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Abstract

Recently, “tangible” virtual libraries have made billions of molecules readily available. Prioritizing 

their molecules for synthesis and testing demands computational approaches, like docking. Their 

success may depend on library diversity, its similarity to bio-like molecules, and how receptor-fit 

and artifacts change with library size. We compared a library of 3 million “in-stock” molecules 

with billion-plus tangible libraries. The bias toward bio-like molecules in the tangible library 

decreases 19,000-fold versus those “in-stock”. Similarly, thousands of high-ranking molecules, 

including experimental actives, from five ultra-large library docking campaigns are also dissimilar 

to bio-like molecules. Meanwhile, better fitting molecules are found as the library grows, with 

score improving log-linearly with library size. Finally, as library size increases, so too do rare 

molecules that rank artifactually well. Although the nature of these artifacts changes from target to 

target, their expectation of occurrence does not, and simple strategies can minimize their impact.
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Introduction

Given over 1060 drug-like molecules estimated possible1,2, screening of 105.5 to 106.5 

random molecules, as in high-throughput screens, might in principle never work. A widely 

mooted explanation for why it has worked3–5 is that screening decks are far from random, 

but are biased toward molecules that proteins have evolved to recognize: metabolites, 

natural products, and their mimicking drugs6—what we will call “bio-like” molecules. 

The implication of this idea, which we6 and others7–19 have promoted, is that as chemical 

libraries expand they should remain biased toward bio-like molecules. While popular, this 

idea has never been prospectively tested.

An opportunity to do so has come with the advent of ultra-large make-on-demand or 

“tangible” libraries20. These virtual libraries are composed of molecules that have not 

been previously made, but can readily be synthesized. Since 2016, these libraries have 

expanded accessible molecules from 3.5 million (available from in-stock collections) to 

over 29 billion21. While such libraries cannot be empirically screened, molecules within 

them can be computationally prioritized for synthesis and testing, often using molecular 

docking. Indeed, docking of these ultra-large tangible libraries has revealed highly potent 

molecules for multiple targets, with affinities often in the mid-nM and sometimes high 

picomolar range22–26, results typically better than from docking the much smaller in-stock 

collections. If the idea that the success of compound screens reflects library bias toward 

bio-like molecules, one would expect these new ultra-large libraries, and the hits emerging 

from them, to share the biases toward metabolites, natural products and drugs observed in 

the “in-stock” libraries. Since we know the identity of every molecule screened in these 

libraries, this idea can be explicitly tested.

It also seemed interesting to consider what other factors in the tangible libraries have 

contributed to docking successes, and those of other library screening methods27, and what 

challenges may be anticipated as the libraries continue to grow28. For instance, should we 

expect the fit of library molecules into their receptor targets to improve as the libraries grow, 

and if so at what rate? Do the high-ranking molecules from a library screen come to be 

dominated by a small number of chemotypes as libraries grow, or is diversity maintained? 

As the libraries grow, does the likelihood of artifacts29 that exploit weaknesses in the 

docking scoring and sampling also grow?

Here we explore how similarity to bio-like molecules has changed with library growth, 

how goodness-of-fit and chemical diversity of high-ranking molecules changes with library 

growth, and how we might anticipate rare but high-ranking artifacts to change with library 

growth. Even at this early stage in the field, the results that emerge are strong enough to 

suggest strategies to maximize success in ultra-large library screening.

Results

Similarity to bio-like molecules changes with library size

An intriguing observation of HTS screening decks and of “in-stock” libraries was that 

they resembled bio-like molecules (metabolites, natural products, and drugs) over 1000-fold 

Lyu et al. Page 2

Nat Chem Biol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than what would be expected at random6. To investigate how this similarity to bio-like 

molecules changed with library size, we compared the 3.5 million in-stock library and 

the 3.1 billion make-on-demand library to worldwide drugs, to metabolites, and to natural 

products (“bio-like” molecules). Using ECFP4 topological fingerprints, we calculated the 

Tanimoto similarity between each library molecule and each bio-like molecule. In this 

comparison, the Tanimoto coefficient (Tc) represents the features shared between two 

molecules (library and bio-like) divided by the total number of features. A Tc of 1 indicates 

the pair are identical while a score of 0.2 indicates that the similarity is low enough to be 

essentially meaningless. As seen previously6, the in-stock set is far more similar to bio-like 

molecules than expected at random (Fig. 1a, blue curve), with 10,000 in-stock molecules 

being identical to metabolites, natural products, or drugs (Fig. 1b). Conversely, as the library 

grows 886-fold from 3.5 million in-stock to 3 billion tangible molecules, the number with 

Tc values >0.8 to bio-like molecules actually decreases 2.3-fold despite a library that is 

three orders-of-magnitude larger (Fig. 1a, orange curve). Most of the growth of the tangible 

library comes in the random similarity region compared to bio-like molecules, where the 

peak is around a Tc of 0.25; in this region the tangible library grows by 3,000-fold 

versus the in-stock. Between the two extremes of random similarity and full identity, the 

similarity to bio-like molecules falls much faster for the 3 billion tangible library (Fig. 1a, 

orange curve) than it does for the 3.5 million in-stock library (Fig. 1a, blue curve). By the 

time essentially full identity (0.95 < Tc ≤ 1.0) with bio-like molecules is reached, only 

0.000022% (700 molecules) of the make-on-demand library qualify, whereas 0.42% of the 

“in-stock” molecules do so, a 19,000-fold decrease. Thus, though docking campaigns with 

the new ultra-large libraries have returned potent molecules with high hit rates22–26, the new 

libraries do not retain the strong bias to bio-like molecules that was a feature of both in-stock 

and HTS libraries6.

Of course, it could be that the actual docking hits nevertheless resemble bio-like molecules 

even though the overall library does not. Accordingly, we plotted the similarity to bio-

like molecules of large-library docking hits from five targets, including three G-protein 

couple receptors (GPCRs)30,31 and two enzymes: the D4 dopamine receptor23, AmpC 

β-lactamase24, the melatonin receptor26, the σ2 receptor22 and the Nsp3 Macrodomain32 

from SARS-CoV-2 (Fig. 1c and Extended Data Fig. 1). In all five campaigns, the docking-

prioritized molecules had Tc values < 0.6 to bio-like molecules, peaking at Tc values of 0.3 

to 0.35, similarity values not much different than expected for pairs of random molecules. 

There was little difference in the distribution of molecules selected for synthesis and testing 

(orange bars, Fig. 1c and Extended Data Fig. 1) and the subset of those that were found to be 

active on target on experimental testing (blue bars, Fig. 1c and Extended Data Fig. 1)

While similarity to bio-like molecules confers little benefit in docking hit rate, it might 

improve success later in drug discovery. Several investigators33 have noted that natural 

products, for instance, are more likely to be transporter substrates, improving permeability 

and exposure. “Transportability” is hard to calculate, but several proxies may be used to 

calculate cell and organ permeability, including calculated octanol-water partition coefficient 

(cLogP), topological polar surface area (tPSA), numbers of rotatable bonds, and formal 

charge. By these criteria, the “in-stock” and tangible (make-on-demand) libraries differ 

little (Extended Data Figs. 2a—d). Even if we only compare the 61,179 bio-like molecules 
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“in-stock” to the tangible library, the same conclusion emerges (Extended Data Figs. 3a—d). 

We can extend this analysis to violations of Lipinski’s rule-of-five (Ro5)34 and Jorgensen’s 

rule-of-three (QPPCaco >22, LogS >-5.7, potential metabolism sites < 7)35. We calculated 

these properties for the 61,179 bio-like molecules “in-stock” and compared them to the same 

number drawn 30 times from the lead-like tangible molecules (Extended Data Fig. 3e and 

3f). There were actually fewer violations among the tangible molecules than among the 

bio-like. Naturally, this partly reflects the intentional lead-like36 character of the tangible 

molecules, reducing Ro5 violations, but since this is the set being docked it remains 

meaningful. Finally, where molecules deriving from ultra-large library docking have been 

tested in vivo they have had favorable plasma and brain exposure on intraperitoneal and even 

oral dosing22,26,37,38. Thus, while we cannot rule out an advantage for bio-like molecules, 

the physical properties of the tangible molecules put them at no obvious disadvantage to 

them.

Docking score improves with library size

Whether more and more favorable molecules are found as the library grows will govern how 

far we should expand the tangible libraries. Ideally we would like to know how the affinities 

and hit-rates of docked molecules improves with library size, but determining this would 

be an expensive undertaking. As a proxy, we can ask how docking score improves with 

library size. While docking score, with its errors and approximations, may be a weak link to 

likelihood of binding, we have found that it correlates with hit rate in two systems, the D4 

dopamine23 and the σ2 receptors22, and it is the primary criterion by which molecules are 

selected in docking screens.

We docked ever larger libraries against the D4, σ2 and 5HT2A receptors, looking for how 

docking score change with library size. We first docked 344 million, 1.4 billion, and 1.7 

billion molecules against the three receptors, respectively—and from this largest set picked 

ever larger subsets of the library at random 30 times, with subset size increasing by half-logs 

from 105 to over 109 molecules. For each subset, the scores and scaffolds of the top 5000 

ranking molecules, divided into quartiles, and the number of molecules with scores better 

than a certain threshold were measured.

As the subsets grow from 105 to over 109 molecules, the scores of the top ranking 5000 

molecules monotonically improved for all three targets (Fig. 2a). This improvement was 

roughly log-linear for all quartiles among the 5000, excluding the very top scoring molecule 

where it increases faster (but see below), and does not seem to saturate with library 

size. While the curves appear to have some negative curvature, this mostly reflects larger 

improvements in score from the smallest docking libraries; above 1 million molecules the 

rate of change appears steady for each log increase in library size. In short, as the library 

enlarges, the fit of the top-ranking docked molecules steadily improves without signs of 

saturation, at least on the log scale.

The improvement of the docking scores could reflect new scaffolds appearing in the library 

as it grows, or it could reflect the optimization of analogs of molecules already present. 

To investigate this, we analyzed the top 5000 molecules in each library subset for Bemis-

Murcko scaffolds39 (Fig. 2b). The scaffolds can be divided into two categories: singletons 
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without analogs, and scaffolds for which analogs exist. Plotting the score variations among 

singleton scaffolds, analogs in a group scaffold, and all top-ranking 5000 molecules, we 

observe that both singletons and analog clusters both contribute to the improvement of 

docking scores as library grow (Extended Data Fig. 4). While the proportion of analogs in 

the top 5000 increases with library size, molecules from both categories contribute to score 

improvements up to the billion molecule range (Extended Data Fig. 5).

One can also ask how the number of molecules with scores favorable enough that they are 

likely to bind experimentally changes with library size. Ordinarily this is difficult owing 

to the approximations and errors in docking but, at least for the D4 and σ2 receptors, the 

variation of hit rate with docking score has been measured experimentally by testing about 

500 molecules from across the docking scoring range22,23 (this has not been done for the 

5HT2A receptor, which was thus excluded from this analysis). For both targets, this revealed 

a sigmoidal curve with a high-hit rate plateau; molecules that score in this plateau have a 

high likelihood of binding. For the D4 and σ2 receptor, the plateaus are defined by scores of 

≤ −60 and ≤ −55 DOCK scoring units, respectively22,23. Both the number of molecules and 

the number of scaffolds in this favorable scoring region increases with library size (Fig. 2c 

and Fig. 2d), indicating not only molecules that better fit the site are found, but also more 

types of such molecules are found with library growth (Fig. 3).

Artifacts increase with library size.

An exception to the log-linear improvement of docking scores may be observed for the very 

best molecules from the screens (Fig. 2a, blue curves). The score of these molecules shows 

positive curvature with library growth, and especially in the larger libraries diverges from 

the other top 5000 ranking molecules. On inspection, these are not molecules that fit the 

receptor uniquely well, but rather molecules that cheat the scoring function by exploiting 

its holes and approximations. For instance, for the D4 receptor these are molecules are 

conformationally strained40, for the σ2 receptor they are molecules have artifactually low 

desolvation penalties (and so too favorable scores)22, and for the σ2 and 5HT2A receptor 

they are molecules with artifactual atomic partial charges and with wrong tautomers. As 

the libraries grow, so too does the number of these artifactual hits, and by the time we 

dock 1.3 billion molecules against σ2, over 98% of the top 100 ranking molecules have 

incorrect tautomerization. Meanwhile, beyond the top 100,000 docking hits these artifacts 

drops almost disappear—their biggest impact is in a thin slice of the top-ranking docking 

molecules (we distinguish between these artifacts that exploit a hole in the scoring function, 

and are rare, from molecules whose scores are too favorable owing to scoring function 

approximations, and are within some error range of what their true scores should be. A 

key feature of the rare artifacts is that they crowd the top of the docking scoring list; the 

more common decoys are more evenly spread throughout). Still, if one picked molecules 

exclusively from among the very top-ranking molecules, and was limited to a fixed number 

of them, it could easily be true that the prioritized molecules could come to be dominated by 

artifacts.

Naturally, one solution to these artifactual “cheating” molecules is to fix the holes in the 

docking scoring function. Certainly, once one finds a particular artifact one can address it. 
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However, two characteristics of these artifacts may make this difficult in general. First, they 

are rare events; if they were more common, they would be discovered by the retrospective 

control screens that are commonly conducted before a large prospective screen41. Second, 

they can change from target to target. For instance, in the campaign against the dopamine D4 

receptor it was conformationally strained molecules that contributed most to these artifacts, 

for the σ2 receptor it was molecules with artifactually low desolvation penalties22, wrong 

tautomers, and artifactual partial atomic charges, the latter two of which also characterized 

the top-ranking molecules for 5HT2A. Other targets may reveal still other artifacts. As rare 

molecules in a multi-billion molecule library, these may be hard to anticipate.

One may, however, imagine a general strategy, free of any particular aspect of the docking 

scoring function, to treat the problem of rare artifacts. In doing so, it is important to consider 

two of their features: first, they are rare events that rise to the top, and second, especially 

for large library screens, there can be hundreds-of-thousands of molecules that score within 

the plateau region where molecules may be likely to bind. For instance, in a simplifying 

example, assume that these rare-event artifact occur at a rate of 0.001% of the molecules 

docked. In this case, the number of “cheating” artifacts will increase from 10 to 10,000 as 

the library grows from one million to one billion molecules. Usually, one can only afford 

to synthesize and test a fixed number of top-ranking compounds. If that number is 100 

molecules, picked from the very top-ranking docked molecules, then in docking a million 

molecule library the cheating artifacts will only account for 10% of the molecules tested, 

but docking a billion molecule library they will amount to 10,000 molecules, completely 

dominating the top 100 ranked molecules.

More generally, we can model how the number of rare-event, cheating molecules will grow 

with library size, using a statistical distribution of these molecules versus the rest of the 

library, and considering different rates of occurrence. We simulate the distribution of these 

artifacts using both an extreme value distribution and a uniform distribution, while using 

a normal distribution for other library molecules. From these two distributions, we can 

estimate the effect of varying the artifact-to-library-molecule ratio with growing library size. 

Performance is evaluated by the percentage of artifacts in the top N-ranked molecules. With 

either distribution, artifacts begin to dominate the top-ranking list as the library grows for a 

given artifact-to-library-molecule ratio (Fig. 4a). If we cannot afford to synthesize and test 

more than a few hundred top-ranking molecules, the campaign will inevitably begin to falter 

as libraries rise toward 1 billion molecules.

A general solution to this problem is simply not to prioritize the several hundred molecules 

to be synthesized and tested exclusively from the very top-ranked molecules. Recall that a 

broad range of high-ranking docked molecules—a range that grows with library size—may 

have roughly equal likelihood of binding, and in a docking screen of a billion molecules, 

the top million might have scores that differ little from each other. To explore the impact 

of such a rank-spreading strategy on rare-event artifacts, we defined as five rank ranges the 

top 1–100 molecules, the top 101–1,000 molecules, the top 1,001–10,000 molecules, the top 

10,001–100,000 molecules, and the top 100,001–1,000,000 molecules, picking 20 molecules 

from each. We plotted the percentage of rare-event artifacts among the 100 molecules 

picked in this rank-spreading strategy versus the same percentage among simply the top-100 
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molecules, as a function of library size (Fig 4b). For a given library size, the percentage of 

artifacts in the rank-spreading strategy was always lower than picking them exclusively from 

the top 100 molecules; for larger libraries, this strategy rank-spreading decreased the number 

of artifacts from 100% to between 25 to 50%. Naturally, there may be other strategies 

that will achieve the same goal, including rescoring the top-ranked molecules with another 

scoring function that, while it may also suffer from rare artifacts, may not suffer from the 

same ones. Even here, a strategy of picking from across the high-ranking ranges may have 

benefit.

Discussion

Since 2016, readily accessible molecular libraries for virtual screening have increased from 

3.5 million to over 29 billion compounds. Our ability to prioritize from this vast chemical 

space depends on the molecules it explores and the ability of computational methods, often 

docking, to prioritize true ligands from an ocean of decoys. Three main observations from 

this study begin to illuminate the molecules that the new libraries explore, and how docking 

prioritizes them. First, the billion-plus tangible library is 19,000-fold less biased toward bio-

like molecules than is the 3.5 million in-stock library. Second, as the libraries grow, better 

fitting molecules are found. The improvement in docking score is log-linear with library 

size and does not yet appear to saturate. Third, as the libraries grow so too do rare-event 

artifacts. While these are inconsequential for smaller, million molecule libraries, by the time 

the libraries grow to a billion molecules they can dominate hit lists. A general strategy of 

spreading docking picks from the docking rank curve suggests a way to overcome what 

might be a general problem.

Not only is the 3.1 billion make-on-demand library 19,000-fold less biased toward bio-like 

molecules than is the 3.5 million in-stock library (Fig. 1a), but thousands of experimentally 

tested high-ranking molecules from five docking campaigns are also dissimilar to bio-like 

molecules (Fig. 1b). This contradicts the idea, which we6 and others7–19 have advocated, 

that biasing a library toward metabolites, natural products, and drugs increases the chance 

of success in screening. Instead, the tangible library is little more similar to these bio-like 

molecules than one would expect at random, and diverges further from them as it grows. 

The “in-stock”, bio-like and tangible molecules have similar distributions of cLogP, tPSA 

and rotatable bonds (Extended Data Figs. 2a—c and 3a—c); and the tangible molecules 

are, if anything, more Ro5 and ADMET rules than is the bio-like set. To the extent that 

these physical properties contribute to success in subsequent compound optimization, they 

differ little between the two sets of molecules. Rather than biasing toward bio-like molecules

—which may be simply a historical feature of the “in-stock” libraries and HTS decks6—

the tangible libraries are defined by the over 200,000 intentionally diverse and stereogenic 

building blocks from which they are synthesized. The emphasis on the exploration of a 

wide range of chemotypes with high three-dimensionality ensures a diverse collection of 

functionalities and shape, and it may be this feature, rather than similarity to precedented 

molecules, that drives the better receptor fits of molecules from these libraries.

The exploration of stereogenic, functionally congested molecules ensures that as the library 

grows42 more and more molecules are sampled that well-complement receptor sites. 
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Docking diverse libraries leads to a long-tail of high-scoring molecules, separated from 

the more normal distribution of docking scores from the library. By docking a library that is 

1000-fold larger than the “in-stock” libraries that until recently dominated the field, we are 

essentially extending and filling in this long tail, such that it is populated with statistically 

relevant sampling of chemotypes (Fig. 3). As the libraries grow, docking scores improve 

log-linearly, and show no sign of saturation. Interestingly, a similar trend using ligand-based 

virtual screening has been previously reported; here too, best scores, in this case measuring 

3D similarity to known ligands, improves log-linearly up to 10 billion molecules27. For 

the docked molecules, improved scores derive from both new chemotypes fortuitously 

appearing in the libraries, and from analogs of previously explored scaffolds that optimize 

fit (Extended Data Fig. 4). An inference from these trends is that, at least for now, screening 

larger and larger libraries will continue to improve docking results—with one caveat—and 

the hits that emerge will often have analogs to support early optimization.

Counterbalancing the improvement in docking fits with library expansion is the growth in 

the raw number of rare-event artifacts. If the number of molecules one could synthesize and 

test scaled with library size this wouldn’t be a problem. But with resources to only do so for 

an essentially fixed number of molecules, these rare, high-ranking artifacts will eventually 

overwhelm the true positives (Fig. 4a). This outcome can be alleviated by a strategy that 

not only tests the very top-ranking molecules, but also selects ones from slightly lower 

ranks that remain high scoring (Fig. 4b). We suspect that such rare-event artifacts will occur 

in most types of library screens, including HTS, DELs, or even genetic screens, and will 

become more pernicious with library size. Variations of this strategy may also be useful in 

these other areas.

Certain caveats bear airing. While bio-like molecules confer no advantage in docking 

hit-rate, nor in physical properties, they may have advantages not directly assessed here, 

including being transporter substrates33. Thus far, where molecules from ultra-large library 

docking have been tested in vivo they have had favorable plasma and brain exposure on 

intraperitoneal and even oral dosing22,26,37,38, but this remains a small set of experiments. 

Mechanically, the divergence of the tangible libraries from bio-like molecules has only been 

measured by one type of topological similarity, other metrics may show different levels of 

divergence. We suspect that while this may affect the results quantitatively, qualitatively 

the story will remain; certainly, the number of molecules that are identical to metabolites, 

natural products, and drugs will not change. Apropos of the cheating artifacts, we would 

reemphasize that these are rare molecules that score well by finding holes in the scoring 

function. They are not the general run of molecules that are evaluated properly but with 

enough error that they rank too highly—these docking continues to struggle with, and the 

strategies suggested here will not address them. Finally, other, more quantitative approaches 

can be considered to solving the problem of rare artifacts, including rescoring to identify 

molecules exploiting holes in one scoring function that another function does not share.

The key observations of this work should not be obscured by these caveats. Virtual 

libraries are growing into a chemical space that is far less similar to bio-like molecules 

than are in-stock libraries. Despite this, multiple screens of these billion-molecule libraries 

have returned potent ligands with high success rate22–26, suggesting that bias toward 
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precedented molecules might never have explained the success of large library screens. 

Indeed, simulation of docking performance with library size shows that we are still in the 

domain where ever-larger, diverse, stereogenic libraries will continue to fortuitously explore 

molecules with better and better fit for a target binding site. Strategies to avoid rare-event 

artifacts will help ensure that docking and related techniques can continue to prioritize from 

this growing chemical space, finding ever-more interesting molecules.

Methods

Bio-like libraries.

We used two sets of molecules from the ZINC15 database (https://zinc15.docking.org) 

to approximate the chemical space of bio-like molecules: worldwide drug set (https://

zinc15.docking.org/substances/subsets/world/) and biogenic set (https://zinc15.docking.org/

substances/subsets/biogenic/). The worldwide drug set contains 5,900 compounds and the 

biogenic set contains 168,185.

Screening libraries.

The in-stock and make-on-demand libraries were used in the analysis of bio-like bias. 

Molecules from both libraries are within the lead-like range: cLogP ≤ 3.5 and heavy 

atom count ≤ 25. The in-stock library contains 3,539,537 molecules. For bio-like 

bias quantification and physical property calculations, make-on-demand libraries contain 

3,164,844,749 and 4,941,080,527 molecules at that time, respectively.

Quantifying bio-like bias.

Each molecule of the in-stock and make-on-demand libraries was in turn compared to 

each molecule of the bio-like library. Compounds were represented by their ChemAxon 

ECFP4 fingerprints (https://chemaxon.com/). The length of the fingerprints is 1,024 bits. 

The similarity was calculated by comparing their respective ECFP4 fingerprints with the 

Tanimoto coefficient. The tool to measure this similarity was deposited at https://github.com/

docking-org/ChemInfTools. Related figures were made by GraphPad Prism 9.4.

Physical property calculations.

cLogP, tPSA and number of rotatable bonds for each molecule from the in-stock bio-like, 

in-stock and make-on-demand libraries were calculated by the RDKit v2020.09.1.0 package 

(https://www.rdkit.org). The net charge of 61,179 in-stock bio-likes were predicted at pH 

7.4 by the majormicrospecies modular in ChemAxon Jchem 21.13 (https://chemaxon.com/). 

The net charge of in-stock and make-on-demand molecules were pre-calculated in ZINC22. 

Details can be found at https://cartblanche22.docking.org/tranches/3d. To evaluate number 

of violations on Lipinski’s rule of five and Jorgensen’s rule of three, 61,179 molecules 

were randomly picked 30 times from the lead-like make-on-demand library (https://

cartblanche22.docking.org/search/random). These two metrics were calculated by QikProp 

from the 2022–1 released Schrödinger suite. Related figures were made by GraphPad Prism 

9.4.
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Molecular docking.

The docking setups of D4 and σ2 campaigns were reported previously22,23. The 5HT2A 

receptor with a ligand (unpublished) was used in the docking calculation. This unpublished 

structure is in an active state and is similar to the published 5HT2A active structure (PDB 

ID: 6WHA) with a low Cα RMSD of 0.8Å. The atoms of the Lisuride were used as the 

matching sphere calculation in the orthosteric site. The spheres were labeled43 according 

to the charge-charge interaction and hydrogen-bond patterns of the Lisuride ligand in the 

cryo-EM structure. Forty-five spheres were used in total and were grouped into 7 clusters 

based on their spatial locations in the binding site by k-means clustering method. These 

labelled and clustered spheres were used to improve searching efficiency for speeding up 

docking calculations. The complex structure was protonated by Epik and PROPKA at pH 

7.0 in Maestro (2021 release). Partial charges of residue atoms were assigned based on 

AMBER united atom types. The volume of the low dielectric and the desolvation volume 

was extended out from the surface of the receptor by 1.1 Å and 0.5 Å, respectively. Docking 

energy grids were pre-calculated with QNIFFT44 for Poisson-Boltzmann-based electrostatic 

potentials, AMBER force fields using CHEMGRID for van der Waals potentials45 and 

SOLVMAP46 for ligand desolvation.

Since the 5HT2A receptor structure used in this study is in active state, the docking setup 

was evaluated for its ability to enrich known 5HT2A agonists over property-matched decoys. 

Decoys are molecules with dissimilar topology but share similar physical properties to 

known ligands, so they are unlikely to bind to the receptor. Forty-seven known 5HT2A 

agonists were extracted from the IUPHAR47 and ChEMBL48 databases and 2,050 property-

matched decoys were generated by the DUD-E pipeline49. Docking performance was judged 

by the ability to enrich the 5HT2A known agonists over the decoys based on docking 

rank, using logAUC values. The docking setup described above achieved a logAUC value 

of 5. An ‘extrema’ set49 of 146,620 were constructed through the DUDE-Z web server 

(http://tldr.docking.org) to make sure that molecules with extreme charge properties were 

not prioritized. This docking setup enriched over 97% mono-cations among the top1000 

ranking molecules with a high logAUC value of 27. A small ‘goldilocks’ set< (2 < cLogP 

≤ 3 and 300 Da < molecular weight ≤ 350 Da) of 1,161,497 were also downloaded from 

the DUDE-Z web server (http://tldr.docking.org) to check if 5HT2A known agonists remain 

among the highest scored compounds. The docking setup achieved a decent logAUC value 

of 25 in this control experiment.

Using DOCK3.8, over 344 million, over 1.3 billion and over 1.6 billion library molecules 

from ZINC20/ZINC22 (http://zinc20.docking.org and https://cartblanche22.docking.org) 

were docked against the D4, σ2 and 5HT2A receptor, respectively. Each library molecule 

was sampled in about 2761, 3409 and 713 orientations and, on average, 174, 235 and 350 

conformations for the D4, σ2 and 5HT2A receptor, respectively. The total calculation time 

was 70,705, 740,030 and 680,653 hours for the D4, σ2 and 5HT2A receptor, respectively.

Simulating docking performance with library size.

To investigate how dock scores of top 5000, number of chemotypes in top5000 and number 

of molecules below given dock score cutoff change with library size, we docked the full 
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make-on-demand library against the D4, σ2 and 5HT2A receptors with docking setups 

described above. To evaluate the effects of library size on the three metrics mentioned 

above, 105, 3×105, 106, 3×106, 107, 3×107, 108, 3×108, 109 (if possible) sets of molecules 

were randomly picked from the full docking-ranked list and the three metrics above were 

measured. Each set was selected thirty times with random selection from the full library. 

Chemotypes here are defined by Bemis-Murcho scaffold analysis39. The program mitools 

version 2020.04.4 (https://www.molinspiration.com/) was used to calculate scaffolds for this 

analysis. Related figures were made by GraphPad Prism 9.4.

Toy model for artifacts with library size.

We constructed a model of how artifacts change with library size. Inputs to the model are 

the artifact-to-library-molecule ratio and the library size. The distributions are sampled from 

these two parameters 20 times independently for given artifact-to-library-molecule ratio and 

library size. We use the extreme value distribution (the shape parameter c = −0.1) or uniform 

distribution (the parameters loc = −10 and scale = −20) to sample artifacts while normal 

distribution (the parameter loc = 5 and 0, respectively) for library molecules. The percentage 

of artifactual molecules were calculated for the top 100, top 1,000, top 10,000 and top 

100,000. Related figures were made by GraphPad Prism 9.4.

Extended Data

Extended Data Fig. 1. 
The distribution of docking-prioritized and experimentally active (blue) and non-active 

(orange) molecules from two different docking campaigns as a function of the Tanimoto 

similarity to their nearest neighbor in the bio-like molecule set.
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Extended Data Fig. 2. 
The distribution of in-stock (grey) and make-on-demand (black) libraries as a function of 

physical properties.
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Extended Data Fig. 3. 
The distribution of in-stock bio-like molecules (grey) and lead-like make-on-demand 

molecules (black) as a function of physical properties.
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Extended Data Fig. 4. 
Variation of score of top 5000 molecules with library size against the D4 (left), σ2 (middle) 

and 5HT2A (right) receptor.
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Extended Data Fig. 5. 
Number of top 5000 molecules in a singleton or group scaffold changes with library size 

against the D4 (left), σ2 (middle) and 5HT2A (right) receptor.
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Figure 1 |. Bio-like bias decreases dramatically as the screening library grows from the in-stock 
library to the make-on-demand library.
a, The distribution of molecules in the in-stock (blue) and make-on-demand (orange) 

libraries as a function of the Tanimoto similarity to their nearest neighbor in the bio-

like molecule set, which contains worldwide drugs, metabolites and natural products. b, 

Percentage of the in-stock (blue) and make-on-demand (orange) libraries as a function of the 

Tanimoto similarity to their nearest neighbor in the bio-like molecule set. c, The distribution 

of docking prioritized and experimentally active (blue) and non-active (orange) molecules 

from five different docking campaigns as a function of the Tanimoto similarity to their 

nearest neighbor in the bio-like molecule set. The docking campaigns from left to right are 

the D4 dopamine receptor, the AmpC β-lactamase and the σ2 receptor. The rest two docking 

campaigns on the melatonin receptor and the Nsp3 Macrodomain are shown in Extended 

Data Figure 1.
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Figure 2 |. Docking performance improves with library size docking against the D4 (left), σ2 
(middle) and 5HT2A (right) receptor.
a. Change of docking score of the top-ranking 5000 molecules as library size grows. b. 

Number of Bemis-Murko scaffolds in the top-ranking 5000 molecules as library size grows. 

c. Change with library size of the number of molecules with docking scores suggesting 

high likelihood of binding, based on experimental correlation22,23 for the D4 and σ2 

receptors (the 5HT2A receptor was excluded as this experimental correlation has not been 

measured for it). d. Change with library size of the number of scaffolds with docking scores 

suggesting high likelihood of binding. All data are mean ± standard deviation. Each set was 

selected 30 times with random selection from the full library
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Figure 3 |. The long tail expands with library size against the D4 (left), σ2 (middle) and 5HT2A 
(right) receptor.
The X axis is in linear scale while the Y axis is in log scale. The color gradient changes from 

orange to marine, representing library size changes from small to large.
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Figure 4 |. Number of artifacts increases with library size.
a, Heat maps of the percentage of artifacts in the top N (N = 100, 1,000, 10,000 and 

100,000) docked molecules. The percentage of artifacts in the top N docked molecules for 

a given library size and the ratio between artifacts and library molecules is colored using 

a linear scale ranging from 0% (white) to 100% (blue). The artifactual molecules were 

sampled from the extreme value distribution for the left panel and the uniform distribution 

for the right panel. b, The percentage of artifactual molecules in the 100 selected molecules 

between the two strategies. The first strategy is just picking the top 100 molecules colored 

by black bars and the second strategy is selecting 100 molecules evenly distributed from 

5 ranking ranges colored by grey bars. Five ranking ranges were top 1–100, top 101–

1,000, top 1,001–10,000, top 10,001–100,000 and top 100,001–1,000,000. 20 molecules 

were drawn at random from each ranking tranche. This selection was repeated 20 times at 

random. The artifactual molecules were sampled from the extreme value distribution for 

the left panel and the uniform distribution for the right panel. Data shown here are mean ± 

standard deviation
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