but the species condition, it is a “false
negative”. While the normalization and imputation methods
employed by each tool are different, with this benchmark we
aim to find what combination of parameters on each tool
provides higher positive predicted values (PPV) and Negative
predicted values (NPV). Since the toxicology data set is not a
gold-standard data set, PPV and NPV cannot be calculated.
In the UPS spiked data set, Perseus, Eatomics, LFQ-Analyst,

and Provision detected most of the true positive proteins (38
UPS proteins), but Proteus achieved the highest PPV but with
the lowest TP.31 Note that when filtering for an FDR of 5%, we
must expect PPV ≥ 0.95, then all the combinations PPV ≥
0.95 can be considered as good combinations (e.g., all Perseus
combinations for UPS spiked data set). ProStaR achieved the
lowest 84% PPV even if it had 100% NPV. Remarkably, most
of the tools and combinations of parameters achieved Negative
predicted values (NPV) higher than 0.95. Supplementary
Table 4 shows large differences among combinations of
parameters for the same tool (e.g., Proteus) resulting in
different protein lists. For example, if a normalization method
is applied with Proteus, more true positive proteins are DE
quantified (33 versus 31 UPS proteins), while the number of
false positives increases.
In addition, we compared the adjusted p-values obtained by

the six different tools with the best combination of parameters
(Best PPV and NPV results, Table 2) by Bland-Altman plot
(Supplementary Figure 1). We did not try ProStaR because its
default output does not display the list of adjusted p-values.

Table 2. PPVs and NPVs for Different Combinations of Parameters and Methods (Imputation and Normalization) on Protein
Levela

Tool (imputation-
normalization) UPS spiked data set

Tool (imputation-
normalization) Large-scale data set (4:1 fold) Large-scale data set (10:1 fold)

PPV NPV PPV NPV PPV NPV

Proteus (MVL-NN) 0.97 (31 TP, total
2231)

0.998 (3
FN)

Proteus (MVL-NN) 0.62 (431 TP, total
3694)

0.972 (85
FN)

0.54 (475 TP, total
3403)

0.981 (48
FN)

prolfqua (GMI-RS) 0.91 (39 TP, total
2143)

0.999 (1
FN)

prolfqua (GMI-RS) 0.65 (544 TP, total
3043)

0.879 (267
FN)

0.54 (703 TP, total
3043)

0.938 (108
FN)

ProVision (ND-NN) 0.93 (38 TP, total
1987)

1.0 (1 FN) ProVision (ND-NN) 0.62 (239 TP, total
2310)

0.851 (287
FN)

0.53 (400 TP, total
2310)

0.919 (126
FN)

LFQ-Analyst (QRILC-
NN)

0.93 (38 TP, total
1988)

1.0 (0 FN) LFQ-Analyst (QRILC-
NN)

0.70 (263 TP, total
2108)

0.836 (284
FN)

0.59 (454 TP, total
2108)

0.931 (93
FN)

Eatomics (ND-limma
VSN)

0.93 (38 TP, total
1826)

1.0 (0 FN) Eatomics (ND-limma
VSN)

0.63 (43 TP, total
1122)

0.992 (8 FN) 0.33 (49 TP, total
1041)

0.998 (2 FN)

ProStaR (DQ-GQA) 0.84 (37 TP, total
2238)

1.0 (0 FN) ProStaR (DQ-GQA) 0.55 (304 TP, total
5521)

0.739 (1295
FN)

0.57 (504 TP, total
5521)

0.764 (1095
FN)

Perseus (GD-NN) 0.95 (38 TP, total
1946)

1.0 (0 FN) Perseus (zero-NN) 0.65 (159 TP, total
1593)

0.950 (67
FN)

0.63 (314 TP, total
1629)

0.955 (51
FN)

aFor all these tests, the input protein expression tables were generated by MaxQuant to perform the differential expression analysis. Only the best
combination for each tool is presented. Supplementary Table 4 contains all combinations’ results. The definition of the best combination is that the
higher the PPV with the same amount of TP proteins. If there is a large difference in the amount of TP proteins, the greater the amount of TP
proteins, the better the combination.
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The Bland-Altman plot49 is a robust method to assess the
agreement between two quantitative methods; allowing one to
measure the agreement between methods by studying the
mean difference and constructing limits of the agreement.49 A
lower difference is observed among the three tools: Perseus,
Eatomics, and LFQ-Analyst, which can imply the results are
alternative between them. However, Proteus and prolfqua
adjusted p-values are different compared with other tools.
When we compared the estimated log-fold change (log2FC)
and the expected log-fold change for each tool, all Pearson
correlations were higher than 0.85 (Supplementary Figure 2),
which means that the log2FC is consistent with the expected
value within a tool. It is important to note for Perseus users
that the direct alternatives to the tool (ProVision, Eatomics,
and LFQ-Analyst) will produce values between 0.7 and 0.8
Pearson correlation compared to Perseus.
We draw the boxplot of estimated log2-fold changes

produced by each tool for background proteins in the UPS
spiked data set (Supplementary Figure 3). Perseus achieves
less dispersive log2FC values and is centered on 0 (−0.05
median, −0.16 lower quartile, and 0.04 upper quartile).
Proteus and prolfqua produce more dispersive values (Proteus:
0.09 median, −0.05 lower quartile, and 0.24 upper quartile)
and the latter had worse log2FC (−0.13 median, −0.26 lower
quartile, and 0.03 upper quartile), as did ProStaR (−0.18
median, −0.31 lower quartile, and −0.05 upper quartile).
For the large-scale mix data set, prolfqua detected most of

the true positive proteins (544 and 703) in both the 4:1 fold
data set and 10:1 fold data set, but Perseus achieved better
PPV in the former and LFQ-Analyst achieved better PPV in
the latter. In the former data set (4:1 fold), ProStaR achieved
the lowest 55% PPV but Eatomics returned the lowest 43 TP
proteins. In the latter data set (10:1 fold), Eatomics achieved
the lowest 33% PPV even though it had a 99.8% NPV, and it
returned the lowest 49 TP proteins. Similarly, different
combinations of parameters for the same tool produce different
results. For example, when enabling the KNN imputation,
LFQ-Analyst achieved the highest PPV (64%) while it
recognized true positive proteins (335) are the lowest
(Supplementary Table 4).

4.2. Peptide-Based Analysis

In addition to exploring the performance of these packages in
analyzing MaxQuant protein results, we also explored R-
package alternatives to analyze peptide-intensity data. Five
packages (MSstats, Proteus, prolfqua, ProStaR, msqrob2)
support the data analysis from peptide-level intensity tables
(Table 1). We explored MSstats, Proteus, and msqrob2 with
peptide-intensity results from quantms and MaxQuant.
Previous benchmarks have been performed only using
MaxQuant, making it difficult to carry the same conclusions
to other quantification tools. quantms is a new cloud-based,
open-source workflow that enables large-scale proteomics data
analysis and generates peptide-level quantification and could
benefit from this evaluation. The protein quantities have been
generated by each R-package or tool starting from the peptide
intensity table from quantms, and the uploaded tables by each
tool can be viewed in Supplementary Table 2.
MSstats summarizes the peptide intensities into protein

intensities, and linear modeling or Tukey’s median polish is
then performed at the protein level.20 Similarly, the Proteus
approach computes the protein-level intensities by calculating
the mean of the three most intense peptides. Then, limma,
which offers robust treatment of missing data, is used to
perform the differential expression analysis. Furthermore,
msqrob2 aggregates peptide intensities to protein expression
values by the robust summarization method in the QFeatures
package.50 We did not evaluate prolfqua and ProStaR because
they lack the support of the mzTab or MSstats file format.
Table 3 shows the benchmark of all combinations of
parameters, quantification tool (MaxQuant, quantms), and
DE package.
MSstats outperform the other packages msqrob2 and

Proteus in the large-scale and UPS spiked data sets when
using both quantification tools MaxQuant and quantms (Table
3). The only exception is the combination of UPS spiked data
set and quantms, where Proteus outperforms MSstats. quantms
and Proteus combinations returned more true positive proteins
and higher PPV values than MaxQuant combinations.
We calculated the coefficient of variation (CV) distributions

in Figure 1, which shows the CV distributions in at least 50%
replicates for different tools and normalization methods. The
CV is calculated from the standard deviation of protein

Table 3. PPVs and NPVs for Different Combinations of Parameters and Methods (Imputation and Normalization) on the
Peptide Levela

Source
Tool (imputation-
normalization) UPS spiked data set

Tool (imputation-
normalization) Large-scale data set (4:1 fold)

Tool (imputation-
normalization)

Large-scale data set
(10:1 fold)

PPV NPV PPV NPV PPV NPV

quantms MSstats (NaN-Q) 0.91 (30 TP,
total 1896)

0.995 (10
FN)

MSstats (NaN-
NN)

0.86 (554 TP,
total 2740)

0.934
(137
FN)

MSstats (NaN-
NN)

0.73 (628 TP,
total 2740)

0.966 (63
FN)

Proteus (MVL-
EM)

0.91 (33 TP,
total 1905)

0.997 (6
FN)

Proteus (MVL-
NN)

0.75 (386 TP,
total 2587)

0.928
(147
FN)

Proteus (MVL-
NN)

0.66 (450 TP,
total 2587)

0.952 (88
FN)

msqrob2 (NaN-
CM)

0.80 (12 TP,
total 1657)

0.990 (16
FN)

msqrob2 (NaN-
NN)

0.87 (388 TP,
total 2310)

0.953 (88
FN)

msqrob2 (NaN-
NN)

0.82 (423 TP,
total 2310)

0.970 (53
FN)

MaxQuant MSstats (NaN-Q) 0.90 (36 TP,
total 2116)

0.999 (1
FN)

MSstats (NaN-
NN)

0.90 (589 TP,
total 2576)

0.973 (47
FN)

MSstats (NaN-
NN)

0.85 (619 TP,
total 2478)

0.990 (18
FN)

Proteus (MVL-
EM)

0.89 (34 TP,
total 2115)

1.0 (0
FN)

Proteus (MVL-
NN)

0.64 (308 TP,
total 2418)

0.964 (70
FN)

Proteus (MVL-
NN)

0.55 (343 TP,
total 2314)

0.976 (40
FN)

msqrob2 (NaN-
CM)

0.87 (33 TP,
total 2116)

0.999 (1
FN)

msqrob2 (NaN-Q) 0.81 (325 TP,
total 2232)

0.982 (33
FN)

msqrob2 (NaN-Q) 0.53 (348 TP,
total 2232)

0.994 (10
FN)

a*: No shared peptides, >2 unique peptides per protein. Only the best combination for each tool is presented. Supplementary Table 5 contains all
combinations’ results.
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intensities divided by the mean within a sample after
normalization and aggregation by MSstats, Proteus, and
msqrob2. Note that the intensity of the protein after
aggregation generated by msqrob2 have negative values, and
we deleted them when plotting. There are six technical
replicates per sample in the large-scale mix data set, so we only
calculate the CV of proteins quantified in at least 3 runs. From
Figure 1, the MSstats package achieved a lower average CV of
15.0% across conditions compared with Proteus (average of
19.3%), and msqrob2 achieved the lowest average CV of
13.7%. Supplementary Figure 4 presents a box plot of the
log2FC distribution produced by MSstats, msqrob2 and
Proteus with different parameters combination. For low fold

changes, msqrob2(NN) achieved a better-estimated log2FC
(0.05 human proteins median and 2.02 Yeast proteins median)
than others. It is worth noting that MSstats(NN) has smaller
variances of log2FC values 1.30, and the values were reduced
from MSstats (NN) 1.36 to MSstats (EM) 1.30 by median
normalization. For high fold changes, msqrob2 (NN) also
achieved a better-estimated log2FC with a median of −0.04 in
Human and 3.26 in Yeast. On the contrary, the Proteus got a
lower estimated log2FC with a median of 1.82 on low fold
changes and 2.95 on high fold changes.
For a large-scale mix data set, the true positive rates are

straightforward, and we can plot ROC curves based on the
adjusted p-values for each case to assess the performance of
MSstats, msqrob2, and Proteus (Figure 2). We see that
MSstats have higher accuracy, with area under the curve
(AUC) values of 0.82 at a 4-fold change based on the median
normalization method. However, msqrob2 performs better in
other cases. Overall, MSstats and msqrob2 have similar
performances for low fold change and they obtain the same

Figure 1. Coefficient of variation of three normalization methods
based on the six replicates of the large-scale mix data set for MSstats,
Proteus, and msqrob2. The MSstats and Proteus used default
imputation methods NaN and MVL, respectively, and the msqrob2
did not use the imputation method. The underlying protein quantities
have been generated by the tools starting from the intensity peptide
table output of quantms.

Figure 2. ROC plots from MSstats, msqrob2 and Proteus for large-
scale mix data set analyzed with quantms. The figure highlights the
sensitivity and specificity of the tools in classifying proteins with
significant fold changes under different normalization settings. The
underlying protein quantities have been generated starting from the
peptide intensity table output of quantms.
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number of differentially expressed proteins at a fixed FDR level
when only the shared yeast proteins with adjusted p-value <
0.2 are considered (Supplementary Figure 5). For a 10-fold
change, msqrob2 and MSstats yielded 257 TP, 71 FP proteins
and 258 TP, 76 FP proteins, respectively, but Proteus only
returns 252 TP proteins and 54 FP proteins at 1% FDR. For a
4-fold change, MSstats and msqrob2 achieve similar perform-
ances (MSstats 226 TP and 18 FP, msqrob2 230 TP and 20
FP) at 1% FDR. Proteus returns 221 TP and 18 FP proteins.
The above differences should be within a reasonably
acceptable range.
In addition to the previous two gold standard data sets, we

analyzed the toxicology data set where no ratio is known
between samples and no spike proteins have been used.
Interestingly, in the original paper33 the authors did not use
any package for normalization, missing value imputation, or
DE analysis. Supplementary Figure 6 shows the CVs for all
replicates of the toxicology data set. For all normalization
methods, MSstats shows lower CV values than Proteus; and
the values for both tools are quite high compared with the
previous analysis large-scale mix data set (Proteus: 19.3%,
MSstats: 15.0% in the large-scale mix data set; Proteus: 28.0%,
MSstats: 16.7%, msqrob2: 13.7% in the toxicology data set).
For msqrob2, the performance of this tool in the toxicology
data set (average of 17.6%) is not as good as that in the large-
scale mix data set (average of 13.7%). With a deeper look into
the data sets, the large-scale mix data set, and the toxicology
data set result from quantms we observed a significant
variation in the number of missed cleavages and missing
values (Figure 3). The quantms quality control heatmap
reports of both data sets (Supplementary Figure 7A,B) show
this variation at the level of the MS run file. This may be the
reason why we observed major differences when analyzing the

number of DE proteins at different FDR thresholds for
different normalization methods (Supplementary Figure 8)
and a little agreement among tools for the final DE proteins
(Supplementary Figure 9). However, MSstats and msqrob2
returned the same number of differentially expressed proteins
(147 DEP) at a 0.05 p-value threshold. Intriguingly, Proteus
shared less than 20% in all normalization cases with the
original author’s results while MSstats and the paper results
shared around ∼40% of the reported proteins. While MSstats
and msqrob2 perform relatively better for the toxicology data
set, but the former performs better in the UPS spiked data set).
We included these contradictory results to show that data
quality may introduce more differences and variability in the
results than the tool used to perform the DE analysis.

5. CONCLUSIONS
This study explores multiple R-packages and tools for
differential expression data analysis of LFQ experiments
based on protein and peptide intensity results. We explored
eight different R or Shiny applications including MSstats,
Proteus, prolfqua, ProVision, LFQ-Analyst, Eatomics, ProStaR,
msqrob2, and the popular C# tool Perseus. Most of these
packages (LFQ-Analyst, ProVision, Eatomics, prolfqua,
msqrob2) have been created as an alternative to Perseus to
analyze the output of MaxQuant in the R. MSstats, prolfqua,
Proteus, msqrob2, and ProStaR can process not only protein
intensity results but peptide-based results, making them more
flexible and compatible with tools such as DIA-NN, quantms,
Skyline, etc. MSstats is the most well-documented package and
the one with more support. However, other packages like
prolfqua have higher quality control capabilities, which are
crucial in differential expression data analysis to detect
variances and errors in specific samples or analytical steps.
The results highlighted that major differences for some tools

and data sets are observed when protein level intensity from
MaxQuant is used because the performance of some tools can
fluctuate significantly depending on the analysis parameters
and even the characteristics of the input data set. Most of the
tools can correctly quantify true positives at low false positive
rates, however, Perseus, prolfqua, and LFQ-Analyst were the
tools that performed better among the benchmarked packages
in the two data sets. We used Proteus, msqrob2, and MSstats
to evaluate the performance of protein quantification based on
peptide-level intensities data from the quantms workflow and
MaxQuant. Overall, for both data sets analyzed (the large-scale
mix data set and the toxicology data set) msqrob and MSstats
provided lower CVs across replicates than Proteus and more
accurate quantification of differential expression ratios in the
large-scale mix data set. However, we observed that when the
data sets presented higher CV values independently of the
tools used for the analysis, the results were not consistent and
difficult to compare across tools. This fact should trigger a
more rigorous study including the possible development of
guidelines to make the quantitative results reproducible and
accurate, even if they pass the author’s specific statistical tests.
At present, there are many algorithms and tools for

identifying and quantifying proteomic data and R-packages
to perform differential expression analysis. However, there may
be some tools and algorithms that have not been evaluated in
this article for retrieval methods or other reasons. Each package
and tool provide different methods for normalization,
imputation, visualization, and quality control of the DE protein
results. Due to the diversity of statistical methods, algorithms,

Figure 3. Distribution of metrics including contaminants, peptide
intensity, charge, missed cleavages, identification rate over retention
time, MS2 oversampling, and peptide missing values for the large-
scale mix data set and toxicology data set analyzed with quantms. The
normalized metric value (y-axis) is the normalized value for each
specific metric between 0 and 1.
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and data sets, we do not evaluate all of them but select some of
them for comparison. By summarizing and comparing existing
tools, this work can serve as a starting point for comparisons of
label-free quantitation.
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