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An interaction‑based drug 
discovery screen explains known 
SARS‑CoV‑2 inhibitors and predicts 
new compound scaffolds
Philipp Schake  1,4*, Klevia Dishnica 2,4, Florian Kaiser 3, Christoph Leberecht 3, 
V. Joachim Haupt 3 & Michael Schroeder 1

The recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-
Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to 
enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is 
the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, 
which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning 
algorithm on all protein-compound complexes available in the protein database (PDB) to identify 
Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed 
a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, 
Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up 
evaluation, we used publicly available data published almost two years after the screen to validate our 
results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and 
can furthermore show that predicted compounds do cover scaffolds that are yet not associated with 
Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with 
hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope 
that we will be better prepared for future pandemics and that drug development will become more 
efficient in the upcoming years.

The COVID-19 pandemic, which started in Wuhan (China) and then spread worldwide, has caused almost 
609 million infections and more than 6 million deaths as of September 2022 (World Health Organization). Its 
causative agent the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) belongs to the Corona-
viridae family of single-stranded positive-sense RNA viruses1,2. Other viruses of the same family, namely the 
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome 
coronavirus (MERS-CoV)3 already led to epidemics in 2002/3 and 2012 respectively4,5. Due to the severity of 
the current outbreak, the scientific community has undergone huge efforts to experimentally determine SARS-
CoV-2 genome sequences and three-dimensional structures as fast as possible. The unseen amount of publicly 
available data on a single virus is the groundwork for developing virus-specific drugs that could end the current 
pandemic. The SARS-CoV-2 genome encodes for structural proteins and non-structural proteins such as 3CLpro, 
PLpro, helicase, and RNA-dependent RNA polymerase6. The four non-structural proteins mentioned above are 
key enzymes in the viral cycle7.

The Main protease (Mpro) is being studied a lot in terms of structural and functional properties because of 
its high similarity, with significant conservation in the cleavage site, shared with SARS-CoV8. It is an enzyme 
involved in the processing of polyprotein which is translated from viral RNA9. Therefore, the inhibition of Mpro 
would ultimately suppress viral replication. Furthermore, there are no human proteases with a similar cleavage 
specificity as Mpro, making it very unlikely for Mpro inhibitors to be toxic10. Considering this evidence, we will 
put the main effort into the SARS-CoV-2 target Mpro.

In general, there are two main groups of methods that aim to identify new drugs for a given target, such as 
Mpro, which are computational and experimental approaches11.
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The wide range of in vitro experimental approaches performed to manage the pandemic includes studies 
aiming to determine appropriate drug targets12, newly developed experimental methods to validate predicted 
drugs13–15, experiments to uncover drug mechanisms16–18, and high throughput drug repurposing experiments19. 
One of the most important outcomes of experimental approaches is the development of the by-now-approved 
drug Paxlovid, a combination of nirmatrelvir20 and ritonavir, for treating COVID-19 patients with a very high 
risk of severe illness21. Furthermore, Boceprevir and GC-376 are identified as potent SARS-CoV-2 main pro-
tease inhibitors22. Nevertheless, experimental approaches in drug discovery require a high level of training, are 
expensive, and are generally less suited to perform large throughput studies to evaluate extensive compound 
libraries23. The above-mentioned drug Paxlovid for example is a derivative of a drug that was already developed 
as a potential SARS-CoV-1 inhibitor20.

Besides in vitro approaches aiming to identify potential new drugs, others are aiming to detect three-dimen-
sional active site structures and compound binding modes. Structures obtained and published in the protein 
database (PDB) early on showed compound fragments in complex with Mpro. They revealed the importance 
of the residues His41 and Cys145 that comprise the catalytic dyad similar to Mpro of SARS-CoV-124,25. Further 
work disclosed that in Mpro an oxyanion hole is composed of Gly143, partly Ser144, and Cys14510,26 implying 
that a promising drug candidate should be able to interact covalently or noncovalently with at least one of these 
residues. However, these structures should be used with caution. It was shown that especially the Mpro structures 
generated with high-throughput methods are often lacking the representation of a possible important water 
molecule that could serve as a third catalytic residue and that the models are not on par with other structures 
in the PDB27. In addition, most structures are generated at temperatures of 100 K and thus are representing an 
active site configuration that is non-physiological, leading to errors such as the previously mentioned missing 
water molecule28. Nonetheless, structural approaches are extremely important to get insights into protein func-
tion and have already uncovered the mechanism of the FDA-approved SARS-CoV-2 inhibitor Remdesivir 29.

To cope with the problems of experimental approaches and to make use of the available data, computer-aided 
approaches in drug discovery are becoming more and more popular and important11. Interestingly, the most 
prominent examples of in silico drug screenings against COVID-19 seem to be based on molecular docking or 
molecular dynamic algorithms. Benefitting from the increased computational power, molecular docking algo-
rithms are now suitable to screen giga-sized compound libraries against a single protein target. Such studies are 
testing tens of billions of compounds and are predicting a wide range of chemically diverse compounds30,31. Most 
screened libraries are focused on known drugs and their relatives, but other recent approaches are screening 
against libraries of natural compounds to increase the search space23,32,33.

Still, the major drawback of most in silico screenings is the lack of proper prediction validation resulting in 
only modest outcomes of huge screenings and no fast and global solution for the current pandemic 34.

By using a large amount of available data on the main protease of SARS-CoV-2, we want to address the above-
mentioned problems. First, available Mpro compound complexes are extracted from the PDB and their binding 
patterns get analyzed by the Protein–Ligand Interaction Profiler (PLIP)35. Second, all protein–ligand complexes in 
the PDB are screened to detect similar binding patterns and predict potential inhibitors. Since we noted a drastic 
increase in publicly available data after the screen was done we decided to use this information for a further valida-
tion step. The data available in the PDB, before and after the screen, is depicted as a timeline in Fig. 1. Using this 
data and Mpro binding affinity values from ChEMBL we were able to semi-automatically validate the predictions. 
Following these steps, the predictions are not dependent on pure chemical properties and therefore expected to be 
very diverse, leading to potential interesting and never considered findings. The automated part of the validation 
does not require any wet lab work and only depends on publicly available data. The pipeline is summarized in Fig. 2.

Figure 1.   Unique compounds released in complex with Mpro in the PDB. Structures are searched by the UniProt 
ID P0DTD1 and filtered for interactions with Mpro. Horizontal lines mark the days of Mpro inhibitor prediction 
and validation by data available in the PDB and ChEMBL.
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This way, we were able to predict 692 unique potential Mpro inhibitors and validated 17% of the top 100 
predictions retrospectively by publicly available data. The predictions cover a large chemical space and have 
great potential as lead compounds targeting Mpro. Within the top 100 predictions, we identified 4 already FDA-
approved drugs that are currently under investigation for the treatment of the COVID-19 disease. The analysis 
of specific binding patterns within all available Mpro compound complexes in the PDB confirmed the importance 
of potential drugs interacting with the catalytic dyad of Mpro’s active site. We furthermore detected an interest-
ing pattern of three almost perpendicular hydrogen bonds interacting with hydrogen donors of an oxyanion 
hole within the active side. Our work contributes to the scientific community’s efforts to detect potential lead 
compounds for a given protein target in a fast and reliable way.

Materials and methods
Data extraction and prefiltering.  A search of the PDB for Mpro on 21 March 2020 returned a set of 140 
compounds found in complex with the protein. Those were filtered in two major steps. First generic and pro-
miscuous compounds were filtered out using an in-house blacklist. Second, only those that bound the catalytic 
binding site of Mpro were considered, leaving only 48 compound- Mpro complexes. These 48 complexes served as 
input for an interaction-based screening using the PharmAI DiscoveryEngine (Version 2021.03, date 21 March 
2021, https://​www.​pharm.​ai). The small molecules in the PDB were set as target library for the predictions of the 
DiscoveryEngine.

Interaction based screening.  In these screening approaches the way a given ligand is interacting with a 
protein is extracted using software, such as the Protein–Ligand Interaction Profiler (PLIP)36 from three-dimen-
sional complex data as provided by the protein database (PDB)37 as well as geometric matches of ligand and 
binding site. The interactions are afterward converted into one-dimensional vectors (interaction fingerprints). 
Such interaction fingerprints can be compared with others using comparison schemes, such as the Tanimoto 
similarity index or comparable techniques, to screen large databases. The screen returned 740 unique com-
pounds. Similar screening strategies have been used in Salentin et al. 2017, Adasme et al. 2020, and Adasme 
et al. 202038–40.

Prediction evaluation and visualization.  48 predicted compounds, which were already in complex with 
Mpro, were removed, resulting in 692 compounds. For these compounds, chemical fingerprints were computed 
using the Morgan fingerprint radius 2 and 512 bits41. The similarity of compounds was computed with the 
Tanimoto score, i.e. |A⋂B|/|A⋃B| where A and B are two vectors. A random set of 400 compounds was created 
to determine a cut-off for dissimilar compounds. 200 were selected from the total of all 35.153 compounds in 
PDB and 200 from the total of 2.157.379 compounds in ChEMBL (March 2022). There was no overlap between 
the two groups. Pairwise Tanimoto scores were computed, and their distribution indicated that 99% of pairs 
have a Tanimoto score of less than 0.25. Thus, 0.25 was used as a cut-off for dissimilar compounds. Compounds 
were clustered using hierarchical clustering with single linkage from scipy42. They were visualized as a heatmap 
(Fig. 3) with the cut-off of 0.25 to indicate dissimilar compounds. The multiple correspondence analysis and 
empirical cumulative density functions (Figs. 4,5) were computed using scipy42. Interactions of compounds to 
Mpro were extracted from PDB files using PLIP 2.2.035 and visualized in Pymol. The hydrogen bond triple motif 
was flagged if PLIP identified a hydrogen bond in Mpro residue 143, 144, and 145.

To validate the results, we searched PDB and ChEMBL for compounds known to interact with Mpro to 
compare those with our predictions. PDB and ChEMBL were searched for the Mpro Uniprot ID P0DTD1 on 9 
March 2022 and 22 March 2022, respectively. PDB returned 471 unique compounds and ChEMBL 7.221. All 
considered PDB structures are generated by X-Ray Diffraction with a resolution of at least 2.4 Å (see Suppl Suppl 
Appendix Table 1). All interactions in ChEMBL are from the same screen (CHEMBL4495582) and results are 
reported as Mpro inhibition percentage at 20 µM by FRET kind of response from peptide substrate43. Inhibitory 
activity was normalized to the one of Zn-Pyrithione as the positive control (100%) and DMSO as the nega-
tive control (0%). For the confirmation of valid hits, we assumed that reported compounds with values above 
0% inhibition are at least weakly active.

Figure 2.   Graphical abstract. The pipeline consists of three major steps. First (left panel) 48 query complexes 
of Mpro with co-crystallized ligands are extracted from the PDB. Second (middle panel) the interaction patterns 
are transformed into one-dimensional fingerprints and screened against the full PDB database resulting in 692 
predicted compounds. Third (right panel) these predictions are validated with publicly available data leading 
to 99 validated compounds that are associated with SARS-CoV-2. The validation implicates a hit rate of at least 
15%.

https://www.pharm.ai
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Results
Structure‑based drug screening for Mpro reveals 692 potential inhibitors.  To identify reposition-
ing candidates for the inhibition of Mpro, predictions were provided by PharmAI (Dresden, Germany) as a result 
of an interaction-based screening. The screening revealed 692 potential Mpro inhibitors within the PDB. The 
predictions are further evaluated in three steps. First, their chemical properties are analyzed in terms of similar-
ity to each other and known Mpro inhibitors. Here, we aim to find a heterogeneous set of predictions that cover 
chemical scaffolds beyond the already known ones with the potential of inhibiting Mpro. Such novel predictions 
may function as the basis for further evaluation and drug design. Our analysis revealed that the predictions 
are indeed very heterogeneous and do cover a large chemical space. Second, the predictions are searched for 
already known binders that are found in the PDB or ChEMBL to get a first idea of the predictive performance 
of the screen and to include publicly available data. Furthermore, predictions of high importance as already 
FDA-approved drugs are checked for an association as a Mpro inhibitor or COVID-19 drug in general. By that, 
we can confirm that 17% of our top 100 predictions have evidence of binding Mpro. Furthermore, 12 compounds 
are known to interact with other viral proteins of the replicase polyprotein 1ab, and we identify multiple FDA-
approved drugs that are potential COVID-19 drug candidates. Third, we analyzed compound-Mpro binding pat-
terns to detect potentially important binding modes and recognized a potentially important tripled hydrogen 
bond pattern.

Predicted compounds are heterogeneous.  The chemical properties of 692 predicted compounds were 
evaluated. To get a first impression of the chemical relations in the large prediction set, we created a heatmap of 
their pairwise chemical similarities. All similarities are calculated as the Tanimoto similarity score of Morgan 
chemical fingerprints which is a 2D descriptor (see “Methods”). Such an analysis gives insights into how chemi-
cally diverse a set of compounds is. For example, similar compounds would form one or a few big clusters in 
such a heatmap while dissimilar ones would form none or multiple very small clusters. Ideally, the predicted 
compounds consist of new scaffolds covering a large chemical space. An outcome like this can give new insights 
into chemical species that should be considered as the groundwork for further drug design approaches.

Comparing chemical species is a challenging task and is usually done by transferring string representations 
of the compound into vector representations that can be compared by metrics such as the Tanimoto similarity 
index. Since all of such approaches come with their own benefits and drawbacks, we benchmarked the used 
combination of the Morgan fingerprint with radius 2 and 512-bit representation combined with the Tanimoto 
similarity index. Evaluating the similarity of 400 randomly selected compounds (Fig. 4) revealed that 99% have a 
similarity of less than 25% suggesting that this is a meaningful cut-off to consider compounds related/unrelated.

The heatmap analysis (Fig. 3) revealed that in all but one case only small clusters are formed. Similarities 
below 25% are whited out since those compounds can be treated as unrelated. The big cluster (118 out of 692 
compounds) consists primarily of deoxyadenosine monophosphate derivatives. This result is not surprising 
since the already FDA-tested drug Remdesivir and its active metabolite GS-441524 are adenosine derivatives as 
well. These types of inhibitors are already shown to successfully inhibit viral replication. Other derivatives e.g. 
Cordycepin yield Mpro binding affinity44–46. This gives further support for the predicted compounds. Nonethe-
less, the majority of compounds are unrelated, suggesting that the predictions are indeed chemically diverse.
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Figure 4.   Pairwise chemical similarity of predicted, random, latest PDB, and query compounds. Top: violine plot. 
Bottom: empirical cumulative density function (ECDF) of similarities. Query compounds are more similar to 
each other than predictions, which are as similar to each other as a random set of compounds. This indicates that 
predictions substantially expand from the queries and cover a vast chemical space. 99% of random compounds 
have a similarity of less than 0.25 suggesting that 0.25 is a meaningful cut-off to consider compounds unrelated.

Figure 3.   Chemical similarity heatmap of the 692 predicted compounds. Since the underlying matrix 
is symmetric, the upper triangle is not shown explicitly. The analysis reveals little redundancy and a 
broad spectrum of scaffolds. The big cluster (middle) consists of compounds similar to deoxyadenosine 
monophosphate which is a group known to bind Mpro.
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How do the predictions relate to known inhibitors?  In general, predictions that cover a large chemi-
cal space are more likely to reveal interesting and novel scaffolds that can even be more important than a high hit 
rate47. Figure 5 shows the multiple correspondence analysis (MCA) applied to the chemical Morgan fingerprints 
of our predictions and all compounds with structures available in the PDB where they are in complex with Mpro. 
Given in blue is the kernel density estimate (KDE), i.e. the probability distribution, of the PDB Mpro binders, 
orange dots mark the predictions, green dots mark query compounds, and magenta dots mark validated predic-
tions. The analysis implies that the predictions fill a larger chemical space compared to the known binders and 
query compounds. Most of them are found in high-density regions of the known binders, which supports the 
overall approach since they do not form a whole new chemical space. The same holds true for validated predic-
tions. However, we indeed identified compounds that are beyond the chemical space of known binders.

To access the heterogeneity of the predicted compounds even further we computed the pairwise similarity 
of 400 randomly selected compounds (200 ChEMBL, 200 PDB). The result is shown in the top panel of Fig. 4. 
Only the set of query compounds seems to show some degree of homogeneity with a mean chemical similarity 
of 0.23, which is still below our prior defined threshold. The randomly selected compounds, predictions, and 
known Mpro PDB binders have mean similarities around 0.125.

In summary, the predicted compounds seem to be as heterogeneous as known and tested Mpro binders while 
containing new scaffolds that may contribute to future efforts in developing a Mpro-specific anti-COVID-19 drug.

Figure 5.   Multiple correspondence analysis (MCA) of predicted- (orange dots), validated- (magenta 
dots), query- (green dots), and known- (blue surface) Mpro binders. The axes of the MCA plot represent the 
dimensions of the data with the highest amount of explained variance. The analysis reveals that the predictions 
do cover a bigger chemical space than the known Mpro binders with structures available in the PDB.
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The validation with publicly available data revealed a hit rate of 17%.  After evaluating the pre-
dictions based on their chemical features, we aimed to validate them. Doing this for more than 600 compounds 
in vitro is a huge effort and we, therefore, make use of the astonishing amount of publicly available data on SARS-
CoV-2. Here we have three principal approaches: first we extracted all compounds that are found co-crystallized 
with SARS-CoV-2 viral proteins in the PDB. Figure 1 gives an overview of structures published with the UniProt 
ID P0DTD1 that are co-crystallized with Mpro. Second, we searched ChEMBL for released affinity values of 
experiments with the target Mpro (CHEMBL4523582). For this section of the analysis, ChEMBL was selected due 
to its accessibility and the thorough curation of the provided data. Lastly, we evaluated FDA-approved predicted 
drugs by literature search.

Compounds are considered to be validated in PDB if a structure is available with a predicted compound in 
complex with the protein target Mpro. In addition to these four  compounds, we identified another 12 which are 
found in complex with other proteins of the replicase polyprotein 1ab (see Suppl Appendix Table 1). After the 
screening was performed in 2020, 420 new structures of Mpro were released, which serve as a basis for this part 
of the validation.

Since PDB is very limited due to its small number of available compounds (34,204) we investigated our 
results against ChEMBL as well. ChEMBL was searched for activity evidence on the reported predictions and 
Mpro. Interestingly, to date, there is only data of a single high throughput screening on Mpro available in ChEMBL. 
For a total of 100 compounds, there is activity evidence, however only inhibition percentage values at 20 µM 
compound concentration are provided. Out of those 100 compounds, 76 show relative inhibition of > 10%, 30 
more than 20%, and 11 more than 30%. It is therefore hard to judge if those are strong (nanomolar binders) or 
compounds that are only weakly interacting with Mpro. Detailed information on the predictions and validation 
data can be found in Suppl Appendix Table 1.

Nonetheless, the compounds are active which gives evidence beyond estimated interaction patterns, and even 
non-nanomolar binders are potential foundations for further drug optimization. Strangely, there is hardly any 
overlap between compounds found in ChEMBL and PDB even though Mpro is currently one of the most studied 
proteins. Among all 99 validated compounds, only 7 are found to have activity values reported in ChEMBL and 
a structure in complex with an viral protein available in the PDB. The lack of more activity data in ChEMBL can 
be attributed to the fact that ChEMBL has a very strict and standardized review procedure.

In summary, the performed in silico screening has an in vitro hit rate of 15% within all 692 predicted com-
pounds and a hit rate of 17% within the top 100 predictions, ranked by p-values (Table 1). Thus, there is sub-
stantial evidence that the predictions are indeed valid drug candidates against SARS-CoV-2.

Further evaluation supports prior findings on four FDA‑approved drugs.  Next, we want to get 
a deeper understanding of these predictions. We assess them by the interaction motifs present in the query 
structures and predictions, by highlighting the two most strongly validated predictions with evidence in both 
ChEMBL and PDB, and third by evaluating predictions of FDA-approved drugs with literature or clinical trial 
evidence as anti-COVID drugs.

Among the top 100 predictions, four are approved for use in humans by the U.S. food and drug administration 
(FDA), which are Flavin mononucleotide, Amodiaquine, Dasatinib, and Adenosine (Fig. 6). Flavin mononucleo-
tide (FMN) is an orange-red food color additive and is predicted in complex with UbiX from the psychrophilic 
bacterium colwellia psychrerythraea (PDB:4REH)48. In 2022, Akasov et al. gave evidence about the usage of 
riboflavin supplementation to decrease inflammation in COVID-19 patients49. The malaria drug Amodiaquine 
is predicted in complex with human histamine N-methyltransferase (HNMT), which is a histamine-inactivating 
enzyme (PDB:2AOU)50. Amodiaquine was found to block SARS-CoV-2 infection with an EC50 value of 0.13 μM 
and was already proposed as a potential candidate against the early phases of the infection51. It was furthermore 
predicted to be a fruitful inhibitor of Mpro in a molecular docking study performed by Hagar et al. in 202052. 
Dasatinib is a known tyrosine kinase inhibiting drug approved for use in patients with chronic myelogenous 
leukemia and is predicted in complex with the human SH2-kinase domain (PDB:4XEY)53. In a clinical case, 
Dasatinib (100 mg/day) reduced fever, and a duplicate swab test came out negative two weeks later54. However, 
it was unclear with which protein target the drug was interacting55. Furthermore, Dasatinib in combination with 
Quercetin reduces lung inflammation in SARS-CoV-2 infected hamsters and mice26 and is now in phase two 
of clinical trials as an anti-inflammatory drug in patients with moderate and severe COVID-19 (https://​clini​
caltr​ials.​gov/​ct2/​show/​NCT04​830735). Adenosine is an organic body-own compound and showed promising 
anti-inflammatory effects in COVID-19 patients when inhaled56,57. In addition, the adenosine analog cordycepin 
was found to potently inhibit viral replication of resistant SARS-CoV-2 strains with an in vitro EC50 value of 
only 2 µM.

Table 1.   Validation of predicted compounds. The top predictions are highly enriched in independently 
validated Mpro binders. Validation is done by evaluating with identical compounds that show inhibitory activity 
in ChEMBL or found in complex with Mpro in the PDB. Given values for PDB and ChEMBL validation do not 
consider any overlap.

PDB ChEMBL Both

Top 100 2 (2%) 15 (15%) 17 (17%)

All  692 4 (0.5%) 100 (14%) 99 (15%)

https://clinicaltrials.gov/ct2/show/NCT04830735
https://clinicaltrials.gov/ct2/show/NCT04830735
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Despite the existing evidence of viral inhibition, the specific mechanisms of action for all four molecules 
remain unclear, necessitating the need for an in vitro demonstration of Mpro inhibition.

The evaluation of recently released PDB Mpro structures reveals a common interaction pat‑
tern.  In addition to using recently published data on Mpro to validate inhibitor predictions, the data was used 
to get supplemental insights on the binding mode. Starting from the most high-level perspective on the interac-
tions we calculated the frequency of each main interaction type. It was previously shown that the most frequent 
interaction type in the PDB are hydrophobic interactions58. As depicted in Fig. 7, the most frequent interaction 
types among Mpro binders are hydrogen bonds followed by hydrophobic interactions and water bridges. There is 
some specificity in the compound Mpro interactions compared to what is generally present in the PDB.

Not surprisingly, a total of 121 out of 471 unique compounds are interacting with one or both amino acids 
composing the catalytic dyad. Notably, the His41 residue exhibited a diverse range of interactions, with 39 pi-
stacking interactions, and 23 hydrophobic interactions dominating the scene. Additionally, hydrogen bonds 
(8), pi-cation interactions (7), water bridges (4), salt bridges (2), and even halogen bonds (1) were also detected, 
providing a complex and intriguing picture of the binding interactions at play. Interestingly, Cys145 displayed a 
clear preference for hydrogen bonding interactions, with a remarkable 73 compounds interacting via this mode. 
Other interaction types, such as water bridges (2) and hydrophobic interactions (1), were also observed, hinting 
at the complexity and diversity of the catalytic dyad’s interactions with ligands.

Further investigation on Mpro binding modes results in the identification of a potentially interesting triplet 
hydrogen bond pattern present in 35 out of 471 structures.

In Fig. 8, we showcased six examples that were used as input for the compound predictions. The compounds 
form three hydrogen bonds with the residues Gly143, Ser144, and Cys145. This finding is in agreement with 
what is reported by Douangamath et al. in 202025. Here they found, that co-crystallized electrophilic ligands tend 
to form either two or three hydrogen bonds with Gly 143, Ser 144, or Cys 145. A similar pattern was previously 
reported by Zhang et  al. in 202010 and is an addition to the importance of interactions with the catalytic dyad 
composed of His41 and Cys145. This triplet interaction is of major importance for the protease function since 
Gly143, Ser144, or Cys145 do function as hydrogen bonding donors of the oxyanion hole present in Mpro’s active 
side59. Therefore, we expect compounds that are able to dive deeply into the pocket and form interactions with 
those residues will efficiently inhibit the protease.

Turning the attention to our drug candidates, we identified a very similar pattern in three predicted structures 
(Fig. 9), all of which are complexes with FDA-approved drugs. These cherry-picked examples show the oppor-
tunity of detecting similar patterns in different proteins by interaction-based prediction methods.

Discussion
The current COVID-19 pandemic exemplifies that fast-spreading diseases are a serious threat to modern soci-
ety. By structure-based drug repurposing, we can predict a chemically diverse set of potential lead compounds 
against the main protease of SARS-CoV-2 with a success rate of 17%. Within the set of validated compounds, we 
identified several FDA-approved drugs, of which some are currently tested in clinical trials against SARS-CoV-2. 
Furthermore, we exploited the binding mode of known Mpro inhibitors and revealed the potential importance of 
a triplet hydrogen bond pattern for the protein–compound interaction.

Performing in silico drug screenings is a challenging task and comes with its own benefits and drawbacks. In 
contrast to wet lab studies, they are rather inexpensive, safe, and cheap. However, the result is only a prediction 
that requires experimental validation. Several researchers took the challenge of the COVID-19 pandemic and 
applied their very own algorithms aiming to predict fruitful drug candidates for multiple viral targets. Nonethe-
less, several of these studies do lack any kind of validation leaving the reader of such articles to judge themselves 
on how trustworthy the results in general are. Others created a full pipeline starting from in silico predictions 
which are then meticulously experimentally tested on important parameters, such as binding, cytotoxicity, 
metabolic stability, or oral receptivity 9,20.

Figure 6.   Structures of four FDA-approved predictions with evidence on COVID-19. All are part of the top 100 
predictions.
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Figure 7.   Interaction types present in 48 query compounds.

Figure 8.   Protein (blue) compound (orange) interactions of selected compounds. Blue lines mark hydrogen 
bonds, orange dashed lines mark pi-cation interactions, and dashed grey lines mark hydrophobic interactions. 
The three-letter codes refer to PDB chemical ids. Residues are indicated in red. A specific motif of three nearly 
perpendicular hydrogen bonds is present in six of the 48 query compounds.
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Drug repurposing already led to some successes in the context of the COVID-19 pandemic. Owen et  al. 
proved in 2021 that by chemically modifying and improving a predicted lead compound an efficient drug against 
a given disease can be developed20. Their drug Nirmatrelvir is now conditionally approved in the EU and US. 
Even though this is a great success, their lead compound was already predicted as a potential drug against the 
SARS-CoV-1 outbreak in 2002. Still, it shows that experts in the field can rapidly develop potent drugs in a 
relatively short period of time when starting from an appropriate lead molecule. Following this assumption, we 
aimed to predict a chemically diverse set of potential Mpro inhibitors with our interaction-based approach. In 
doing so, the chances to detect so far unknown but potentially very important compound scaffolds are increased, 
giving more value to the predictions. We are able to show that the predictions are not only little redundant but 
furthermore cover a large chemical space including so far untested scaffolds. This is especially important con-
sidering that the query compounds used as the input for the prediction are far more homogeneous compared 
to the predictions and validated predictions. The same holds true for validated predictions, suggesting, that the 
scientific community is already heavily increasing the diversity of tested small molecules against COVID-19. 
Moreover, it is a proof of concept, that chemically diverse small molecules can still be effective as inhibitors for 
the same protein target.

This opens the gates for further developments based on our predictions. The most limiting factor is the 
availability of compounds in the PDB that are the only ones considered in the screen due to the requirement of 
protein–compound complexes as input for the algorithm.

Furthermore, the herein presented method aims to predict small molecules targeting a specific active site 
and does not allow for reliable predictions on molecules targeting e.g. allosteric binding sites. However, these 
can be included in a screen if interaction data is available in the PDB. By using publicly available data, we have 
created an intermediate approach that yields more trustworthy results than comparable in silico approaches but 
is not as powerful as those who considered experimental validation. With a hit rate of at least 17% within the top 
100 predictions and 15% overall, the algorithm performance is substantial compared to similar approaches31.

The evaluation of FDA-approved drugs within the predictions revealed the potential of the method to generate 
new hypotheses on drug mechanisms. All compounds are predicted to inhibit the main proteases of the Sars-
CoV-2 virus and should therefore prevent viral replication. Through literature research, we identified articles 
on four FDA-approved drugs, showing beneficial effects in COVID-19 patients, that are within our top 100 
predictions, and none of those reported any drug mechanism. The drugs Riboflavin, Amodiaquine, Dasatinib, 
and Adenosine have shown anti-inflammatory effects in COVID-19 patients or in-cell antiviral activity49,51,55–57. 
This raises the question of whether reduced viral replication mediated by the inhibition of Mpro as predicted by 
us is responsible for the reduced inflammation.

Ascorbic acid on the other hand is one of our validated and FDA-approved predictions but there is evidence 
that it is not applicable as a COVID-19 drug due to its inefficiency in infected patients60,61. This exemplifies 
the limitations of the approach. Even if a drug does bind and eventually inhibits a target protein, there is no 
guarantee that it could function as a drug. Factors such as cell permeability, half-time, or other mechanisms can 
counteract the inhibitory properties of a compound. That can not be tested in a pure in silico fashion and does 
require wet lab work.

Anyway, the elephant in the room here is the other 82% of the predictions without validation. So far, there 
is no evidence of these compounds interacting with Mpro found in the PDB or ChEMBL. Therefore, this set of 
compounds may contain fruitful new lead scaffolds and their identification does require further experimental 
validation and evaluation.

Figure 9.   Protein (blue) compound (orange) interactions of selected compounds. Blue lines mark hydrogen 
bonds, dashed orange lines mark pi-cation interactions, dashed yellow lines mark salt bridges, and dashed grey 
lines mark hydrophobic interactions. Residues are indicated in red. The three-letter codes refer to PDB chemical 
ids. Interacting proteins from left to right are: SET domain lysine methyltransferases (UniProt: Q43088), 
aspartokinase (UniProt: P9WPX3), and acetylcholinesterase (UniProt: P04052). The triple hydrogen motif is 
present in multiple predictions as well as in 35 out of 471 Mpro complexes in PDB.
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Supplementary analysis on interaction patterns of recently released Mpro-compound complexes reveals a 
triplet hydrogen bond that could explain stable interactions and efficient inhibition. Compounds with such a 
binding mode do interact with all neighboring residues of the oxyanion hole (Gly143, Ser144, Cys145) and are 
therefore blocking its catalytic function. Since only 13% of the Mpro complexes in the PDB do show such a pat-
tern, further investigations are required to test if those do have lower binding energy as we expect. Still, similar 
patterns are reported by different research groups highlighting the importance of further investigations regarding 
its importance on Mpro inhibition.

Conclusion
With our work on SARS-CoV-2, we can show that our interaction-based prediction method has great potential 
to predict a diverse set of potential lead compounds for a given protein target. Starting from a relatively homo-
geneous and small set of compound fragments bound to the main proteases of SARS-CoV-2, we predicted a 
chemically diverse set of potential inhibitors. Overall, we produced lead compound predictions at a very high 
hit rate by our interaction-based approach and were able to perform a first validation without the requirement 
of additional wet-lab work.

In this work, we benefited from the data-rich situation, but the method is applicable as long as there are com-
plexes of the target protein bound to a compound available in the PDB. That way, we can provide a foundation 
for further lead optimization for lots of disease-associated proteins enhancing the drug development process.

Data availability
The interaction data used as input for the predictions can be found in Suppl Appendix Table one column “Query 
PDB ID:Chemical ID”. The corresponding PDB files are publicly available from the PDB (https://​www.​rcsb.​org). 
All resulting predictions can be found in Suppl Appendix Table one column “Hit PDB ID:Chemical ID”.
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