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Abstract

Compression as an accelerant of computation is increasingly recognized as an important

component in engineering fast real-world machine learning methods for big data; c.f., its

impact on genome-scale approximate string matching. Previous work showed that com-

pression can accelerate algorithms for Hidden Markov Models (HMM) with discrete observa-

tions, both for the classical frequentist HMM algorithms—Forward Filtering, Backward

Smoothing and Viterbi—and Gibbs sampling for Bayesian HMM. For Bayesian HMM with

continuous-valued observations, compression was shown to greatly accelerate computa-

tions for specific types of data. For instance, data from large-scale experiments interrogating

structural genetic variation can be assumed to be piece-wise constant with noise, or, equiva-

lently, data generated by HMM with dominant self-transition probabilities. Here we extend

the compressive computation approach to the classical frequentist HMM algorithms on con-

tinuous-valued observations, providing the first compressive approach for this problem. In a

large-scale simulation study, we demonstrate empirically that in many settings compressed

HMM algorithms very clearly outperform the classical algorithms with no, or only an insignifi-

cant effect, on the computed probabilities and infered state paths of maximal likelihood. This

provides an efficient approach to big data computations with HMM. An open-source imple-

mentation of the method is available from https://github.com/lucabello/wavelet-hmms.

Introduction

Hidden Markov Models (HMM) [1] are still one of the most widely used machine learning

methods across an extensive range of data modalities—texts to images, time-series of hand

movements to weather events—and virtually all disciplines analyzing data, from political sci-

ence [2] to education [3] and computer security [4] to autonomous vehicles [5].

Their simple structure, i.i.d. observations generated in each state of the underlying Markov

chain and Markov dynamics between states, is on the one hand powerful enough for black-

box modeling and on the other hand amenable to handcrafting models [6] reflecting expert
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knowledge from the application domain. Their immense success in bioinformatics is largely

owed to the latter.

Another aspect driving their popularity is computational efficiency. The standard algo-

rithms—Rabiner’s three problems [1]—for computing likelihood under a model, finding the

optimal state sequence given an observation with the Viterbi algorithm, and each iteration of

the maximum likelihood (ML) estimation of parameters, i.e., the iterations of the Baum-

Welch training, are linear in the length of the observation sequence T, more exactly O(N2 � T)

where N is the number of states. A tighter bound can be found if the model is sparse, or more

specifically, when all out-degrees of the states are bounded by a small constant as for example

in profile HMMs [7].

Still, with sufficient amounts of data even a linear algorithms might not deliver running

times sufficiently fast in practice. This is certainly the case when analyzing biological

sequences, where for example popular gene finding models have hundreds of states. The

insight that the combination of a small alphabet—the four characters A, C, G, and T represent-

ing the four constituent nucleotides of DNA molecules—and large sequence length T, up to

248 million for the longest Human chromosome, forces a high degree of repetitiveness in the

sequences [8] suggested that exploiting this repetitiveness in computations may achieve a large

impact.

Mozes et al. [9] recognized that for discrete observations rewriting HMM-computations as

matrix multiplications of transition-emission operators Mσ, similar to [10] and observable

operator models [11], allowed them to pre-compute partial products representing a frequently

occurring sequence pattern and thus, with a sufficiently compressible sequence, achieve con-

siderable speed-ups for likelihood, Viterbi and Baum-Welch training.

Also for discrete observations, Mahmud et al. [12] used transition-emission operators to

substantially accelerate Forward-Backward Gibbs (FBG) sampling [13], a rapidly converging

sampler for computations with fully Bayesian HMM, the fourth problem for HMM. There,

marginal state probabilities conditioned on the data provides a robust alternative to locally

optimal ML estimation followed by Viterbi-computation.

Clearly, there is no trivial path to extend the work from discrete to continuous-valued

observations, but a specific type of important data naturally suggested a workable approach. A

popular type of experiment in genetics identifies chromosomal duplications and deletions,

changes where segments from several hundreds to many thousands of nucleotides of length

are lost or added. The data coming from array CGH [14], SNP array platforms [15] or high-

throughput sequencing [16] indicates the abundance of DNA vs. genomic location. In absence

of any errors the data would be integer-valued and piecewise constant; the observed data is a

noisy version of that ideal. The discrete underlying states and the large number of observations

between changes explains why HMMs are a very suitable model for this data [17] and suggests

a compressive computation approach similar in spirit to run-length encoding in the discrete

case. The fundamental assumption is that a state change from t to t + 1 is prohibited when con-

secutive observations xt and xt+1 are close. This assumption was the basis for a greedy cluster-

ing algorithm and adapted sampling procedures leading to a substantial improvement [18] in

the running times of the FBG sampler for continuous-valued observations with negligble

errors in the estimation. Later, Wiedenhoeft et al. [19] proposed a principled approach based

on wavelets, in which the breakpoints, i.e. the position of discontinuities in the wavelet recon-

struction, defined the boundaries of segments or blocks; see section on wavelets for details.

Highly optimized algorithms and data structures for computing such breakpoints [20] helped

to achieve several-thousand fold acceleration and greatly improved convergence of the sampler

allowing Bayesian computation even for genome-scale data at single-nucleotide resolution

[21], thereby settling compressive computation for the fourth problem.
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Novelty and outline

In the following, we introduce the first compressive approach for Rabiner’s three original

problems [1]—likelihood computation, computing Viterbi paths, and Maximum-likelihood

estimation with the Baum-Welch algorithm—for Hidden-Markov Models with continous

emissions based on compression obtained with wavelets. We review the basics of the wavelet

compression and present adapted equations for HMM computations in this compressive set-

ting. With a large-scale evaluation study, we demonstrate the large improvements in running

times for data which is amenable to this compressive approach, namely piece-wise constant

with noise, or, equivalently, data generated by HMM with separable means and high self-tran-

sition probabilities. An open-source implementation of the method is available from https://

github.com/lucabello/wavelet-hmms/tree/v1.0-thesis.

Materials and methods

First, let us fix some notation for introducing the models and (un-)compressed computations.

Random variables will be denoted as upright letters (x or X), their instantiated values in italics

(x or X), and their domains in script (X). To avoid notational clutter, we denote density and

mass functions as

pðx j yÞ≔ fXjY¼yðxÞ;

where the names of the random variables involved can be inferred from their instantiations.

Sometimes, instead of evaluating this function at x, we have a specific value j from context,

which would make inferring the associated random variable impossible. We therefore use the

notation

pðx ¼ j j yÞ≔ fXjY¼yðjÞ;

for disambiguation, where j 2 X . Accordingly, fixed values are denoted like p(x = 1jy) and p
(xjy = 5); note that the first expression explicitly denotes a density and the second a likelihood

function. Indeed, being algebraically equivalent, we also have

pðx j yÞ≔Lðy j X ¼ xÞ:

Importantly, note that Bayes’ theorem holds not only for probability measures, but for den-

sities and mass functions as well:

fXjY¼yðxÞ ¼
fYjX¼xðyÞ
fYðyÞ

fXðxÞ ) pðx j yÞ ¼
pðy j xÞ
pðyÞ

pðxÞ:

In the following we introduce the three fundamental algorithms we will later accelerate

with the wavelet-based compression.

The three classical HMM problems

It’s important to define some notation to properly describe the problems ahead:

• qt 2 Q denotes the hidden state at position t, and qt
s ¼ ðqs; . . . ; qtÞ 2 Qt� sþ1

denotes a state
sequence, also called (or state path, generating path). For the length T of the data, we define

q ¼ qT
1

for convenience.

• N ¼ jQj, the number of states of the HMM;

• A ¼ fAijg 2 A, 1� i, j� N, the transition matrix of the Markov process on Q.
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• yt 2 Y denotes the observed value at position t. Analog to the definition of qt
s, y

t
s is a partial

observation sequence yts ¼ ðys; . . . ; ytÞ 2 Yt� sþ1
and y ¼ yT

1
.

• θj denotes the parametrization of the emission distribution of yt in state j. Due to their

importance, we denote the likelihood functions of emissions as Lj(t)≔ p(ytjqt = j, θj).

• π = {πi}, the initial state distribution.

The model will be often indicated through the compact notation

l ¼ ðN;A; y; pÞ: ð1Þ

Evaluation problem. The evaluation problem concerns measuring how well a specific

sequence of observations is represented by a given model, through the computation of the

probability that the observed sequence was produced by the model. Given an observation

sequence y and a model λ, the goal is to compute its likelihood p(yjq, λ).

The standard algorithm used to solve the evaluation problem is the forward algorithm. The

key element is the forward variable αt(i), defined as the joint probability of observing the

sequence up to time t and being in state i at time t

atðiÞ ¼ pðyt
1
; qt ¼ i j λÞ: ð2Þ

Through induction, the following procedure can be defined:

a1ðiÞ ¼ piLið1Þ; 1 � i � N ð3aÞ

atþ1ðjÞ ¼
�
XN

i¼1

atðiÞAij

�

Ljðt þ 1Þ; 1 � t � T � 1; 1 � j � N ð3bÞ

pðy j λÞ ¼
XN

i¼1

aTðiÞ: ð3cÞ

Looking at the computational complexity, the number of calculations for each observation

is N2 (N per each state); repeating this for the whole sequence length gives a complexity that is

OðT � N2Þ.

The backward-variables btðjÞ ¼ ≔ pðyTtþ1
j qt ¼ jÞ give the probability of observing the

remainder of the observation sequence starting from state j at time t and lend themselves to

computation with a similar dynamic programming scheme as for the αt(i).
Decoding problem. The decoding problem deals with the computation of the most likely

generating path of an observation sequence for a given model; formally, this means finding the

maximization of p(qjy, λ). The standard approach is to use the Viterbi algorithm: it follows a

similar strategy to the forward algorithm, but applying a maximization in place of the summa-

tion,

dtðiÞ ¼ max
qt� 1

1

pðqt� 1

1
; qt ¼ i; yt

1
j λÞ: ð4Þ

The most likely path will be the argument of this maximization over all the states consider-

ing the whole observations sequence; it can be defined in the notation as ψ. Through induction
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it is possible to write the following equations:

d1ðiÞ ¼ piLið1Þ; 1 � i � N

c1 ¼ 0
ð5aÞ

dtðjÞ ¼ max
1�i�N
½dt� 1ðiÞ Aij�LjðtÞ; 2 � t � T; 1 � j � N

ctðjÞ ¼ arg max
1�i�N

½dt� 1ðiÞ Aij�; 2 � t � T; 1 � j � N
ð5bÞ

P∗ ¼ max
1�i�N
½dTðiÞ�

q∗T ¼ arg max
1�i�N

½dTðiÞ�
ð5cÞ

q∗t ¼ ctþ1ðq∗tþ1
Þ; t ¼ T � 1;T � 2; � � � ; 1: ð5dÞ

Training problem. The goal is to find the model λ that maximizes p(yjλ); a popular tech-

nique is the Baum-Welch method, which starts from initial parameter estimates and iteratively

performs reestimations of the parameters to improve the likelihood.

This algorithm introduces a new key variable: ξ(i, j), the probability of being in state i at

time t and in state j at time t + 1

xtði; jÞ ¼ pðqt ¼ i; qtþ1 ¼ j j y; λÞ: ð6Þ

It can be useful to express this equation using the forward and backward variables. In fact,

the forward variable αt(i) accounts for the observations from the first one up to yt in state i; the

backward variable btþ1ðjÞ≔pðyTtþ1
j qt ¼ jÞ does the complementary job, considering the

observation sequence starting in state j and from observation yt+1 up to the last one. The step

between t and t + 1 has been left out: to tie the two variables, it is necessary to include the prob-

ability of transitioning from state i to j and observing yt+1, which is AijLj(t + 1). The new for-

mulation of ξt can be written as

xtði; jÞ ¼
atðiÞAijLjðt þ 1Þbtþ1ðjÞ

pðy j λÞ
¼

atðiÞAijLjðt þ 1Þbtþ1ðjÞ
PN

p¼1

PN
q¼1
atðpÞApqLqðt þ 1Þbtþ1ðqÞ

: ð7Þ

We define the γt(i) variables as the probability of being in state i at time t while emitting the

observation sequence. This can be expressed in terms of the ξt as

gtðiÞ ¼
XN

j¼1

xtði; jÞ: ð8Þ

Note that the sum γt(i) over t can be interpreted as the expected number of times that the

state i is visited, or equivalently as the expected number of transitions out of state i (if we

exclude the last observation at time T),

XT� 1

t¼1

gtðiÞ ¼ expected number of transitions out of state i: ð9Þ
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Similarly, the sum of ξt(i, j) over t can be interpreted as the expected number of transitions

from i to j

XT� 1

t¼1

xtði; jÞ ¼ expected number of transitions from state i to j: ð10Þ

These interpretations lead to the definition of two reestimation formulas for the initial dis-

tribution and the transition probabilities

�p i ¼ g1ðiÞ; and ð11aÞ

�aij ¼

PT� 1

t¼1
xtði; jÞ

PT� 1

t¼1
gtðiÞ

: ð11bÞ

The HMMs that have been considered throughout this thesis work have continuous emis-

sion densities. While the model formalism allows finite mixtures of log-concave or elliptically

symmetric multi-variate densities, we restricted ourselves to a single univariate Gaussian as

emission densities, i.e., in state j we have

LjðyÞ ¼ Nðyjmj; s
2Þ; ð12Þ

where μj is the mean and σ2 is the variance of the Gaussian distribution associated with the

state j. Thus, the reestimation formulas are given as:

�m j ¼

PT
t¼1
gtðjÞ � yt

PT
t¼1
gtðjÞ

ð13aÞ

�s2
j ¼

PT
t¼1
gtðjÞ � ðyt � mjÞ

2

PT
t¼1
gtðjÞ

ð13bÞ

Applying the reestimation formulas (11a), (11b), (13a) and (13b) produces a reestimated

model �λ; the Baum-Welch algorithm guarantees that either the original model λ is a critical

point of the likelihood function (the result would be λ ¼ �λ) or the model �λ is more likely than

the previous one, meaning that pðy j �λÞ > pðy j λÞ. The iteration of this procedure converges

to a local maximum and produces a maximum likelihood estimate of the model, providing a

solution to the training problem.

Wavelet compression

In the following we briefly introduce wavelet shrinkage and transform and the resulting block

structure enabling compressed HMM computations. Haar wavelet shrinkage is a powerful

regression method for univariate time series y = f + �, where f is a piecewise constant function

and � is a vector of centered homoscedastic Gaussian noise of variance σ2. If the latter is

known, wavelet coefficients whose absolute value is below the universal threshold λu ¼ffiffiffiffiffiffiffiffiffiffi
2lnT
p

s can be attributed to noise and removed, yielding a minimax estimator y ¼ f̂ þ �̂ [22].

The coefficients of the Haar wavelet transform can be computed in-place and in linear time

[23, 24], and the variance can conveniently be estimated from the finest detail wavelet coeffi-

cients themselves.

Data generated by a homoscedastic Gaussian HMM can be treated in a similar fashion,

with discontinuities in f̂ marking the approximate location of state transitions; for details, see
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[25]. Note that despite the fact that we can expect f̂ ½t� � mq½t�, f̂ cannot reliably be used to iden-

tify q directly. However, since the normal distribution is in the exponential family, sufficient

statistics between the discontinuities in f̂ can be used in likelihood computations required for

inference of HMM parameters, assuming the generating Markov process does not switch states

in between these positions, or that at least the contribution of such transitions is negligible

(weak path assumption [18]). Blocks are defined as contiguous subsequences of observations

respectively hidden states where no state switches are allowed; cf. Fig 1.

While such blocks of sufficient statistics can be precomputed for homoscedastic HMM, in

heteroscedastic settings wavelet shrinkage does not yield a minimax estimator, but can still be

used for compression, in that the smallest emission variance can be used for thresholding, at

the cost of undercompression in high-variance regions. Unfortunately, estimating this in a

manner similar to wavelet regression is challenging, since it is unknown which finest detail

coefficients come from low-variance segments. In order to estimate HMM parameters, a data

structure is required to quickly yield blocks of sufficient statistics at arbitrary variance thresh-

olds, i.e. different compression levels, without re-estimating f̂ for every given σ2. For this pur-

pose, we have previously developed a highly efficient data structure called a breakpoint array
with a linear time constructor [20, 25] based on the lifting scheme [23, 24].

Compressed computation for HMM

To perform the compressed computations, the classic equations have to be adapted to the

compression scheme introduced in the previous section; see Fig 1 for a schematic view.

Restructuring the forward algorithm does not alter the interpretation of the forward variables.

For a block of observations, αw(i) is the approximation of the uncompressed forward variable

at the end of the w-th block, and Ew(j) the exponent resulting from considering the length of

the block and summary statistics, yielding

a1ðiÞ ¼ pieE1ðiÞ for 1 � i � N; ð14aÞ

awðjÞ ¼
�
XN

i¼1

aw� 1ðiÞAij

�

eEwðjÞ for 1 � w �W; 1 � j � N; and ð14bÞ

Fig 1. An example of a compressed trellis for a three-state model with states labeled +, − and =. Within each block, only self-transitions are allowed.

Relevant variables such as the forward or backward variables are computed for each block instead of for each individual observation. Our evaluation

demonstrates that for compressible input, i.e., input with large average block sizes, the compressed computation has a neglible impact on accuracy while

accelerating computations greatly, in particular for models with many states.

https://doi.org/10.1371/journal.pone.0286074.g001
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pðy j λÞ �
XN

i¼1

aWðiÞ: ð14cÞ

Here, the term eEwðjÞ above results from making the Gaussian assumption explicit and

rewriting the regular induction for forward variables adapted to (n − 1) self-transitions and

one non-self transitions in a block,

awðjÞ ¼
XN

i¼1

�

aw� 1ðiÞaij

�

anw � 1

jj

Ynw

k¼1

bjðyw;kÞ: ð15Þ

and collecting as many terms as possible in the exponential, which additionally improves

numerical stability, leading to

EwðjÞ≔
2mjS1;w � S2;w

2s2
j

þ Kðnw; jÞ; and ð16aÞ

Kðnw; jÞ≔ ðnw � 1ÞlogðajjÞ � nw logðsjÞ þ
m2
j

2s2
j

þ
1

2
logð2pÞ

 !

: ð16bÞ

Both the backward and Viterbi algorithms require similar transformations, using block

summary information in place of the individual observations.

The Baum-Welch algorithm is more complex than the others, requiring more variables in

the parameter reestimation. It is important to remember that both the compressed forward

and backward variables refer to the end of a block. Consequently, different situations result

based on computing ξ inside or outside a block. For the purpose of rewriting the reestimation

equations, it is useful to define the ξ variable for a block in the following way

xwði; jÞ ¼
X

t2Yw

xtði; jÞ ¼ ð17Þ

¼
1

pðy j λÞ
�

ðnw � 1ÞawðiÞbwðiÞ þ awðiÞAijeEwþ1ðjÞbwþ1ðjÞ ; for i ¼ j ^ w 6¼W

ðnW � 1ÞaWðiÞbWðiÞ ; for i ¼ j ^ w ¼W

awðiÞAijeEwþ1ðjÞbwþ1ðjÞ ; for i 6¼ j ^ w 6¼W

0 ; for i 6¼ j ^ w ¼W :

8
>>>>>>><

>>>>>>>:

ð18Þ

Moving forward, it is interesting to note that by interpreting γt(i) as the probability of visit-

ing the state i at time t, the variable is also constant over t inside a block (also implied from the

result above); this means that for any t inside a block, any γt(i) can be representative for the

whole block, say

gtðiÞ ¼
atðiÞbtðiÞ
pðy j λÞ

¼
awðiÞbwðiÞ
pðy j λÞ

: ð19Þ

It is worth noting that this reformulation correctly maintains the definition given in (8).

For convenience it is useful to define γw(i) as the representative value for a block, which means

that for all the t associated with a block, γw(i) = γt(i).
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The reestimation formulas Eqs (11a), (11b), (13a) and (13b) can be updated with the new

definitions of ξt(i, j) and γt(i), yielding

�p i ¼ g1ðiÞ; and ð20aÞ

�aij ¼

PW
w¼1

xwði; jÞ
PW

w¼1
½nwgwðiÞ� � gWðiÞ

: ð20bÞ

The mean and standard deviation reestimations follow a slightly more complex reformula-

tion, both for the general mixture and the single Gaussian distribution. In particular, Eq (13a)

multiplies the single observation value by the respective γt(i). Since γt(i) is constant inside a

block, the equation can be rewritten as

�m j ¼

PT
t¼1
gtðjÞyt

PT
t¼1
gtðjÞ

¼

PW
w¼1

gwðjÞ
Pnw

k¼1
yw;k

PW
w¼1

gwðjÞ � nw

¼

PW
w¼1

gwðjÞ � S1;w
PW

w¼1
gwðjÞ � nw

: ð21Þ

The same reasoning applies to the variance reestimation, yielding

�s2
j ¼

PT
t¼1
gtðjÞðyt � mjÞ

2

PT
t¼1
gtðjÞ

¼

PW
w¼1

gwðjÞ½S2;w � 2�m jS1;w þ nw�m2
j �

PW
w¼1

gwðjÞ � nw

: ð22Þ

Implementation

Our implementation named WaHMM (Wavelets HMM) adapts the classic algorithms to the

compressed structures: instead of operating on every individual observation in a sequence, it

takes advantage of the blocks’ summary information. The wavelet compression is performed

using parts of the software HaMMLET https://schlieplab.org/Software/HaMMLET/.

WaHMM is written in C++ for better efficiency and a smaller memory footprint. To offer a

simpler interface to the user, some Python scripts are provided for model creations, usage of

the actual tool, and for analysis and graphical display of results. The software implements

HMM with univariate Gaussian state densities. The Python framework Pomegranate (https://

github.com/jmschrei/pomegranate) is used to generate data from the model, through the

script generate_data.py.

Note that in WaHMM probabilities are represented in a logarithmic space; this not only

scales the [0, 1] interval to (−1, 0], easing the burden of numerical precision, but also trans-

forms all the products into summations, which are much easier and faster to perform.

Results

In the following we introduce the simulation study which varies compressibility and thus indi-

cates speed-ups of our method for various scenarios. To achieve acceleration with the pro-

posed method requires that the sequences are compressible. This is consistent with

compressive computations in the discrete observation case, where for example computations

for a non-repeating sequence of N observations using M = N different symbols cannot be

accelerated. In either case, the highest possible acceleration is possible with constant

sequences.
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Simulation study

We designed a large-scale simulation study to evaluate accuracy and speedups of the com-

pressed approach. In total we created 50 different HMMs and simulated a total of 500 millions

observations. The HMM topologies, reflecting popular choices in applications, belonged to

one of three classes: fully-connected with transitions from state i to every state j; left-to-right,

where a partial ordering on states exists and the possibility of a transition i! j implies i� j;
circular, with transitions i! i + 1 mod M or i! i. See Fig 2 for details. For each topology, we

choose a range of values for the number of states, N 2 {2, 3, 5, 10, 20}. The transition probabili-

ties were always chosen so that the average number of state transitions in a generated sequence

would be 10N. Specifically, for fully-connected topologies the self-transition probabilties were

defined to be 1 − (10N/T) and the non-self transition probabilties where chosen uniformly

according to the topology, so that the total of outgoing probabilities sum up to 1. For left-to-

right and circular topologies the self-transition and non-self-transitions were chosen similarly.

The identifyability of states depends on how different the univariate Gaussian state densities

are. If the pair-wise differences of means are bounded from below by some � > 0 and all vari-

ances are 0, then the model simplifies to a Markov chain. On the other hand, the absolute val-

ues of the pair-wise differences only matter with respect to the variance. Consequently, the

states’ emission probabilities were taken as evenly distanced Gaussians starting from the stan-

dard Gaussian Z(0, 1), with state separation ZS1 ;S2
¼

jmS1
� mS2

j

3ðsS1
þsS2

Þ
varying from 0.1 to 1.0 in 0.1

increments, to obtain a range of emission densities corresponding to hard and easy scenarios

for state identifyability.

For each HMM, a set of 100 tests was executed to average out the results: each test includes

a data generation phase (with 100k observations), and a run of the evaluation, decoding and

training algorithms. Evaluation and decoding was run once. As the training algorithm can

yield quite different results based on the starting model estimation, in each test the training

was repeated 10 times with different initial parameter estimates produced by the K-means

algorithm. The Baum-Welch algorithm was set to terminate after 100 iterations or when the

improvement on the evaluation probability (in the logarithmic space) was below 10−3.

Fig 2. The HMM topologies used in the tests shown for N = 4 states. The simulations used N 2 {2, 3, 5, 10, 20} states. The presented conclusions will

cover the fully-connected model due to other topologies yielding very similar results.

https://doi.org/10.1371/journal.pone.0286074.g002
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Observations

Here we will present observations from our simulation study. As we observed highly concor-

dant results for all tested topologies we only present the results for fully-connected HMMs. As

we obtained very favorable and highly consistent results for all simulations, we also present fig-

ures with additional diagnostics in the supplement.

For all three algorithms—evaluation, decoding and training—, the error compared to the

uncompressed version is negligible regardless of the model topology. Fig 3 shows the error for

the evaluation algorithm. Despite the overall negligible magnitude, the largest relative error

displayed in Fig 3 is approximately 7e–3, which corresponds to an absolute error on the scale

of 10−5000. There are some differences depending on model size and state separation, with

larger models and lower state seperation displaying higher errors.

Having ascertained that the results of the compressed algorithms are virtually indistinguish-

able from the result of the standard algorithms, we investigated the attainable speedups. A gen-

eral trend through all the tests is that the compressed algorithms are much faster then the

standard ones, and that it particularly shows when the state separation is low. Evaluation and

decoding results, see Figs 4 and 5 respectively, are again quite similar, as for both of them the

compressed algorithm is several times faster than the standard one. In the evaluation task a

10-state model saw a speedup of 6–10 times, and a 5 state-model of 2-3 times compared to the

uncompressed case. We observed no speedup for the 2-state model. A likely explanation is that

the small size of the dynamic programming matrices and the model will allow very rapid

branch-free in-cache computations, whereas the compressed version had a higher algorithmic

overhead. The trends are very clear though in that the compression empirically reduces the

running time from O(N2T) for the uncompressed version to something linear in both number

of states and sequence length.

The most impressive speedups are obtained for the training algorithm, see Fig 5. There are

three contributing factors to the speedup. First, as Baum-Welch training performs one forward

and backward computation at O(N2T) per each individual reestimation step and then some

additional computation on the order of O(NT) we expect a speed-up as large as the one seen

for the evaluation problem, i.e. of 2–10 depending on model size. Second, the benchmarking

for the evaluation problem included the setup operations such as wavelet computation and

population of the breakpoint array followed by one execution of the forward algorithm. In

Baum-Welch training the setup costs are amortized over multiple forward and backward

Fig 3. We show the relative difference between the P(O|λ) log-probabilities of the compressed and standard

algorithms. Since the errors are relative to a large magnitude negative log-probability, the actual error is extremely

small. As an example, the relative error on the evaluation probability for a test involving a fully-connected model with

2 states is approximately 2e-3; the absolute error in the logarithmic space is around -6e2, which corresponds to a

normal absolute error of approximately 1e-261.

https://doi.org/10.1371/journal.pone.0286074.g003
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computations, yielding an even larger acceleration over the uncompressed algorithm in this

case. Third, we observe that the compression also has a large impact on the convergence, in

particular for hard instances with low state separation. There, the compression greatly reduces

the amount of reestimation steps needed, up to 10-fold for 10 states and state seperation 0.1.

Discussion

In recent years, compression has become an effective computational building block to acceler-

ate algorithms in response to ever-increasing data set sizes across a wide range of fields. The

main idea is often to avoid re-computation for identical patterns in the data, as in the case for

Hidden Markov Models (HMM) with discrete-valued observations whether for the frequentist

classical three algorithms [9] or Gibbs sampling for Bayesian HMM [12].

For continous-valued observations, and for data resembling piece-wise constant functions

plus Gaussian noise in the ideal case, our prior work [19, 20] on Gibbs sampling for Bayesian

HMM has clearly shown how much can be gained from a compressive approach. The main

insight there was that the compression—assuming that hidden states are not changed within

contiguous blocks of the data with little variation—allows the Bayesian computation to focus

on breakpoints, or state changes, between blocks instead of the variation within a block. This

resulted not only in accelerated computations due to reducing the effort from something pro-

portional to the number of blocks instead of the length of the observation sequence, but also a

drastically accelerated convergence rate of the Gibbs sampling.

Fig 4. Speedup on the evaluation problem using the compressed algorithm, including the input data processing

time.

https://doi.org/10.1371/journal.pone.0286074.g004

Fig 5. Speedup on the training problem using the compressed algorithm, including the input data processing

time.

https://doi.org/10.1371/journal.pone.0286074.g005
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Here, we introduce the first compressive approach for Rabiner’s three original problems [1]

—likelihood computation, computing Viterbi paths, and Maximum-likelihood estimation

with the Baum-Welch algorithm—for Hidden-Markov Models with continous emissions

based on compression obtained with wavelets. We utilized the approach to compression devel-

oped in [19, 20] and extended it to the classical three algorithms. We used a wavelet transform

to rapidly detect a superset of possible block boundaries in the observation sequence where

state changes might occur, and adapted the computations of forward, backward and Viterbi

variables accordingly by summing over blocks instead of individual observations.

In a large-scale simulation study, assuming a similar type of data, piece-wise constant func-

tions plus homoscedastic Gaussian noise, we demonstrate that again we reach acceleration

across all the fundamental dynamic programming algorithms and achieve practically relevant

speed-up for training, likelihood, and Viterbi-path computations for models with 5 states and

larger. In particular for training, we observe similar behaviour as for the convergence rate of

the Gibbs sampler as in the Bayesian case [19]. There, enforcing that the hidden state variable

for all observations in a block must be equal, prevented the sampler from exploring states

where one or several of those variables where set to discordant values. In the Baum-Welch

algorithm, the blocks seem to similarly prevent exploration of intermediate, sub-optimal states

and thus to accelerate convergence. This is effect is clearly visible in the cases of low separabil-

ity between state density means in contrast with high separability with total speedups—com-

bining the contribution of accelerated computation of forward and backward variables and the

contribution of accelerated convergence—of up to several hundred fold. The latter are almost

trivial to resolve and uncompressed Baum-Welch converges also very rapidly, the impact of

the compression on the convergence rate increasese as the separability decreases.

Note that the likelihood contribution from all observations in a block is de facto averaged

and a decision about the best hidden state variable is made jointly for the block. If the data is

indeed compressible, then the wavelet compression will indicate a superset of blocks and the

adapted algorithm will find, as demonstrated empirically, the best hidden state variable per-

block, which allows the training to converge rapidly.

As expected, the acceleration depends on compressibility of data and the number of states.

Small models with only a few states benefit less than large models. We observed negligible

influence of the model topology (not shown).

Conclusion

Together with prior work we have demonstrated that compression can substantially accelerate

frequentist and Bayesian HMM algorithms with both discrete and continuos observations as

long as the data is amenable to compression. In the latter case, the method assumes that the

data is piecewise constant with homoscedastic noise.

In future work it would be interesting to extend the approach to heteroscedastic noise,

which requires static respectively dynamic adaptation of the noise threshold in the wavelet

compression. For discrete observations, the counterpart to the current work is run-length

encoding (RLE) and data compressible with RLE; note that compressed computations are

exact in the discrete case. Mozes et al. [9] also proposed compression based on Lempel-Ziv

parsing. Finding an analogue for continous observations might be a challenge, but possibly

symbolic representation schemes developed for indexing time-series, e.g. [26], can provide a

starting point.

PLOS ONE Compressed computations using wavelets for hidden Markov models with continuous observations

PLOS ONE | https://doi.org/10.1371/journal.pone.0286074 June 6, 2023 13 / 15

https://doi.org/10.1371/journal.pone.0286074


Acknowledgments

LB acknowledges support from the EU’s Erasmus program for an exchange with Chalmers

Technical University.

Author Contributions

Conceptualization: John Wiedenhöft, Alexander Schliep.

Formal analysis: Luca Bello.

Methodology: Luca Bello, John Wiedenhöft, Alexander Schliep.
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