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Abstract

Cells must adjust their redox state to an ever-changing environment that could otherwise result in compromised homeo-

stasis. An obvious way to adapt to changing redox conditions depends on cysteine post-translational modifications (PTMs) to

adapt conformation, localization, interactions and catalytic activation of proteins. Such PTMs should occur preferentially in

the proximity of oxidative stress sources. A particular concentration of these sources is found near membranes where the

endoplasmic reticulum (ER) and the mitochondria interact on domains called MERCs (Mitochondria-Endoplasmic Reticulum

Contacts). Here, fine inter-organelle communication controls metabolic homeostasis. MERCs achieve this goal through

fluxes of Ca2þ ions and inter-organellar lipid exchange. Reactive oxygen species (ROS) that cause PTMs of mitochondria-

associated membrane (MAM) proteins determine these intertwined MERC functions. Chronic changes of the pattern of

these PTMs not only control physiological processes such as the circadian clock but could also lead to or worsen many

human disorders such as cancer and neurodegenerative diseases.
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Introduction

Interactions between mitochondria and the Endoplasmic

Reticulum (ER) were discovered in 1952 using electron

microscopy of rat liver, where contacts between these

two organelles depend on the nutritional status of the

animal (Bernhard et al., 1952). This insight suggests that

material exchange could occur in a controlled manner on

these contacts, a hypothesis confirmed and characterized

with the discovery of "Mitochondria-associated ER

membranes" (MAMs) as a lipid transfer platform

(Vance, 1990) and a site of Ca2þ flux (Rizzuto et al.,

1998). Accordingly, the biochemical MAM isolate con-

tains enzymes necessary for phospholipid synthesis on

either side of the mitochondria-ER contact (MERC)

structure (Vance, 1991), as well as Ca2þ channels and

pumps on the ER and mitochondria that maintain a

circular Ca2þ equilibrium (Raffaello et al., 2016).

Within the ER, this equilibrium determines oxidative

protein folding through Ca2þ-dependent chaperones

(Margittai and Sitia, 2011; Braakman and Hebert,

2013), while within mitochondria, it controls energy pro-

duction and apoptosis through Krebs cycle dehydrogen-
ases and the permeability transition pore, respectively
(Bauer and Murphy, 2020). Moreover, MERCs fulfill
structural roles in mitochondrial fusion and fission
mechanisms (Friedman et al., 2011), in autophagosome
formation (Hamasaki et al., 2013) and as a lipid synthe-

sis hub that may eventually foster lipid droplets (Vance,
2014). Consistent with this array of functions, the
MERC proteome is now recognized to comprise ER
Ca2þ release channels (e.g., inositol 1,4,5 trisphosphate
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receptor type 3, IP3R3), ER Ca2þ uptake pumps, ER

protein folding enzymes (e.g., calnexin), mitochondrial
Ca2þ handling proteins (e.g., voltage dependent anion
channel 1, VDAC1), mitochondrial fission and fusion

mediators (e.g., dynamin-related protein 1, Drp1,
mitofusin-2), lipid metabolizing enzymes (e.g., acetyl-

CoA acetyltransferase, ACAT1) and proteins involved
in autophagosome formation (e.g., Rab32) (Ilacqua

et al., 2017). The MERC functions and its proteome
determine how closely the respective membranes

approach each other within a distance range of 0 to
100 nm (Giacomello and Pellegrini, 2016).

MERC-localized proteins can undergo posttransla-
tional modifications (PTMs) such as phosphorylation

or palmitoylation, which have functional implications.
For instance, calnexin phosphorylation dependent on

protein kinase CK2 and ERK determines its interaction
with phosphofurin acidic cluster sorting protein 2

(PACS-2), a critical regulator of MERC formation
(Simmen et al., 2005) that controls the extent of calnexin

MAM enrichment (Myhill et al., 2008). Similarly, cal-
nexin palmitoylation also promotes its enrichment to
MAMs (Lynes et al., 2012). Recent research has identi-

fied redox-controlled PTMs on cysteines as a novel key
determinant of MERC function and formation.

Cysteines account for 2% of the total amino acid

content of cells, which is the lowest number for all
amino acids, but they are highly conserved and undergo
oxidation and reduction (Miseta and Csutora, 2000).

This suggests important biological roles for these
amino acid residues such as redox-dependent modifica-

tion and the complexing of metal ligands (Pace and

Weerapana, 2013). Cysteine oxidation includes
enzyme-mediated disulfide bond formation that general-

ly enhances the structural activity and the folding of
proteins (Lo Conte and Carroll, 2013). However, cys-
teines are also targets of oxidizing PTMs mediated by

reactive chemicals (e.g., reactive oxygen species, ROS,
reactive nitrogen species, RNS) (Chung et al., 2013),
and by oxygen free radicals (Figure 1) (Takashima

et al., 2012). Proteomic studies have listed the peptides
undergoing such modifications, many of which found
inside mitochondria and the ER (Finelli, 2020).

ROS and RNS-based cysteine modifications give rise to
thiol-based redox regulation, whose importance competes

with phosphorylation-based regulation. Cysteine oxidative
modifications include reversible sulfenic acid (-SOH), sul-
finic acid (-SO2H) and irreversible sulfonic acid (-SO3H).

The partial reversibility of these oxidation-based PTMs
highlights the labile aspect of these modifications, but
also their role as on/off switches (Garcia-Santamarina

et al., 2014). Preventing cysteine oxidation, peroxiredoxins
scavenge ROS (Rhee, 2016). Once cysteines are oxidized,
reduced forms of NADPH, glutathione, cysteine and thi-

oredoxin can remove these PTMs (Miller et al., 2018).
Particularly important for the maintenance of this func-
tion is the ratio between oxidized and reduced glutathione

(GSSG, GSH), which is very responsive to changes in
ROS (Mailloux, 2020). Glutathione can also act as a
PTM itself via spontaneous or enzymatic modification

of cysteines by ER-localized glutathione S-transferase
(GST). Substrates of this enzyme include for instance
ER chaperones like calnexin or immunoglobulin binding

protein/glucose-regulated protein of 78 kDa (BiP/GRP78)

Figure 1. Overview of cysteine post-translational modifications (PTMs).
GSH: Glutathione; GSSG: Glutathione disulfide; H2O2: Hydrogen peroxide; H2S: Hydrogen Sulfide; NO: Nitric Oxide; PTMs: post-
translational modifications; RNS: reactive nitrogen species; ROS: reactive oxygen species.
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(Ye et al., 2017; Scire et al., 2019). In contrast, glutaredox-

ins (GRX) 1 and 2 deglutathionylate these cysteine resi-

dues (Matsui et al., 2020).
Additionally, H2O2 can also react with nitric oxide

(.NO) to yield peroxynitrite, a major RNS (Radi,

2018). RNS are also able to oxidize cysteines without

the help of enzymes (Evangelista et al., 2013). Like

ROS-based oxidation, these modifications can be revers-

ible or irreversible and typically occur on cysteines with

a charged residue in close proximity (Marino and

Gladyshev, 2010). In its reversible form, S-nitrosylation

is removed by enzymes, including S-glutathione reduc-

tase (Rizza and Filomeni, 2017).
Our review will first give an overview on the MERC

proteome, followed by a list of MERC-associated cyste-

ine oxidation-dependent PTMs and their functions for

lipid and Ca2þ flux. We will also discuss potential cys-

teine PTM sources and the role of these modifications in

disease.

Tethering the Two Membranes of MERCs

The apposition of the ER with mitochondria on MERCs

depends on the assembly of protein tethers and their

regulatory proteins, including PACS-2 that is required

for ER-mitochondria apposition and Ca2þ flux (Simmen

et al., 2005) (Figure 2). An example of an ER-

mitochondria tethering complex is the interaction

between the vesicle-associated membrane protein-

associated protein B (VAPB) and protein tyrosine phos-

phatase interacting protein 51 (PTPIP51), located at the

ER and at the outer mitochondrial membrane (OMM),

respectively (Stoica et al., 2014; Gomez-Suaga et al.,

2017). This complex also plays a role in autophagy. Its

formation is disrupted upon activation of the redox-

sensitive glycogen synthase kinase 3b (GSK3b) (Stoica
et al., 2016).

In yeast, the ER-mitochondria encounter structure

(ERMES) links ER and mitochondrial membranes,

mediating a regulated lipid conduit (Kornmann et al.,

2009). As is typical for tethering complexes, its individ-

ual components Mmm1, Mdm10, Mdm12 and Mdm34

localize to the ER and mitochondria, respectively and

their assembly is controlled by the GTPase Gem1

(Kornmann et al., 2011). Whether this complex also

exists in mammalian cells had long been discussed

(Wideman et al., 2018). The discovery of the PDZ

domain protein PDZD8, an Mmm1 paralog, as a

Figure 2. Main protein complexes controlling mitochondria–ER contact sites (MERCs).
Important tethers and carrier proteins are grouped according to their main function. BAP-31: B-cell receptor-associated protein of 31kDa;
CNX: Calnexin; CypD: Cyclophilin D; ER: Endoplasmic Reticulum; Fis1: Mitochondrial Fission 1 Protein; Grp75: glucose-regulated protein
of 75kDa (or mortalin/heat shock protein 75); Grp78: glucose-regulated protein of 78 kDa; IMM: inner mitochondrial membrane; IMS:
inter-membrane space; IP3R: inositol 1,4,5-trisphosphate receptor; IRE-1: inositol-requiring enzyme 1; MCU: mitochondrial calcium
uniporter; MERCs: mitochondria–ER contact sites; Mfn1/2: Mitofusin 1 and 2; OMM: Outer mitochondrial membrane; ORP5-8: oxysterol-
binding protein-related protein 5 and 8; P: Phosphorylation; PACS2: Phosphofurin acidic cluster sorting protein 2; PERK: Protein kinase R-
like ER kinase; PINK1: PTEN-induced kinase 1; PS: phosphatidylserine; PTPIP51:protein tyrosine phosphatase interacting protein 51; VAPB:
vesicle-associated membrane protein-associated protein B; VDAC: voltage-dependent anion channel.
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mediator of ER-mitochondria and ER-late endosome-

mitochondria contact sites suggests that aspects of this

membrane tether are conserved in mammalian cells but

its function could be more complex (Hirabayashi et al.,
2017). At multi-organelle contact sites, PDZD8 also

interacts with ER-localized protrudin and endosomal

Rab7 (Elbaz-Alon et al., 2020) and as a

synaptotagmin-like mitochondrial lipid-binding proteins

(SMP), PDZD8 extracts lipids from the ER and trans-

fers them to late endosomes (Shirane et al., 2020).

Another PDZ domain is found within the mitochondrial
synaptojanin-2 binding protein (Synj2BP) that has been

discovered in a proteomic screen (Hung et al., 2017).

Syn2BP forms a tether with the ER-localized ribosome

binding protein 1 (RRBP1), but also interacts with the

transmembrane and immunoglobulin domain containing

protein 1 (TMIGD1) in epithelial cells (Hartmann et al.,

2020). ER and mitochondria connections are also under
the influence of actin polymerization. ER-bound

inverted formin 2 (INF2) catalyzes actin polymerization

that promotes the activity of mitochondrial Drp1 and

the transfer of Ca2þ from the ER to mitochondria

(Korobova et al., 2013; Chakrabarti et al., 2018).
The first characterized MERC protein that controls

tethering is mitofusin-2, a dynamin-related GTPase.

Mitofusin-2 can form proteinaceous bridges between

the ER and mitochondria (de Brito and Scorrano,

2008), but this function could also determine the

nature and extent of interactions between mitochondria

and the ER (Filadi et al., 2015). Specifically, mitofusin-2
could control the ratio of rough to smooth ER contacts

with mitochondria (Wang et al., 2015). In parallel with

the MERC-regulatory roles of PACS-2, these interac-

tions are essential for the induction of autophagy with

MERCs as the source material (Hamasaki et al., 2013).

Moreover, PACS-2 controls an ER-mitochondria pro-

tein complex called the ARCosome, which is composed
of ER-localized BAP31 and mitochondrial Fis1

(Iwasawa et al., 2011). More tethers may be discovered

in the future and the nature and function of these may

differ between tissue sources, since multiple proteomic

studies have identified different numbers and identities

of proteins found within the biochemical MAM isolate

(Cho et al., 2017; Hung et al., 2017).

Redox Control of MERC Tethers and

Mitochondrial Membrane Dynamics

The tethering of the ER to mitochondria increases upon

oxidative stress and relaxes upon homeostatic conditions
(Csordas et al., 2006). This oscillating interaction coin-

cides with ER Ca2þ release that then activates mitochon-

drial oxidative phosphorylation (OXPHOS) associated

with a burst of ROS entering the interorganellar cleft

(Bravo et al., 2011; Booth et al., 2016). This suggests
that some or all of the MERC tethers are under the
control of redox PTMs. However, only a few PTMs of
MERC tethers are currently known and most of our
knowledge is limited to proteins with functions in mito-
chondrial membrane dynamics, including Drp1
(Friedman et al., 2011) and mitofusin-2 (de Brito and
Scorrano, 2008) (Figure 3).

One example is mitofusin-2, which is subject to ROS-
mediated PTMs that determine its role in mitochondrial
membrane fusion (Shutt et al., 2012; Mattie et al., 2018).
Under oxidizing conditions, an increase of GSSG con-
centration at MERCs leads to Mfn2 recruitment.
Subsequently, glutathionylation of cysteine 684 cooper-
ates with mitofusin-1 to promote mitochondrial fusion
(Shutt et al., 2012). Interestingly, such Mfn1-Mfn1
dimers are more than a hundred times stronger than
homodimers between Mfn2-Mfn2 (Ishihara et al.,
2004). Cysteine PTMs could also impact the role of
mitofusin-2 at MERCs, since MERC-originating
autophagy accelerates in the presence of ROS (Forte
et al., 2017). An additional level of mitofusin redox con-
trol derives from the ROS/RNS-mediated activation of
c-Jun N-terminal kinases (JNK) (Kamata et al., 2005),
which normally promote mitofusin-2 degradation by the
proteasome (Leboucher et al., 2012). Therefore, oxida-
tive conditions eventually reduce the amounts of
mitofusins.

Opposing mitofusins, the OMM GTPase Drp1 uses
receptors to associate with the mitochondrial membrane
(Kamerkar et al., 2018) and constrict mitochondria
(Friedman et al., 2011). To date, Fis-1 and mitochondri-
al fission factor (Mff) have been identified as further
regulatory proteins whose regulation via oxidation is
uncharacterized (Wolf et al., 2020). In contrast, mito-
chondrial dynamics proteins of 49 or 51 kDa (MID49/
MID51) can undergo oligomerization under oxidizing
conditions (Zhao et al., 2011). Oxidative stress activates
mitochondrial fission in multiple ways. First, it directly
recruits and activates Drp1 through S-nitrosylation on
cysteine 644, which serves as a trigger for oligomeriza-
tion (Cho et al., 2009) and further activation via phos-
phorylation of serine 616 (Lee and Kim, 2018). In the
proximity of the ER, a moiety of protein disulfide isom-
erase (PDI) that localizes to the cytosol could directly
inhibit this activity via catalytically reducing oxidized
Drp1 (Kim et al., 2018). These activities are likely
impaired in the presence of ROS and other mitochon-
drial compounds, since excess fumarate from mitochon-
dria succinates and inactivates PDI (Manuel et al.,
2017). Another connection between Drp1 and cellular
redox conditions is mediated by small ubiquitin-like
modifier (SUMO), a covalent modification of lysine res-
idues that controls protein-protein interactions (Flotho
and Melchior, 2013). In the case of Drp1, this
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modification is mediated by the MERC-associated mito-

chondrial-anchored RING finger containing protein

(MAPL), a SUMO E3 ligase. Its activity SUMOylates

and oligomerizes Drp1, thus increasing MERC forma-
tion and ER-mitochondria Ca2þ communication

(Braschi et al., 2009; Prudent et al., 2015). SUMO iso-

peptidases called sentrin-specific proteases (SENPs)

remove these modifications. However, they may under-

go inactivation via an intramolecular disulfide bond in

the presence of ROS (Ferdaoussi et al., 2015). Thus,

while SENP5 normally destabilizes Drp1 (Zunino

et al., 2009), this may not occur during oxidative

stress, resulting in the accumulation of active Drp1. In

contrast, SUMO E1 and E2 ligases can become inacti-
vated by reversible oxidation of their catalytic cysteines

in the presence of ROS (Bossis and Melchior, 2006).

Thus, the interplay between ROS and SUMOylation is

complex and warrants further investigation.
Another Drp1-activating mechanism is based on

ubiquitination. Parkin, a regulatory protein of mito-

chondrial membrane dynamics that localizes to
MERCs is a cytosolic E3 ubiquitin ligase (Gelmetti

et al., 2017). This allows Parkin to target Drp1 for pro-

teasomal degradation (Wang et al., 2011). However,

upon its S-nitrosylation, Parkin no longer promotes

the degradation of Drp1 (Chung et al., 2004; Gelmetti

et al., 2017). Overall, it appears that oxidative stress

activates Drp1 to promote mitochondrial fission.

This role is particularly important in the central nervous

system (CNS), where oxidative stress derived from neu-

rodegeneration coincides with active Drp1 and inactive

Parkin (Ge et al., 2020), resulting in compromised

mitophagy and increased mitochondrial fragmentation

(Cho et al., 2009).
MERCs also influence mitochondria movement along

the cytoskeleton with the help of kinesin and dynein (Yi

et al., 2004). These two motor proteins interact with the

small mitochondrial Rho proteins 1 and 2 (Miro1/2),

which are both enriched in MAMs. Their Ca2þ-binding
EF hand domains detach from kinesin in the presence of

high Ca2þ, arresting mitochondria movement (Fransson

et al., 2006). Consistent with the role of ROS as a boost-

er of Drp1-mediated MAM formation, mitochondrial

ROS decrease Miro-mediated movement of mitochon-

dria in a parallel mechanism that is independent of

Ca2þ but requires the p38 MAP kinase (Debattisti

et al., 2017).

Redox Control of Mitochondria

Metabolism Through MERC Ca2þ Transfer

In most cell types, the free mitochondrial Ca2þ concen-

tration of 100 to 200 nM resembles the one found in the

cytoplasm. These amounts are, however, about 1000 to

Figure 3. ROS regulation and cysteine impact on mitochondria–ER contact sites protein players.
Important ROS-sensitive MERC proteins are grouped according to their main function, including mitochondrial dynamics, lipid transfer and
Ca2þ flow. ROS sources and sinks are indicated. AKAP121: A kinase anchor protein of 121kDa; AQP11: aquaporin 11; Ca2þ: Calcium;
Drp1: Dynamin-related protein 1; ER: endoplasmic Reticulum; ERO1a/b: endoplasmic Reticulum oxidoreductin 1 a/b; GPX1: Glutathione
peroxidase; GPX7/8: glutathione Peroxidase 7; Grp75: glucose-regulated protein of 75kDa (or mortalin/heat shock protein 75); GSSG:
oxidized glutathione; H2O2: hydrogen peroxide; IMM: inner mitochondrial membrane; IMS: inter-membrane space; IP3R: inositol 1,4,5-
trisphosphate receptor; MCU: mitochondrial calcium uniporter; MERCs: mitochondria–ER contact sites; Mfn2: mitofusin2; MICU1/2:
mitochondrial Ca2þ uptake proteins 1 and 2; NO: nitric Oxide; NOX4/5: NADPH oxidase 4/5; OMM: outer mitochondrial membrane;
OPA1:mitochondrial dynamin like GTPase; P53: dellular tumor antigen p53; P450: hemoprotein cytochrome P450; PI3K: Phosphoinositide
3-kinases; PKA: protein kinase A; PRDX4: peroxiredoxin-4; Prx3/5: Peroxiredoxin 3/5; PTEN: phosphatase and TENsin homolog; Rab32:
Ras-related protein Rab-32; ROS: reactive oxygen species; SERCA: sarco/endoplasmic reticulum Ca2þ-ATPase; SOD: superoxide
dismutase.
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8000 times lower than what is observed in the ER (100 to
800 lM) and remain much lower than the typical extra-
cellular medium that is usually situated at about 2mM
(Rizzuto et al., 2009). However, the mitochondrial free
[Ca2þ] content undergoes fluctuations dependent on ER
Ca2þ release, for instance through the activation of
IP3Rs with histamine, which raises mitochondrial free
[Ca2þ] into the low micromolar range, as summarized
by (Fernandez-Sanz et al., 2019). Following its release
from the ER, physical interactions between mitochon-
dria and the ER allow for Ca2þ transfer into mitochon-
dria (Rizzuto et al., 1998). Such an increase of
mitochondrial [Ca2þ] not only promotes the Krebs cycle
but can also result in apoptosis (Jouaville et al., 1999;
Pinton et al., 2001). The import and release of Ca2þ on
the mitochondrial membranes is therefore critical for the
control of cell fate and metabolism. Changing redox con-
ditions within and around mitochondria control the func-
tioning of mitochondrial Ca2þ gatekeepers. Of particular
interest is the mitochondrial intermembrane space (IMS).
This compartment contains large amounts of ROS-
consuming or generating enzymes such as superoxide dis-
mutase 1 (SOD1), peroxiredoxins (PRDX) and glutathi-
one peroxidases (GPx) that are able to buffer ROS
generated from mitochondrial OXPHOS (Riemer et al.,
2015). These groups of enzymes also control the folding
of proteins imported into mitochondria from the cytosol
via the TOM and TIM complexes (Habich et al., 2019).
Within the IMS, a disulfide relay system composed of the
oxidoreductase CHCHD4 (known in yeast as Mia40) and
the sulfhydryl oxidase ALR (known in yeast as Erv1)
catalyzes the correct formation of disulfide bonds of mito-
chondrial IMS and IMM proteins (Fischer et al., 2013).
Consistent with an important role of IMS redox condi-
tions for their folding and functioning, many IMS proteins
contain conserved cysteine residues, including mitochon-
drial Ca2þ-handling proteins (Vogtle et al., 2012; Hung
et al., 2014). Of particular interest is the redox-sensing
protein p66Shc (Giorgio et al., 2005). p66Shc can induce
mitochondrial ROS synthesis by sequestering cytochrome
c from the respiratory chain (Giorgio et al., 2005) or by
increasing the rate of OXPHOS (Lone et al., 2018). At the
same time, p66Shc inhibits the expression of antioxidant
enzymes such as SOD1 (Lebiedzinska et al., 2009). Under
oxidizing conditions, p66Shc uses N-terminal cysteine res-
idues to form a tetramer that promotes mitochondrial per-
meability transition (Gertz et al., 2008).

Ca2þ enters the IMS through the porin-related
VDAC channels, of which VDAC1 is the predominant
isoform (De Stefani et al., 2012; Messina et al., 2012).
Thus, the OMM-localized VDAC1 can limit redox-
regulated mitochondrial Ca2þ import (Figure 4)
(Shoshan-Barmatz et al., 2018). VDAC1 contains two
redox-responsive cysteine residues, but they do not
affect its function, in contrast to VDAC2-3 isoforms

(De Pinto et al., 2016). Rather, the redox-sensitive [2S-

2Fe] cluster protein mitoNEET can provide a gating

function to VDAC1 whose full significance for Ca2þ is

currently unclear (Lipper et al., 2019).
From the IMS, the inner mitochondrial membrane

(IMM)-localized mitochondrial Ca2þ uniporter (MCU)

transfers Ca2þ into the matrix (Baughman et al., 2011;

De Stefani et al., 2011). The MCU is a pentameric pro-

tein complex of transmembrane proteins with the N- and

C-termini exposed to the mitochondrial matrix (Nemani
et al., 2018). The MCU protein contains a cysteine res-

idue in its matrix-localized N-terminal domain that

undergoes glutathionylation in the presence of excess

ROS from mitochondrial oxidative stress. Upon this

modification, MCU undergoes higher order oligomeri-

zation, which increases mitochondrial Ca2þ entry, even-

tually resulting in mitochondrial Ca2þ overload (Dong
et al., 2017). The MCU is controlled by mitochondrial

Ca2þ uptake proteins 1 and 2 (MICU1 and MICU2)

(Patron et al., 2014), and the essential MCU regulator

(EMRE) which together form a 480 kDa complex

anchored in the IMM (Sancak et al., 2013). We name

this assembly the “MCU complex” henceforth. The

MCU complex is inhibited by MICU2 in low Ca2þ con-
centrations, but in high Ca2þ concentrations, MICU1

stimulates the MCU complex and allows Ca2þ entry

into the mitochondrial matrix (Nemani et al., 2018).

The oxidoreductase Mia40/CHCHD4 catalyzes the for-

mation of a disulfide bond between MICU1 and

MICU2, which attenuates mitochondrial Ca2þ entry
(Petrungaro et al., 2015). Therefore, cysteine oxidation

of the MCU channel in the matrix acts to overload mito-

chondria with Ca2þ, but Mia40/CHCHD4 opposes this

activation within the IMS. Although the MCU complex

is not particularly enriched on MERCs, the majority of

the Ca2þ it receives originates from the ER (Qi et al.,

2015). Increased or decreased amounts of the oxidore-
ductase Ero1a could influence MCU Ca2þ uptake, but it

is currently not known how this affects the components

of the MCU complex (Anelli et al., 2011). Regardless of

this uncertainty, redox signaling can radiate out from

one organelle to the other, as seen for example during

ER stress, which causes an increase of the mitochondrial

Lon protease that degrades oxidized mitochondrial pro-
teins (Hori et al., 2002). Moreover, the transmission of

mitochondrial ROS can induce the ER unfolded protein

response (UPR) (Yoon et al., 2011).

Control of MERC Ca2þ Signaling by

Cysteine PTMs on the ER

The extent of ER Ca2þ content determines the extent of

Ca2þ flux towards mitochondria (Gutierrez et al., 2020).

Store operated Ca2þ entry (SOCE) (Elaib et al., 2016)
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and Ca2þ import by sarco/endoplasmic reticulum Ca2þ-
ATPase (SERCA) pumps combine to store Ca2þ within

the ER (Primeau et al., 2018). Although full-length

SERCA shows no enrichment to any ER domain

(Raturi et al., 2016), truncated forms of SERCA can

localize to MERCs (Chami et al., 2008). Like most

MERC Ca2þ-handling proteins (Figure 3), SERCA is

subject to extensive redox regulation (Chernorudskiy

and Zito, 2017). SERCA activity can increase under oxi-

dative conditions (Adachi et al., 2004) and this activity

determines MERC functioning (Raturi et al., 2016). ER-

localized NADPH oxidase 4 (Nox4) mediates this base-

line activation (Evangelista et al., 2012). While the ER

chaperone calnexin maintains Nox4 activity (Prior et al.,

2016) and, hence, SERCA pumping (Gutierrez et al.,

2020), the reductase TMX1 inhibits SERCA and pre-

vents the re-capture of the cytosolic Ca2þ (Figure 4)

(Raturi et al., 2016). Overall, a baseline oxidation of

SERCA correlates with full activity.
However, conflicting results have been reported on

the overall level of SERCA cysteine oxidation, also

regarding luminal or cytosolic cysteines, leading to a

dichotomy of the SERCA redox regulation (Raturi

et al., 2014). Accordingly, unlike the activating calnexin

that increases SERCA oxidation, a number of ER pro-

teins including ERdj5 and selenoprotein N (SELENON)

activate SERCA pumps by reducing critical luminal cys-

teines (Marino et al., 2015; Ushioda et al., 2016). This is

also seen for p53, which reduces the cytoplasmic oxida-

tion of SERCA (Giorgi et al., 2015). Together, the extent

of SERCA oxidation could lead to a bell-shaped activity

curve (Raturi et al., 2014). Consistent with this hypoth-

esis, SERCA activity decreases in the presence of hyper-

oxidizing conditions, as found in aging tissue

(Babusikova et al., 2012).
Once filled, the ER Ca2þ content can be released via

ryanodine receptors (RyRs) or IP3Rs (Raffaello et al.,

2016). All IP3R Ca2þ channels are enriched at MERCs

but IP3R2 is most potent in transmitting Ca2þ from the

ER to mitochondria (Bartok et al., 2019). Similarly,

RyRs localize to MERCs (Chen et al., 2012), where

they can generate an ER-mitochondria Ca2þ conduit in

their own right (Eisner et al., 2013). Both IP3Rs (Beretta

et al., 2020) and RyRs (Sun et al., 2011) are associated

with Nox4, suggesting this ER ROS source fulfills a cen-

tral role in the control of ER-mitochondria Ca2þ flux,

Figure 4. ROS and stress-dependent Ca21 signaling at mitochondria–ER contact sites. Distinct ROS signaling patterns adapt
the MERC structure to allow for changes in Ca2þ signaling and TCA cycle activity.
ATP: Adenosine triphosphate; BAK/BAX: Bcl-2-associated X protein; Ca2þ: Calcium; CypD: Cyclophilin D; Cyt-c: Cytrochrome-c; ER:
Endoplasmic Reticulum; Grp75: glucose-regulated protein of 75kDa (or mortalin/heat shock protein 75); IMM: inner mitochondrial
membrane; IMS: inter-membrane space; IP3R: inositol 1,4,5-trisphosphate receptor; MCU: mitochondrial calcium uniporter; MERCs:
mitochondria–ER contact sites; mPTP: mitochondrial permeability transition pore; OMM: Outer mitochondrial membrane; ROS: reactive
oxygen species; SERCA: sarco/endoplasmic reticulum Ca2þ-ATPase; TCA cycle: tricarboxylic acid cycle; VDAC: voltage-dependent anion
channel.
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apparently to maintain physiological ATP production
(Eisner et al., 2013).

RyR1 oxidation and glutathionylation increases Ca2þ

release associated with the redox-dependent dissociation
from its regulatory proteins FKBP12 and calmodulin
(Aracena et al., 2005; Aracena-Parks et al., 2006).
IP3Rs act directly on MERCs, since they form a physical
link with OMM-localized VDAC1 under the control of
the mitochondrial chaperone Grp75 to generate a Ca2þ

conduit toward mitochondria. This complex is also the
first description of a MERC tethering complex
(Szabadkai et al., 2006). Cytosolic H2O2 molecules lead
to oxidation of two cysteine residues within the cytosolic
suppressor domain of IP3R1 (cysteines 206, and 214)
and one additional cytosolic residue (cysteine 1394) in
addition to 5 cysteines that are already oxidized under
basal conditions (Joseph et al., 2018). These modifica-
tions of the sulfenylation and sulfinylation type activate
IP3R1. Therefore, oxidative stress increases Ca2þ flux
through IP3Rs and may lead to a feed forward ER
Ca2þ flux towards mitochondria. As a further conse-
quence, this Ca2þ-based feed forward mechanism trig-
gers the release of H2O2 from mitochondria into the
MERC cleft that increases ER-mitochondria tethering
(Booth et al., 2016) (Figures 3 and 4).

Another mechanistic connection between ER Ca2þ

channel activity and redox depends on ER chaperones.
One example is the Sigma 1 receptor (SIGMAR1), an
ER chaperone with a limited number of substrates
(Hayashi and Su, 2007). Normally, SIGMAR1 is com-
plexed to the ER chaperone BiP/GRP78. Upon detach-
ment from BiP/GRP78 during ER stress, SIGMAR1
interacts with and activates IP3R, thus increasing Ca2þ

transfer from the ER to mitochondria (Hayashi and Su,
2007). In parallel, ERp44 and Ero1a, two proteins con-
trolling the ER folding and redox environment, inhibit
IP3Rs under reducing conditions and activate it under
oxidizing conditions (Higo et al., 2005; Li et al., 2009).
ER stress is a condition that activates the formation of
MERCs and likely causes a feed-forward mechanism
analogous to the one originating at mitochondria
(Booth et al., 2016), but based on dysfunctional ER oxi-
dative protein folding (Csordas et al., 2006; Bravo et al.,
2011) (Figure 4). This leads to a mechanistic connection
between ER oxidative protein folding and ER-
mitochondria Ca2þ flux (Simmen et al., 2010; Fan and
Simmen, 2019) that is associated with increased passive
ER Ca2þ leak during ER stress (Hammadi et al., 2013)
and interactions of ER folding enzymes with SERCA
pumps (John et al., 1998; Li and Camacho, 2004;
Lynes et al., 2013).

MERC regulation by redox likely extends to the core
of the UPR machinery, including protein kinase RNA-
like endoplasmic reticulum kinase (PERK) (Harding
et al., 1999; Hori et al., 2002). Consistent with a central

role in MERC formation, the deletion of PERK reduces

ER-mitochondria contact points associated with resis-

tance to apoptosis (Verfaillie et al., 2012). Another

major ER stress sensor is the inositol-requiring enzyme

1 (Ire1). A portion of Ire1 localizes to MERCs, where it

acts as a scaffold for IP3Rs to control mitochondria

Ca2þ transfer and metabolism (Carreras-Sureda et al.,

2019). PERK and Ire1 may functionally link oxidative

stress to MERC signaling via their UPR signaling prop-

erties that increase upon ROS incubation for PERK
(Higa and Chevet, 2012) and Ire1 (Hourihan et al.,

2016). However, how exactly these transmembrane ER

stress sensors manipulate ROS signaling on MERCs

remains to be investigated.

MERC Lipid Homeostasis Is Linked to Ca2þ

Flux and ER Stress and OXPHOS

The originally discovered function of MERCs is the pro-
duction of specific lipids, as unveiled by the biochemical

isolation of MAMs by Jean Vance (Vance, 1990, 1991).

Indeed, the mitochondria ER membrane contact site

(MCS) is a major hub in lipid biosynthesis (Figure 2)

(Vance, 2015). MERCs have raft-like properties and

form membrane microdomains enriched in sphingolipids

and cholesterol (Sano et al., 2009; Hayashi and

Fujimoto, 2010). This leads to the localization of

Acetyl-Coenzyme A acetyltransferase 1 (ACAT1), also

known as acyl-Coenzyme A: cholesterol acyltransferase

1 (SOAT1) to MERCs (Lee et al., 2000) where this

enzyme esterifies and detoxifies cholesterol (Rogers

et al., 2015). Once synthesized, cholesterol transfers

over to mitochondria dependent on caveolin-1 that pro-

motes MAMs and decreases free cholesterol (Sala-Vila

et al., 2016).
Upon establishment of their raft-like structure,

MERCs also supply mitochondrial phosphatidylcholine

(PC), phosphatidylinositol (PI), and phosphatidylserine

(PS) (van Meer et al., 2008). After PS production in the

ER from PA (phosphatidic acid) and its transfer to mito-

chondria, PS is enzymatically converted to phosphati-

dylethanolamine (PE), one of two biosynthetic

pathways for this lipid (Schuiki and Daum, 2009).

Mitochondrial PE is cycled back to the ER, where it is

transformed into PC by the action of phosphatidyletha-

nolamine N-methyltransferase (PEMT) (Vance, 2015).
Imbalance of these enzymatic reactions induces ER

stress and subsequently triggers MERC dysfunction,

highlighting the symbiotic relationship between the ER

and mitochondria. Consistent with this, compromised

MERC lipid homeostasis, for instance from disrupted

PS shuttling usually leads to ER stress (Hernandez-

Alvarez et al., 2019). UPR induction also results from

increased palmitate loading of the ER (Karaskov et al.,
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2006), a lack of PEMT (Gao et al., 2015) or from
reduced PC levels (Hou et al., 2014). Mechanistically,
these conditions of disrupted lipid homeostasis typically
trigger mitochondrial ROS production (Xu et al., 2015),
but can also impair mitochondrial ATP production,
mitochondrial morphology and assembly of OXPHOS
components (Tasseva et al., 2013). There is therefore a
functional nexus between proteins controlling the
MERC lipidome, the UPR and mitochondrial functions.
Another example is the interorganellar PS/PE shuttling,
which requires oxysterol-binding proteins 5 and
8 (ORP5/8) (Chung et al., 2015). This lipid shuttle also
operates on MERCs, where ORP5/8 interact with
PTPIP51 on the OMM (Galmes et al., 2016). Through
their function for the PC/PE ratio, ORP5/8 allow for
normal respiration. If over-expressed they improve mito-
chondrial Ca2þ import (Pulli et al., 2018). As expected,
altering the function of this lipid shuttle, for instance via
over-expression of ORP8, induces ER stress (Guo et al.,
2017).

At the root of these observations may be the depletion
of the ER Ca2þ content that is transferred over to mito-
chondria. This could occur for instance upon an eleva-
tion of the PC/PE ratio, which inhibits SERCA pumps
by decreasing their Ca2þ affinity (Gustavsson et al.,
2011). Thus, the altered MERC lipidome may disrupt
proper Ca2þ filling of the ER, which is not only critical
for ER protein folding (Simmen and Herrera-Cruz,
2018), but also for mitochondrial oxidative phosphory-
lation (Gutierrez et al., 2020). Another functional link is
provided by the shuttling of ER-synthesized phosphatid-
ic acid (PA) towards mitochondria to be enzymatically
transformed into cardiolipin, which is essential for mito-
chondrial structure and function (Osman et al., 2011;
Potting et al., 2013). Like reduced PE levels, interference
with cardiolipin synthesis leads to ER stress, culminating
in the activation of the C/EBP homologous protein
(CHOP) (Sustarsic et al., 2018).

Lipids themselves are sensitive to ROS. An increase of
lipid peroxidation compromises the folding environment
of the ER and can lead to a feed forward mechanism of
progressing dysfunction (Lin et al., 2014). Thus, MERCs
become dysfunctional under extended oxidizing condi-
tions (Janikiewicz et al., 2018). Ultimately, lipid peroxi-
dation impairs mitochondrial OXPHOS (Anderson
et al., 2012). Cardiolipin is also susceptible to peroxida-
tion, which severely compromises mitochondrial
OXPHOS (Paradies et al., 2009). Upon Bax/Bak-
mediated OMM pore formation during apoptosis, cyto-
chrome c can induce cardiolipin peroxidation following
the formation of a complex with cardiolipin peroxidase,
which then accelerates cell death (Kagan et al., 2005).
Less is known about links between the IMS folding envi-
ronment and lipid homeostasis, but the generation of
oxidized sterols leads to the recruitment of the ubiquitin

proteasome system to remove the mitochondrial OMM

protein import machinery in yeast, suggesting this com-

partment could be affected in similar ways to the ER

folding environment (Nielson et al., 2017).
The importance of MERC redox changes extends to

lipid-related downstream effects. The biosynthesis of tri-

acylglycerol (TG) is under the control of two diacygly-

cerol acyltransferases (DGAT1/2), of which DGAT2 is

MERC enriched (Stone et al., 2009). The activity of both

enzymes is arrested upon incubation with thiol-

modifying compounds (Sauro and Strickland, 1990),

because the oxidation of cysteines blocks DGATs

(Jung et al., 2017).

Sources of Cysteine Post-Translational

Modifications

MERCs are a convergence point for ROS produced

within the ER, mitochondria and peroxisome (Yoboue

et al., 2018). ROS production increases upon the arrival

of growth factor and cytokine signaling (Nam et al.,

2010). Within the ER, ROS are made from oxidative

protein folding that requires oxygen consumption by

the oxidoreductases of the Ero1 family (Araki et al.,

2013), as well as by other enzymes such as the hemopro-

teins cytochrome P450 (Guengerich, 2019), and Nox4/5

(Laurindo et al., 2014). The Ero1 flavoproteins act

together with glutathione peroxidases (GPx) 7/8 and

PRDX4 to generate oxidized protein disulfide isomerase

(PDI) (Bulleid and Ellgaard, 2011). Ero1 exists in

humans as the hypoxia-controlled Ero1a (May et al.,

2005) and the ER-stress regulated Ero1b (Cabibbo
et al., 2000; Pagani et al., 2000). Both GPx7 and GPx8

act as peroxidases to promote the oxidation of substrate

disulfide bonds in the presence of PDI (Nguyen et al.,

2011). GPx7 is a luminal protein, while GPx8 spans the

ER membrane (Nguyen et al., 2011; Kanemura et al.,

2020). PRDX4 assists Ero1 oxidoreductases to eliminate

excess H2O2 produced from oxygen consumption and

uses it for PDI oxidation (Rhee et al., 2018). While

Ero1a and GPx8 are known MERC proteins, we cur-

rently do not know the intra-ER localization of the other

ER-based ROS sources and sinks (Gilady et al., 2010;

Yoboue et al., 2018).
The ER-localized oxidoreductive network based on

Ero1, GPx7/8 and PRDX4 is intimately linked with

the redox state of the cellular volume adjacent to the

ER, which potentially includes mitochondria.

Accordingly, the regeneration of NADPH within the

cytosol is critical for PDI oxidation (Poet et al., 2017)

and the same is true for cytosolic thioredoxin reductase

(Cao et al., 2020). These observations must be integrated

with the inability of ROS to diffuse freely within the cell

(Appenzeller-Herzog et al., 2016). Aquaporin-11 and

Bassot et al. 9



other aquaporin family members have been identified as

mediating ROS transport across the ER and other mem-

branes, suggesting these proteins could be critical for

MERC ROS communication (Bestetti et al., 2020).
Peroxisomes and mitochondria are the alternative

MERC-relevant ROS producers. Within the mitochon-

dria, complex I and III of the electron transport chain

can produce ROS if there is a backup of electron flow

(Murphy, 2009). Alternative sources are activated upon

high levels of matrix NADH/NADþ that are a conse-

quence of reverse electron flow (Robb et al., 2018).

Additionally, b-oxidation of fatty acids also promotes

mitochondrial ROS production in some tissues, but

notably not in the brain (Schonfeld and Reiser, 2017).

Large quantities of ROS are stored within the mitochon-

drial cristae, which can be released upon increased Ca2þ

influx from the ER, inducing a feed forward mechanism

(Booth et al., 2016). To a currently unknown extent,

antioxidant defenses found within the IMS like SOD1

(Kawamata and Manfredi, 2010), GPx and PRDXs

(Mailloux et al., 2013) could potentially absorb them

(Dimayuga et al., 2007).
Within peroxisomes, the oxidation of very long chain

fatty acids and amino acids uses the enzymatic activity

of flavoproteins, whose ROS production is scavenged by

catalase and PRDX5 (Bonekamp et al., 2009). The influ-

ence of this ROS moiety on the ER and mitochondria is

currently under debate (Lismont et al., 2015; Yoboue

et al., 2018). Further research will show how these

three sources are integrated and controlled under phys-

iological and stress conditions.

Metabolic and Apoptotic Signaling as a

MERC-Localized PTM Target

The physiological influx of Ca2þ from the ER to mito-

chondria activates mitochondrial dehydrogenases,

including glycerol-3-phosphate dehydrogenase

(GPDH), pyruvate dehydrogenase (PDH), isocitrate

dehydrogenase (IDH) and oxoglutarate dehydrogenase

(OGDH) (Denton, 2009). ATP synthase (Jouaville et al.,

1999) and b-oxidation (Balu et al., 2016) also appear to

be a target of Ca2þ regulation. Opposing the function of

Ca2þ, glutathionylation inhibits the Krebs cycle and

OXPHOS (Kuksal et al., 2017). Upon a ROS-mediated

oxidation of MERC Ca2þ-handling proteins, the alter-

ation of ER-mitochondria Ca2þ flux could further boost

ROS production within mitochondria (Brookes et al.,

2004). Such a metabolic shift could result in reduced

glycolysis, associated with glutathionylation of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

that decreases glycolytic flux, only reversed by increased

NADPH or antioxidants (Mullarky and Cantley, 2015).

In contrast, excessive mitochondrial Ca2þ uptake

leads to an overload, which further increases the produc-

tion of ROS by the respiratory chain, especially if asso-

ciated with the depolarization of the IMM and the

opening of the mitochondrial permeability transition

pore (Adam-Vizi and Starkov, 2010). Such an event
coincides with the oligomerization of pro-apoptotic

Bcl2 family proteins Bax and Bak into a pore structure

(Flores-Romero et al., 2020). Subsequently, Ca2þ and

cytochrome c are released from this pore and apoptosis

ensues (Salvador-Gallego et al., 2016; Cosentino and

Garcia-Saez, 2017). Therefore, under conditions when

the cyclic ER-mitochondria Ca2þ flux exceeds the

normal mitochondrial buffering capacity, the ER can

also contribute to the triggering of cell death, using

Ca2þ as a messenger (Pinton et al., 2008).
Another example how MERCs mechanistically con-

nect ROS and Ca2þ signaling is based on uncoupling

protein 3 (UCP3), which reduces ATP production and

thus compromises SERCA pumping on the ER side of

MERCs, highlighting additional connections between

the ER and mitochondrial ATP (De Marchi et al.,

2011). This activity could increase in the presence of

oxidative stress that activates UCP3 (Mailloux et al.,
2011).

Multiple MERC-localized kinase-based signaling

mechanisms could be subject to ROS modulation. For

instance, the anti-apoptotic kinase Akt decreases MERC

formation upon growth factor signaling (Betz et al.,

2013). However, upon induction of oxidative stress,

Akt forms an intramolecular disulfide bond, which
results in its degradation, thus presumably boosting

MERC Ca2þ signaling (Murata et al., 2003). This

MERC activation depends on MERC-localized the

phosphatase tensin homolog (PTEN) (Bononi et al.,

2013). In contrast, H2O2-induced oxidation inactivates

PTEN, thus increasing the anti-apoptotic, Akt-mediated

MERC disruption, followed by proliferation (Kwak

et al., 2010; Numajiri et al., 2011; Zhang et al., 2020).
An intriguing link between MERCs and redox signal-

ing exists within the control of the circadian cycle. This

mechanism allows cells and tissues to maintain homeo-

stasis in a time-dependently changing environment.

During the circadian cycle, the brain and muscle arylhy-

drocarbon receptor nuclear translocator protein 1

(BMAL1) regulates ROS production by controlling the

activation of the antioxidant response transcription

factor nuclear factor erythroid 2-related factor 2 (Nrf2)

(Wible et al., 2018). Since Nox4 is one of the targets of
BMAL1 (Anea et al., 2013), BMAL1 could modulate

MERC signaling to control mitochondria metabolism

(Alexander et al., 2020). This mechanism could involve

the formation of a circadian cycle of Ca2þ oscillations

(Ikeda and Ikeda, 2014).
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Cysteine Oxidation at MERCs and Disease

Given the many known mechanisms that compromise or
alter the functioning of the ER and mitochondria, as
well as cellular metabolism based on cysteine oxidation
at MERCs, it is not surprising that this mechanism mal-
functions in many metabolic disease settings.

Examples of MERC Cysteine Modification in
Neurodegenerative Diseases

Most neurodegenerative diseases involve oxidative stress
(Chen et al., 2012). For instance, the S-nitrosylation of
PTEN, Drp1, and Parkin is associated with Alzheimer’s
and Parkinson’s disease, which would result in mito-
chondrial fragmentation and MERC dysfunction
(Nakamura et al., 2013). Additional MERC-associated
cysteine modifications are known to occur in these neu-
rodegenerative diseases. For instance, in a murine
model, Akt sulfhydration causes a worsening of
Alzheimer’s disease elicited by a high level of Tau pro-
tein phosphorylation in the brain (Sen et al., 2020). In
addition, the PP2Ac protein, an inhibitor of Akt on
MAMs, shows less activity in Alzheimer’s disease upon
introduction of thiol disulfide bonds in its catalytic sub-
unit (Foley et al., 2007). Overall, such changes would
result in increased formation of MERCs and increased
transfer of Ca2þ, lipids and sterols to mitochondria,
which is indeed found in patient tissue, but it remains
to be determined whether cysteine PTMs of MERC pro-
teins are behind these observations (Hedskog et al.,
2013; Montesinos et al., 2020). Changes in parkin cyste-
ine PTMs are generally thought to compromise its activ-
ity and act to promote disease progression (Barodia
et al., 2017). In contrast, the H2S-mediated Parkin sulf-
hydration may act to re-activate its enzymatic activity
and, hence, to slow down PD progression (Vandiver
et al., 2013).

Other neurodegenerative syndromes such as
Huntington’s disease (HD) or amyotrophic lateral scle-
rosis (ALS) also show increased oxidative stress.
Relevant for MERC regulation, a clear increase of nitro-
sylated PDI was observed in ALS (Chen et al., 2013).
Within HD tissue and primary cells from mouse HD
models, altered, dysfunctional MERCs are associated
with fragmented mitochondria and oxidative stress
(Cherubini et al., 2020).

Examples of MERC Cysteine Modification in
Cardiovascular Diseases

Cardiovascular diseases are highly correlated with
increased levels of ROS (Peoples et al., 2019). A well-
characterized effect of these is the Nox4-mediated oxi-
dation of SERCA that promotes endothelial migration
(Evangelista et al., 2012) and normal angiogenesis after

ischemia (Craige et al., 2011). The correlation between
Ca2þ fluxes, redox status and cysteine modifications is
strong in cardiovascular diseases, especially upon myo-
cardial ischemia and reperfusion. Under this condition,
myocardial cells frequently undergo cell death due to an

excessive flux of Ca2þ from the sarcoplasmic reticulum
(SR)/ER to the mitochondria, causing mitochondrial
Ca2þ overload and cell death that eventually triggers
heart failure (Santulli et al., 2015). The MCU complex
undergoes oxidation within the matrix-exposed N-termi-
nal domain, but this does not occur dependent on
MERC-derived ROS (Dong et al., 2017).

Examples of MERC Cysteine Modification on
Metabolic Diseases

In the case of insulin resistance in diabetes, increased
mitochondrial ROS levels are a potential causative

mechanism (Anderson et al., 2009). A known conse-
quence of diabetes-associated ROS induction is the inac-
tivation of the SENP1 SUMO isopeptidase that
normally promotes insulin exocytosis (Ferdaoussi
et al., 2015) but also mitochondrial metabolic activity
during fasting (Wang et al., 2019). Several proteins
directly found at MERCs like Akt (Betz et al., 2013)
and PTEN (Bononi et al., 2013) are dysfunctional in
obesity and type 2 diabetic situations. For instance, a

high concentration of NO inhibits Akt causing insulin
resistance, while a low concentration of NO opposes this
disease-promoting effect through PTEN S-nitrosylation
(Numajiri et al., 2011). Moreover, redox events at
MERCs in diabetes are associated with Drp1 sulfenyla-
tion and excessive fission of the mitochondrial network
in endothelial cells. The ensuing mitochondrial fragmen-
tation further increases ROS production and endothelial

senescence and thus worsens the disease (Yu et al., 2006;
Peng et al., 2012). Subsequently, these MERC defects
increase inflammation whose hallmark is the activation
of the inflammasome in the proximity of the ER and
mitochondria (Zhou et al., 2011). Under this condition,
interleukins and TNFa are secreted, which are two
major components of inflammation following the acti-
vation of NFkB (Liu et al., 2017).

Examples of MERC Cysteine Modification in Cancer

A plethora of cancer-relevant proteins controls metabol-
ic MERC signaling, including p53 (Giorgi et al., 2015),
PTEN (Bononi et al., 2013), the kinase Akt (Betz et al.,
2013), breast/ovarian cancer susceptibility gene 1
(BRCA1) (Hedgepeth et al., 2015) and the promyelocytic

leukemia (PML) protein (Giorgi et al., 2010; Missiroli
et al., 2016). PML is very sensitive to oxidation (Tessier
et al., 2017). While its MERC activity increases IP3R-
mediated Ca2þ flux towards mitochondria, in its absence
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ROS increase (Niwa-Kawakita et al., 2017). Similarly,
the transcriptional roles of p53 are highly redox-
dependent (Kim et al., 2011). At MERCs, p53 reduces
the cytosolic oxidation of SERCA and thus makes
SERCA more active (Giorgi et al., 2015). Several addi-
tional redox-sensitive MERC proteins are recognized as
oncogenic proteins, including proteins mediating the
GSK3b pathways and frequently undergo oxidation in
a cancer context (Koundouros and Poulogiannis, 2018;
Zhang et al., 2020). While there is some evidence that
MERCs are disrupted in a cancer context, thus promot-
ing a Warburg metabolic signature with increased gly-
colysis (Herrera-Cruz and Simmen, 2017), MERC
formation can also act as cancer-promoting. For exam-
ple, the activity of the MCU complex promotes migra-
tion and invasion of breast cancer cells (Tosatto et al.,
2016). Similarly, the activity of IP3Rs is necessary to
prevent energy depletion of cancer cells (Cardenas
et al., 2010). High expression of ROS-generating Ero1a
worsens prognosis of breast cancer patients, which given
its activating role for IP3Rs again suggests a cancer-pro-
moting role (Kutomi et al., 2013). However, contradict-
ing these findings, reduced expression of the BRCA1-
associated protein 1 (BAP1) increases the incidence of
cancer in parallel to a reduction of IP3R activity (Bononi
et al., 2017). The complexity of redox-control of MERCs
in cancer is possibly best illustrated by the reductase
TMX1 that if depleted from melanoma cells can slow
down their growth and mitochondria metabolism
(Raturi et al., 2016), but in patients is often highly
expressed to promote mitochondrial activity (Zhang
et al., 2019). In summary, MERC disruption can arrest
mitochondria metabolism in cancer, but the mainte-
nance of mitochondria metabolism by functional
MERCs can act as tumor-promoting by promoting inva-
sion and metastasis (Denisenko et al., 2019).

To conclude, MERCs are a central cellular hub in
metabolic and aging-related diseases. Redox control of
MERC tethering and regulatory proteins is a key mech-
anism to control their roles in metabolism. Much of the
information gathered on cysteine PTMs controlling
MERCs has been gathered before their significance for
this organellar contact site was known, suggesting that
future research may reveal additional functional
connections.
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