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Abstract

Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–

70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s 

disease have been identified. Here we show that increased sample sizes allowed for identification 

of seven previously unidentified genetic loci contributing to Alzheimer’s disease. This study 

highlights microglia, immune cells, and protein catabolism as relevant to late-onset Alzheimer’s 

disease, while identifying and prioritizing previously unidentified genes of potential interest. We 

anticipate that these results can be included in larger meta-analyses of Alzheimer’s disease to 

identify further genetic variants which contribute to Alzheimer’s pathology.

Introduction

Dementia has an age- and sex- standardized prevalence of ~7.1% in Europeans1, with 

Alzheimer’s disease (AD) being the most common form of dementia (50–70% of cases)2. 

AD is pathologically characterized by the presence of amyloid-beta plaques and tau 

neurofibrillary tangles in the brain3. Most patients are diagnosed with AD after the age 

of 65, termed late onset AD (LOAD), while only 1% of the AD cases have an early onset 

(before the age of 65)3. Based on twin studies, the heritability of LOAD is estimated to 

be ~60–80%4,5, suggesting that a large proportion of individual differences in LOAD risk 

is driven by genetics. The heritability of LOAD is spread across many genetic variants; 

however, Zhang et al. (2020)6 suggested that LOAD is more of an oligogenic than polygenic 

disorder due to the large effects of APOE variants. Zhang et al. (2020) and Holland et al. 
(2021)7 predicted there to be ~100–10,000 causal variants contributing to LOAD; however, 

only a fraction have been identified. Increasing the sample size of GWAS studies will 

improve the statistical power to identify the missing causal variants and may highlight 
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additional disease mechanisms. In combination with increasing samples, it is beneficial to 

use different approaches to identify rare and private variation to help identify additional 

causal variants and increase understanding of disease mechanisms; however, we deem this to 

be out of the scope of the current analysis.

The largest previous GWAS of LOAD, identified 29 risk loci from 71,880 (46,613 proxy) 

cases and 383,378 (318,246 proxy) controls8. Our current study expands this to include 

90,338 (46,613 proxy) cases and 1,036,225 (318,246 proxy) controls. The recruitment 

of LOAD cases can be difficult due to the late age of onset, so proxy cases can allow 

for the inclusion of younger individuals by estimating their risk of LOAD using parental 

status. Proxy cases and controls were defined based on known parental LOAD status 

weighted by parental age (Supplementary Note). In the current study, we identified 38 loci, 

including seven loci that have not been reported previously. Functional follow-up analyses 

implicated tissues, cell types, and genes of interest through tissue and cell type enrichment, 

colocalization, and statistical fine-mapping. This study highlights microglia, immune cells, 

and protein catabolism as relevant to LOAD while identifying previously unidentified genes 

of potential interest.

Results

Genome-wide inferences

We meta-analyzed data from 13 cohorts, totaling 1,126,563 individuals (Supplementary 

Table 1). The inflation factors and linkage disequilibrium score (LDSC) regression9 

intercepts of each dataset are reported in Supplementary Table 2. The liability-scale SNP 

heritability was estimated by LDSC regression9 to be 0.031 (SE=0.0062) given a population 

prevalence of 0.05 (UK Biobank (UKB) data excluded). This estimate is low but similar to 

the estimates obtained in a previous GWAS meta-analyses (Jansen8: h2l=0.055,SE=0.0099; 

Lambert10: h2=0.069, SE=0.013). The LDSC intercept was 1.022 (SE=0.013), the inflation 

factor (l) for the meta-analysis was 1.11, and the sample size adjusted inflation factor 

(l1000)11 was 1.007. The genetic correlation12 between proxy LOAD and case-control LOAD 

was 0.83 (SE=0.21, P=6.61×10−5). Separate Manhattan plots for the LOAD proxy data 

and the case-control LOAD data are available in Supplementary Figures 1, 2. Across 

855 external phenotypes in LDhub13, two significant genetic correlations with the meta-

analysis results were observed, both of which were identified in previous studies of LOAD 

(Supplementary Note, Supplementary Table 3).

The meta-analysis identified 3,915 significant (P< 5×10−8) variants across 38 independent 

loci (Table 1, Figure 1). Of those 38 loci, seven have not shown associations with LOAD 

in previous GWAS, and five of those loci have not been associated with any form of 

dementia (AGRN, TNIP1, HAVCR2, NTN5, LILRB2). The lead variant effect estimates 

and significance values per dataset for each locus are reported in Supplementary Table 4. 

We largely replicated the loci identified in Jansen et al. (2019)8, however 7 loci were not 

found to be genome-wide significant in this study, five of those were just below significance 

and two were driven by rare variants (largely) not included in this study (Supplementary 

Note, Supplementary Table 5). However, we successfully replicated all the significant loci in 

Kunkle et al. (2019)14 (Supplementary Table 6).
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Tissue type, cell type, and gene set enrichment

MAGMA tissue specificity analysis15 identified spleen (PBonferroni=0.034) as the only 

Genotype-Tissue Expression (GTEx) tissue where expression of the MAGMA genes was 

significantly associated (Supplementary Figure 3, Supplementary Table 7). However, this 

tissue was slightly above the significance threshold (PBonferroni= 0.054) when the larger 

APOE region (GRCh37: 19:40000000–50000000) was excluded (Supplementary Table 7). 

Spleen was also significant in the previous MAGMA tissue specificity analysis performed 

in Jansen et al. (2019)8 and is a known contributor to immune function. To investigate 

enrichment at the cell type level, FUMA cell type analysis16 was performed with a 

collection of cell types in mouse brain, human brain, and human blood tissue. Six single-cell 

(scRNA-seq) datasets were significantly associated, after multiple testing correction, with 

the expression of LOAD-associated genes (Supplementary Figure 4, Supplementary Table 

8). Microglia was the only significant cell type in all six independent scRNA-seq datasets. 

We confirm previously observed enrichment for non-human microglial cells8, and report 

additional similar enrichments in human microglia. Four of these enrichments remained 

significant after exclusion of the larger APOE region suggesting that genomic regions 

outside of these two play a substantial role in the microglia finding. A combination of the 

cell type and tissue specificity results identifies microglia and immune tissues as potential 

experimental models for identifying the contribution of LOAD-associated genes towards 

LOAD pathogenesis.

MAGMA gene set analysis15 identified 25 Gene Ontology biological processes 

(Supplementary Table 9) that were significantly enriched, after multiple testing correction, 

for LOAD-associated variants. Subsequent conditional gene set analyses confirmed 

independent association of four out of these 25 gene-sets, reflecting the role of LOAD-

associated genes in amyloid and tau plaque formation, protein catabolism of plaques, 

immune cell recruitment, and glial cells (Supplementary Table 9). The exclusion of the 

larger APOE region resulted in the loss of 5 significant gene-sets related to amyloid beta 

clearance, phospholipid efflux, cholesterol transport, protein lipid interactions, and tau 

binding, and the gain of 2 significant gene-sets related to tau degradation and astrocyte 

activation (Supplementary Table 9). Conditional gene-set analysis, with the larger APOE 
region excluded, identified 4 independent gene-sets related to astrocyte activation, immune 

cell recruitment, amyloid catabolism, and neurofibrillary tangles. The gene-set related to 

glial cells was still significant after removal of the APOE region, but was not identified 

as an independent gene-set, which suggests that this association can be explained by the 

APOE region in addition to another significant independent gene-set. Largely, the themes 

highlighted in the gene-set analysis are robust to the exclusion of the APOE region. Our 

gene-set analysis identified the same themes as Jansen et al. (2019)8 and further identified 

significant gene-sets involved in immune cell recruitment and neuronal cell types.

Gene prioritization

As expected, the genomic risk loci identified in this study were enriched for active 

chromatin and variant annotations relating to gene function (Supplementary Note). We 

performed functional follow-up (colocalization and fine-mapping) to further dissect the 

genomic risk loci to identify potential disease drivers. Functional mapping of variants to 
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genes based on position and expression quantitative trait loci (eQTL) information from brain 

and immune tissues/cells identified 989 genes which mapped to one of the 38 genomic risk 

loci (Supplementary Table 10). These mapped genes were annotated with the drugs which 

target them based on information from DrugBank17.

Due to linkage disequilibrium (LD) and the inability to distinguish true causal variants from 

variants in LD, many of the mapped genes may be functionally irrelevant to LOAD. In order 

to highlight potentially relevant genes, eQTL data from immune tissues, brain, and microglia 

were colocalized with the genomic risk loci using Coloc18. We used the 19 successful 

colocalizations (Supplementary Table 11) for nine genes (TNIP1, MADD, APH1B, GRN, 
AC004687.2, ACE, NTN5, CD33, and CASS4) to prioritize genes in those loci. Statistical 

fine-mapping with susieR was additionally performed to narrow down the associated region 

(Supplementary Table 12). The statistical fine-mapping required an external reference panel, 

which limits the interpretation of the findings, so only high confidence variants (posterior 

inclusion probability (PIP) in a credible set >0.95) will be considered in gene prioritization. 

Gene prioritization of the previously unidentified loci and a description of colocalization and 

fine-mapping evidence for previously identified loci is available in the Supplementary Note. 

Some of the most interesting findings for the previously unidentified loci are highlighted 

below.

The lead variant of locus 7 (rs871269; P=1.37×10−9; minor allele frequency (MAF) =0.34) 

is located in an intron of TNIP1 (Supplementary Figure 5) and maps to GPX3, TNIP1, 

and SLC36A1 based on eQTLs within blood tissue. The lead variant is supported by a few 

variants with suggestive signal (rs34294852; P=1.05×10−6) but none of these variants are 

in LD (R2>0.1) in the 1000 Genomes (1KG) European (EUR) population. However, these 

variants are in moderate/low LD with the lead variant (R2=0.2–0.6) in the 1KG East Asian 

(EAS) and American populations. This suggests that the 1KG EUR reference panel does 

not accurately represent the LD structure of our data at this locus. The fine-mapping results 

from susieR identified the lead variant as the only variant with high posterior probability of 

inclusion (PIP>0.99). However, the association signal in this locus colocalized with a nearby 

suggestive variant (rs34294852; R2=0.29 in 1KG EAS), this variant is an eQTL for TNIP1 
in blood tissue (TwinsUK). Support from previous literature is sparse; however, TNIP1 has 

the most support of the three genes. TNIP1 contributes to hyperinflammation and has been 

previously identified in an autoimmune GWAS19. TNIP1 was included in a transcription 

module regulated by Bcl3 in mouse microglia20 where this module was implicated in 

prolonged exposure to inflammation and aging of microglia. The gene encoding Bcl3 

(BCL3) was found to be significantly associated with cerebrospinal fluid amyloid-beta1–42 

peptide after conditioning for APOE21 and was observed as upregulated in the postmortem 

brain of LOAD patients22. Further investigation into this locus in non-European populations 

may yield more support for the lead variant and improve the fine-mapping analysis.

The lead variant of locus 8 (rs6891966; P=7.91×10−10) is located in an intron of HAVCR2 
(Supplementary Figure 6). HAVCR1 and TIMD4 also map to this region based on brain 

eQTLs (PsychENCODE). HAVCR2 was significantly differentially expressed in bulk brain 

tissue of LOAD patients compared to controls23. HAVCR2 is preferentially expressed in 

aged microglia24, was included as one of the top 100 enriched transcripts in brain and 
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microglia, and was included in a cluster of transcripts which are involved in sensing 

endogenous ligands and microbes25. The protein encoded by HAVCR2 (Havcr2) has been 

suggested to bind to phosphatidylserine on cell surfaces to mediate apoptosis26 and to 

interact with amyloid precursor protein27. TIMD4 is another gene in this region which 

encodes a protein (TIM-4) with a similar function to Havcr2; it binds to phosphatidylserine 

on cell surfaces to mediate apoptosis and microglia without TIM-4 receptors have reduced 

apoptotic clearance28. Follow-up experimental work would be useful to determine the role 

that these genes play within LOAD.

Locus 12 and locus 28 have been previously associated with dementia29 but not within a 

previous LOAD GWAS. The lead variant in locus 12 (rs5011436; P=2.7×10−9) is an intron 

variant in TMEM106B (Supplementary Figure 7). A nearby exonic variant (rs3173615; 

R2=0.976 in 1KG EUR; P=6.61×10−9) with a CADD score of 21.2 has been discussed 

as the association signal driving variant in frontotemporal dementia (FTD) by causing 

decreased transmembrane protein 106B (the protein encoded by TMEM106B) abundance 

through increased protein degradation30. TMEM106B was also found to be significantly 

differentially expressed in bulk brain tissue of LOAD patients compared to controls23. The 

lead variant in locus 28 (rs708382; P=1.98×10−9) is an upstream variant of FAM171A2 
(Supplementary Figure 8). Interestingly, the protein (integrin alpha-IIb) encoded by a 

nearby gene (ITGA2B) is a target for Abciximab, an antibody which inhibits platelet 

aggregation and is used to estimate concentrations of coated-platelets31. In patients with 

mild cognitive impairments, elevated coated-platelet levels are linked to increased risk of 

LOAD progression. However, the association signal in this locus colocalized with an eQTL 

for GRN in brain tissue (ROSMAP and BrainSeq) with the lead variant identified as the 

colocalized variant. GRN is also a known FTD gene32 and has the most evidence for being 

the causal gene in the region. The association signals in locus 12 and locus 28 do not appear 

to be primarily driven by the UKB data (Supplementary Note) which suggests that the 

associations of the known FTD genes are not driven by the proxy phenotype. These results 

suggest that TMEM106B and GRN are not solely contributing to FTD, but also to LOAD, 

implying that their biological implications might be related to protein clearance mechanisms 

rather than the involvement in specific disease-related protein aggregates.

The lead variant of locus 36 (rs1761461, P= 1.56×10−9) is an intergenic variant upstream 

of LILRA5 (Supplementary Figure 9). The lead variant is an eQTL for LILRA5, LILRP2, 

LILRB1, LILRA4 in GTEx whole blood. These genes encode a family of transmembrane 

glycoproteins which mediate immune activation33. LILRB5, LILRA5, and LILRB2 were 

significantly differentially expressed in bulk brain tissue of LOAD patients compared to 

controls23. Interestingly, LILRB2 is a nearby gene in the same family and encodes a protein 

(leukocyte immunoglobulin like receptor B2) known to inhibit axonal regeneration and to 

contribute to LOAD through amyloid binding33. The role of LILRB2 in LOAD has been 

investigated in mouse models and results suggest that drug targeting this gene could be a 

beneficial treatment approach34. While prioritizing this region to a single gene is difficult, 

the LILR family appears to be the most likely candidate for explaining the association 

signal.
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Discussion

We performed a large GWAS for LOAD, including 1,126,563 individuals, and identified 

38 LOAD-associated loci, including seven previously unidentified loci. The data included 

both clinical cases and proxy cases, defined based on parental LOAD status, a strategy 

that was validated previously by us8 and others35. Through gene set analysis, tissue and 

single cell specificity analysis, colocalization, and fine-mapping, this study highlighted 

additional biological routes that connect genetic variants to LOAD pathology. These 

functional analyses all implicated immune cells and microglia as cells of interest which 

provided genetic support to the current understanding of LOAD pathology36. The seven 

previously unidentified loci were functionally annotated and fine-mapped to help narrow 

down candidate causal genes. Two of the previously unidentified loci have been previously 

associated with frontotemporal dementia (FTD)29. This signal is not driven by the non-

medically verified LOAD cases in the UKB proxy LOAD data (Supplementary Note), which 

suggests that this region is pleiotropic for FTD or contains separate causal variants within 

the same LD blocks.

A recent study7 produced a power curve for LOAD using a model which accounts for large 

and small effect variants. This model was based on summary statistics from a previous 

GWAS of LOAD10. A sample size of 2.2 million is predicted to identify 80% of genetic 

variance on chromosome 19 and a sample size of 7.8 million is predicted to identify 

80% genetic variance outside of chromosome 19. The effective sample size35 of our meta-

analysis was ~169,608, so based on previous power estimates our study was powered to 

explain ~6% of genetic variance outside of chromosome 19 and 58.9% of genetic variance 

on chromosome 19 (Supplementary Figure 10). We demonstrated that an increased sample 

size in a GWAS meta-analysis approach allowed for identification of previously unidentified 

loci; however, Holland et al. (2021)7 also predicted there to be approximately 300 large 

effect causal variants contributing to LOAD. These large effect variants (and small effect 

rare variants) are unlikely to be identified through traditional GWAS approaches focusing on 

common variants. Larger sample size GWAS approaches should be complemented with rare 

variant, copy number variant (CNV), and private variant discovery in order to identify the 

remaining causal variants.

Future work focusing on fine-mapping, generating larger QTL databases in more specific 

cells types, and incorporating other ancestries will improve the interpretability of associated 

loci. Our colocalization analysis identified a candidate causal gene in 9 of the 38 loci and 

we expect that larger and more specific QTL datasets will improve the number of successful 

colocalization. Yao et al. (2020)37 highlighted a need for higher sample size eQTL discovery 

and suggested that genes with smaller effect eQTLs are more likely to be causal for common 

traits. The identification of human microglia, but not bulk brain tissue, as a cell/tissue type 

of interest in this study supported a finding in a recent single-cell epigenomic study38, which 

showed that investigating individual cell types will be more fruitful than bulk brain tissue for 

understanding the route from variant to LOAD pathology.

One important goal for LOAD GWAS is the identification of medically actionable 

information that can help in diagnosis or treatment in all populations. This study was limited 
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in the ability to identify causal genes and in the applicability to non-European populations. 

Further study in non-European populations will improve the equity of genetic information 

and also help with fine-mapping of associated regions. Larger sample sizes of GWAS, 

epigenomic studies, and eQTL studies in all populations will improve identification and 

explanation of additional LOAD loci while increasing the applicability of these findings 

to a larger group of individuals. This could be accomplished by a push for facilitating 

data-sharing and global collaboration within the field of Alzheimer’s disease genetics. The 

current work provided genetic support for the role of immune cells and microglia in LOAD, 

identified previously unidentified LOAD-associated regions, prioritized causal genes of 

interest, and highlighted the importance of collaboration to discern the biological process 

that mediate LOAD pathology.

Methods

Dataset Processing

Quality Control and Meta-analysis—The data from the participants in this study 

were obtained from freely available summary statistics and from genotype level data. 

Additional cohorts were obtained since our previous analysis8 (as well as an increased 

deCODE sample); these cohorts contain 12,968 additional cases and 488,616 additional 

controls. An overview of the cohorts is available in Supplementary Table 1. Informed 

consent was obtained from all participants and we complied with all relevant ethical 

regulations. Full description of each dataset, the quality control (QC) procedures, and the 

analysis protocol are available in the Supplementary Note. In short, each dataset underwent 

initial QC, imputation, logistic/linear regression with at least sex and principal components 

as covariates, and post-regression QC of the summary statistics using EasyQC39. If 

necessary, the data were converted to build GRCh37 before QC using the UCSC LiftOver 

tool40. During post-regression QC, each dataset was matched to the Haplotype Reference 

Consortium (HRC) or 1KG reference panel and variants with absolute allele frequency 

differences > 0.2 compared to the reference panel were removed. Variants with an 

imputation quality score < 0.8, minor allele count (MAC) < 6, N < 30, or absolute beta 

or SE > 10 were removed. Low minor allele frequency (MAF) variants were removed; 

low MAF41 was defined as < 1
2 × N . All datasets were meta-analyzed using mv-GWAMA 

(https://github.com/Kyoko-wtnb/mvGWAMA), a sample size weighted method previously 

developed in Jansen et al. (2019)8. The option to account for overlapping individuals was 

not utilized because no datasets were expected to contain overlapping samples and the 

estimates of overlapping samples (genetic covariance intercepts) were unreliable due to low 

heritability of the datasets. The effective sample size of the full meta-analysis for power 

estimates was calculated by assuming the individuals in the UKB proxy data with phenotype 

values <1 are controls and >=1 are cases.

Genomic risk loci definition—We used FUMA v1.3.6a42 (http://fuma.ctglab.nl) to 

annotate and functionally map variants included in the meta-analysis. Genomic risk loci 

were defined around significant variants (<5×10−8); the genomic risk loci included all 

variants correlated (R2>0.6) with the most significant variant. The correlation estimates 

were defined using 1KG European reference information43. The 1KG European reference 
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panel was chosen over the UKB44 10K reference panel because the meta-analysis included 

individuals from a range of European ancestries and this diversity would be better reflected 

in the 1KG European sample than the primarily British UKB sample. Genomic risk loci 

within 250 Kb of each other are incorporated into the same locus. Previously unidentified 

genomic risk loci are loci which do not overlap with variants identified as significant in 

previous studies of LOAD8,10,45–50. Regional plots were generated using LocusZoom51 and 

1KG reference information.

Heritability and genetic correlation—Linkage disequilibrium score (LDSC) 

regression9 (https://github.com/bulik/ldsc) was used to estimate the liability scale heritability 

of the non-proxy LOAD meta-analysis (UKB data excluded). The non-proxy LOAD 

meta-analysis (43,725 cases and 717,979 controls) was performed in the same way 

as the full meta-analysis described above. The UKB data (N=364,859) was excluded 

because LDSC liability scale heritability estimates are sensitive to sample prevalence 

and the UKB data was generated with a continuous phenotype and therefore a sample 

prevalence could not be perfectly estimated if the UKB data was included. Heritability 

estimates were converted to a liability scale using the LOAD population prevalence of 

0.05 and a sample prevalence of 0.0574041885. LDSC12 was also used to determine 

the genetic correlation between a meta-analysis of the non-proxy LOAD datasets and 

the UKB proxy LOAD dataset. Pre-calculated LD scores for LDSC were derived 

from the 1KG European reference population (https://data.broadinstitute.org/alkesgroup/

LDSCORE/eur_w_ld_chr.tar.bz2). Heritability and genetic correlation estimates were 

calculated using HapMap3 variants only. Further genetic correlations were determined 

using the full meta-analysis and LDhub13 (http://ldsc.broadinstitute.org/), where all 855 

traits were tested using the HapMap3 variants (http://ldsc.broadinstitute.org/static/media/

w_hm3.noMHC.snplist.zip). The heritability estimate of Lambert et al. (2013)10 summary 

statistics was obtained from LDhub.

Gene-based and gene-set analyses—Genome-wide gene association analysis was 

performed using MAGMA v1.0815 (http://ctg.cncr.nl/software/magma). All variants in the 

GWAS outside of the MHC region (GRCh37: 6:28,477,797–33,448,354) that positionally 

map within one of the 19,019 protein coding genes were included to estimate the 

significance value of that gene. Genes were considered significant if the P-value was <0.05 

after Bonferroni correction for 19,019 genes. All MAGMA analyses utilized 1KG43 LD 

information. MAGMA gene-set analysis was performed where variants map to 15,496 

gene-sets from the MSigDB v7.0 database52. Gene-sets were considered significant if 

the P-value was <0.05 after Bonferroni correction for the number of tested gene-sets. 

Forward selection of significantly associated gene-sets was performed using MAGMA v1.08 

conditional analysis53. Initially the most significant gene-set was selected as a covariate and 

the remaining gene-sets were analyzed. The most significant gene-set from this conditional 

analysis was added as a covariate in addition to the previous gene-set and a new analysis 

was run. This process was repeated until no gene-set met the significance threshold 

(PBonferroni<0.05). MAGMA tissue specificity analysis was performed in FUMA using 30 

general tissue type gene expression profiles (from GTEx v8). Tissues were considered 

significant if the P-value was < 0.05 after Bonferroni correction for 30 tissues.
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FUMA cell type specificity analysis16 utilises the MAGMA gene association 

results to identify cell types enriched in expression of trait associated 

genes. We focused on brain and immune related cell types with the 

inclusion of pancreas as a control, therefore selecting the following 

scRNA-seq datasets: Allen_Human_LGN_level154, Allen_Human_LGN_level254, 

Allen_Human_MTG_level154, Allen_Human_MTG_level254, 

DroNc_Human_Hippocampus55, DroNc_Mouse_Hippocampus55, 

GSE104276_Human_Prefrontal_cortex_all_ages56, GSE67835_Human_Cortex57, 

GSE81547_Human_Pancreas58, Linnarsson_GSE101601_Human_Temporal_cortex59, 

MouseCellAtlas_all60, PBMC_10x_68k61, and PsychENCODE_Adult62. Within-dataset 

corrected results were reported to indicate which single cells are most likely to be disease 

relevant. The gene-based and gene-set analyses were also performed without the larger 

APOE region (19:40000000–50000000).

Gene mapping—The individual genomic risk loci were mapped to genes using FUMA 

v1.3.6a42 using positional mapping and eQTL mapping. For positional mapping, all variants 

within 10Kb of a gene in the genomic risk locus were assigned to that gene. For 

eQTL mapping, variants were mapped to genes based on significant eQTL interactions 

in a collection of immune and brain tissues. Brain tissue eQTLs were used due to 

importance of brain tissue in LOAD pathology and immune tissue/cell eQTLs were 

used for gene mapping because MAGMA tissue specificity analysis highlighted immune 

tissues as tissues of interest. The brain and immune tissues eQTLs used for mapping 

were: Alasoo naive macrophage63, BLUEPRINT monocyte64, BLUEPRINT neutrophil64, 

BLUEPRINT T-cell64, BrainSeq Brain65, CEDAR B-cell66, CEDAR monocyte, CEDAR 

neutrophil66, CEDAR T-cell66, Fairfax B-cell67, Fairfax naive monocyte68, GENCORD 

T-cell69, Kasela CD4 T-cell70, Kasela CD8 T-cell70, Lepik Blood71, Naranbhai neutrophil72, 

Nedelec macrophage73, Quach monocyte74, Schwartzentruber sensory neuron75, TwinsUK 

blood76, PsychENCODE brain62, eQTLGen blood cis and trans77, BloodeQTL blood78, 

BIOS Blood79, xQTLServer blood80, CommonMind Consortium brain81, BRAINEAC 

brain82, GTEX v8 lymphocytes, brain, spleen, and whole blood. The genes which mapped 

to previously unidentified loci were searched in a database (https://diegomscoelho.github.io/

AD-IsoformSwitch/index.html)23 to identify if they were differential expressed in bulk 

brain tissue of LOAD patients compared to controls.

Colocalization—All variants within 1.5 Mb of the lead variant of each genomic risk loci 

were used in the colocalization analysis. The GWAS data and eQTL data were trimmed 

so that all variants overlap. Colocalization was performed per gene using coloc.abf from 

the Coloc R package18. Default priors were used for prior probability of association with 

the GWAS data and eQTL data. The prior probability of colocalization was set as 1×10−6 

as recommended83. Nominal P, sample size, and minor allele frequency from the GWAS 

data and eQTL data were used in all the colocalization analyses. Colocalizations with a 

posterior probability > 0.8 were considered successful colocalizations. eQTL data from all 

tissues except microglia were obtained from the eQTL catalogue84. The microglia data were 

obtained from Young et al. (2019)85.
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Fine-mapping—Fine-mapping was performed with susieR v0.9.186 on all variants within 

1.5 Mb of the lead variant of each genomic risk loci. The APOE and HLA-DRB1 (MHC) 

regions were excluded from fine-mapping due to the complicated LD structure. The sample 

size of the fine-mapping reference panel should be proportional to the sample size of the 

data being fine-mapped. A good-sized reference panel is 10% to 20% the sample size of the 

data87. UKB data were used as a reference panel for the fine-mapping because it had the 

largest sample size of the available reference panels and was the only available European 

reference panel to fulfill the criteria for a good-sized reference panel. The reference panel 

was ~10% the size of the GWAS data. An LD matrix was generated using 100,000 

individuals in R v3.4.388. The 100,000 individuals were chosen for each locus as the top 

100,000 people with the most genotyped variants in the locus in order to maintain the 

highest number of variants in the fine-mapping. Only the top 100,000 were chosen for 

computational feasibility and in order to maintain as many variants as possible while having 

a large reference panel. The meta-analysis data was trimmed to match the variants included 

in the LD reference. The maximum number of causal variants in the region was set to 10. 

The susieR credible sets are reported in Supplementary Table 12. The allele frequency in 

the UKB data and meta-analysis data of all the variants in the fine-mapping analyses were 

compared to identify outliers. No variants included in the confidence set or credible set had 

an allele frequency difference > 0.2.

Functional enrichment of significantly associated regions—All enrichment 

analyses were performed using a Fisher’s exact test (fisher.test) implemented in 

R 4.0.188. The enrichment analyses compared all variants within the genomic risk 

loci (excluding the MHC region; GRCh37: 6:28,477,797–33,448,354) to all other 

variants present in the meta-analysis (excluding of the MHC region). Enrichment of 

active chromatin was performed using ROADMAP Core 15-state model annotation89 

obtained from https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/

ChmmModels/coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz . For each of the 127 

cell types, all variants within the analysis were annotated with one of the 15 states using 

the R package Genomic Ranges90. All variants annotated with a state < 8 were defined 

as being within active chromatin. The enrichment of active chromatin within the specified 

region was performed for each of the cell types and the resulting P-values were corrected for 

127 tests using Bonferroni correction. To perform enrichments of functional consequences, 

variants were annotated with ANNOVAR91 using ANNOVAR and FASTA sequences for 

all annotated transcripts in RefSeq Gene92. Enrichments were considered significant if 

the P-value was < 0.05 after Bonferroni correction for 11 functional consequences. The 

enrichment plots were generated using the R package ggplot293.

Statistics & Reproducibility—No statistical method was used to predetermine sample 

size, all available datasets were included in the meta-analysis. Exclusion of data was 

predetermined and based on quality control procedures outlined in the Supplementary Note. 

Phenotype values were assigned based on (parental) diagnoses so the experiments were 

not randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment. Scientific findings were compared to findings from previous LOAD 
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meta-analyses. Replication of previously identified loci is reported in the Main Text and 

Supplementary Note.

Data Availability Statement—Access to raw data can be requested via the Psychiatric 

Genomics Data Access portal https://www.med.unc.edu/pgc/shared-methods/open-source-

philosophy/), UKBiobank (www.ukbiobank.ac.uk), or 23andMe. Restriction of raw data 

is to protect the privacy of participants. Summary statistics from IGAP (https://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php) and Finngen (https://www.finngen.fi/en/

access_results) can be obtained from their respective online portals. Summary statistics 

from the meta-analysis excluding 23andMe are available at https://ctg.cncr.nl/software/

summary_statistics. Access to the full set including 23andMe results can be obtained after 

the approval from 23andMe is presented to the corresponding author. Approval can be 

obtained by completion of a Data Transfer Agreement. The Data Transfer Agreement exists 

to protect the privacy of 23andMe participants. Please visit https://research.23andme.com/

dataset-access/ to initiate a request. Summary statistics of the primary microglia eQTLs 

are also available from EGA (Accession ID: EGAD00001005736). MSigDB gene-sets 

are available online (https://www.gsea-msigdb.org/gsea/msigdb/) and integrated in FUMA 

(https://fuma.ctglab.nl/).

Code Availability Statement—The code used to perform the analyses is available 

at https://github.com/dwightman/PGC-ALZ2. All software used in the analyses is freely 

available online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A Manhattan plot of the meta-analysis results highlighting 38 loci, including 7 previously 

unidentified regions. Only variants with a P< 0.0005 are displayed. The APOE region 

cannot be fully observed because the y-axis is limited to the top variant in the second most 

significant locus, -log10(1×10−60), in order to display the less significant variants. The red 

line represents genome wide significance (5×10−8). The P-values were identified through a 

meta-analysis (two-sided test) of summary statistics generated by linear/logistic regressions 

(two-sided test) and were not adjusted for multiple testing. The previously unidentified loci 
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are highlighted in green and indicated by the assigned gene name. The TNIP1/HAVCR2 
regions and the NTN5/LILRB2 regions are close enough together that they cannot be 

visually distinguished at this scale but are different genomic risk loci.
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Table 1:

The 38 genomic risk loci identified from 90,338 (46,613 proxy) cases and 1,036,225 (318,246 proxy) controls. 

The P-values were identified through a meta-analysis (two-sided test) of summary statistics generated by 

linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The previously 

unidentified loci are highlighted in bold. The genes were assigned based on colocalization results, fine-

mapping results, and previous literature.

Genomic Locus Gene Position (GRCh37) Lead variant A1 A1 frequency P N

1 AGRN 1:985377 rs113020870 T 0.0041 3.83×10 −8 776379

2 CR1 1:207750568 rs679515 C 0.82 2.42×10−25 762176

3 NCK2 2:106235428 rs115186657 C 0.0035 1.33×10−8 727537

4 BIN1 2:127891427 rs4663105 C 0.41 3.92×10−58 1078540

5 INPPD5 2:234082577 rs7597763 C 0.45 4.65×10−9 819541

6 CLNK 4:11014822 rs4504245 G 0.79 5.23×10−12 1080458

7 TNIP1 5:150432388 rs871269 T 0.32 1.37×10 −9 1089904

8 HAVCR2 5:156526331 rs6891966 G 0.77 7.91×10 −10 1089230

9 HLA-DRB1 6:32583813 rs1846190 A 0.30 2.66×10−14 754040

10 TREM2 6:40942196 rs187370608 G 0.997 1.26×10−25 791668

11 CD2AP 6:47552180 rs9369716 T 0.27 1.70×10−17 1052285

12 TMEM106B 7:12268758 rs5011436 C 0.41 2.70×10−9 1123678

13 ZCWPW1/NYAP1 7:99932049 rs7384878 T 0.69 9.41×10−16 1084138

14 EPHA1-AS1 7:143104331 rs3935067 G 0.62 4.69×10−11 1117025

15 CLU 8:27466315 rs1532278 T 0.39 1.57×10−22 1126563

16 SHARPIN 8:145108151 rs61732533 G 0.95 3.14×10−9 1122653

17 USP6NL/ECHDC3 10:11718713 rs7912495 G 0.46 7.68×10−15 1120367

18 CCDC6 10:61738152 rs7902657 T 0.54 3.68×10−8 1126388

19 MADD/SPI1 11:47380340 rs3740688 T 0.54 8.78×10−9 1123185

20 MS4A4A 11:60021948 rs1582763 G 0.62 3.40×10−33 1125804

21 PICALM 11:85800279 rs561655 G 0.35 1.24×10−26 1126563

22 SORL1 11:121435587 rs11218343 T 0.96 1.33×10−13 1125100

23 FERMT2 14:53298853 rs7146179 G 0.89 6.99×10−11 1089904

24 RIN3 14:92938855 rs12590654 G 0.67 6.63×10−17 1116967

25 ADAM10 15:59057023 rs602602 T 0.70 6.22×10−15 1124268

26 APH1B 15:63569902 rs117618017 T 0.13 7.00×10−12 889854

27 SCIMP/RABEP1 17:4969940 rs7209200 T 0.33 3.18×10−8 1125637

28 GRN 17:42442344 rs708382 T 0.61 1.98×10 −9 1125622

29 ABI3 17:47450775 rs28394864 G 0.54 4.90×10−10 1084218

30 TSPOAP1-AS1 17:56409089 rs2632516 G 0.54 7.46×10−10 1082451

31 ACE 17:61545779 rs6504163 T 0.61 1.23×10−9 1083145
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Genomic Locus Gene Position (GRCh37) Lead variant A1 A1 frequency P N

32 ABCA7 19:1050874 rs12151021 G 0.68 2.81×10−15 1082434

33 APOE 19:45411941 rs429358 T 0.84 <1.0×10−300 1126190

34 NTN5 19:49213504 rs2452170 G 0.47 1.72×10 −8 1088626

35 CD33 19:51737991 rs1354106 G 0.37 2.21×10−10 716038

36 LILRB2 19:54825174 rs1761461 C 0.49 1.56×10 −9 1116336

37 CASS4 20:54995699 rs6069737 T 0.083 6.73×10−16 1087703

38 APP 21:27520931 rs2154482 T 0.44 7.66×10−10 1124606

Bold rows indicate previously unidentified loci
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