Table 2. PPVs and NPVs for Different Combinations of Parameters and Methods (Imputation and Normalization) on Protein Levela.
Tool (imputation-normalization) | UPS spiked data set |
Tool (imputation-normalization) | Large-scale data set (4:1 fold) |
Large-scale data set (10:1 fold) |
|||
---|---|---|---|---|---|---|---|
PPV | NPV | PPV | NPV | PPV | NPV | ||
Proteus (MVL-NN) | 0.97 (31 TP, total 2231) | 0.998 (3 FN) | Proteus (MVL-NN) | 0.62 (431 TP, total 3694) | 0.972 (85 FN) | 0.54 (475 TP, total 3403) | 0.981 (48 FN) |
prolfqua (GMI-RS) | 0.91 (39 TP, total 2143) | 0.999 (1 FN) | prolfqua (GMI-RS) | 0.65 (544 TP, total 3043) | 0.879 (267 FN) | 0.54 (703 TP, total 3043) | 0.938 (108 FN) |
ProVision (ND-NN) | 0.93 (38 TP, total 1987) | 1.0 (1 FN) | ProVision (ND-NN) | 0.62 (239 TP, total 2310) | 0.851 (287 FN) | 0.53 (400 TP, total 2310) | 0.919 (126 FN) |
LFQ-Analyst (QRILC-NN) | 0.93 (38 TP, total 1988) | 1.0 (0 FN) | LFQ-Analyst (QRILC-NN) | 0.70 (263 TP, total 2108) | 0.836 (284 FN) | 0.59 (454 TP, total 2108) | 0.931 (93 FN) |
Eatomics (ND-limma VSN) | 0.93 (38 TP, total 1826) | 1.0 (0 FN) | Eatomics (ND-limma VSN) | 0.63 (43 TP, total 1122) | 0.992 (8 FN) | 0.33 (49 TP, total 1041) | 0.998 (2 FN) |
ProStaR (DQ-GQA) | 0.84 (37 TP, total 2238) | 1.0 (0 FN) | ProStaR (DQ-GQA) | 0.55 (304 TP, total 5521) | 0.739 (1295 FN) | 0.57 (504 TP, total 5521) | 0.764 (1095 FN) |
Perseus (GD-NN) | 0.95 (38 TP, total 1946) | 1.0 (0 FN) | Perseus (zero-NN) | 0.65 (159 TP, total 1593) | 0.950 (67 FN) | 0.63 (314 TP, total 1629) | 0.955 (51 FN) |
For all these tests, the input protein expression tables were generated by MaxQuant to perform the differential expression analysis. Only the best combination for each tool is presented. Supplementary Table 4 contains all combinations’ results. The definition of the best combination is that the higher the PPV with the same amount of TP proteins. If there is a large difference in the amount of TP proteins, the greater the amount of TP proteins, the better the combination.