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Abstract
Motivation: Bone marrow (BM) examination is one of the most important indicators in diagnosing hematologic disorders and is typically per-
formed under the microscope via oil-immersion objective lens with a total 100� objective magnification. On the other hand, mitotic detection
and identification is critical not only for accurate cancer diagnosis and grading but also for predicting therapy success and survival. Fully auto-
mated BM examination and mitotic figure examination from whole-slide images is highly demanded but challenging and poorly explored. First,
the complexity and poor reproducibility of microscopic image examination are due to the cell type diversity, delicate intralineage discrepancy
within the multitype cell maturation process, cells overlapping, lipid interference and stain variation. Second, manual annotation on whole-slide
images is tedious, laborious and subject to intraobserver variability, which causes the supervised information restricted to limited, easily identifi-
able and scattered cells annotated by humans. Third, when the training data are sparsely labeled, many unlabeled objects of interest are wrongly
defined as background, which severely confuses AI learners.

Results: This article presents an efficient and fully automatic CW-Net approach to address the three issues mentioned above and demonstrates
its superior performance on both BM examination and mitotic figure examination. The experimental results demonstrate the robustness and gen-
eralizability of the proposed CW-Net on a large BM WSI dataset with 16 456 annotated cells of 19 BM cell types and a large-scale WSI dataset
for mitotic figure assessment with 262 481 annotated cells of five cell types.

Availability and implementation: An online web-based system of the proposed method has been created for demonstration (see https://
youtu.be/MRMR25Mls1A).

1 Introduction

Examination of bone marrow (BM) is crucial for the diagnosis
and management of many disorders of the blood and BM (Lee
et al. 2008). BM nucleated differential cell count (NDC) is
compulsory to assess the hematopoiesis in different cell line-
ages and the proportion of aberrant cells. That is, BM NDC is
an invaluable assessment that not only produces a correct di-
agnosis but also provides a significant indicator of prognosis
and disease follow-up, particularly for hematological malig-
nancies like acute myeloid leukemia (Greenberg et al. 2012),
chronic myeloid leukemia (Swerdlow et al. 2017) and multiple
myeloma (Kumar et al. 2016). Compared with general patho-
logical examinations, which usually identify only one or a few
types of tumor tissues for each analysis, BM NDC analysis is
much more complicated and difficult as there are >16 types of
cells to be detected and classified at once. In addition, for path-
ological diagnosis, pathologists may conduct a microscopic as-
sessment on WSIs using computer-assisted systems

(Campanella et al. 2019), but for BM examination, BM NDC
analysis is generally conducted via oil-immersion objective
lens with a total 1000� magnification that makes fully auto-
mated analysis more challenging. Apart from the diversity of
cell types, challenges include delicate intralineage discrepancy
within the BM cell maturation process, cells overlapping, lipid
interference and stain variation, causing large intra- and inter-
observer variability (Chandradevan et al. 2020). The enor-
mous size of WSIs makes automated BM NDC analysis on
WSIs more difficult. In addition, a previous study shows that
existing modern hematology analyzers are poor in recognition
and detection of blasts, immature granulocytes and basophils
(Meintker et al. 2013). In practice, BM NDC analysis requires
well-trained examiners to perform cytomorphological assess-
ment intensively from low to high magnification (�10, �40
up to �100 objective magnification with oil immersion).
According to International Council for Standardization in
Hematology guidelines (Lee et al. 2008), in order to generate
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percentages of the number of required cell types for diagnosis
and disease, at least 500 cells should be analyzed on each
smear and at least two smears are assessed for each patient.
An accurate and reliable BM NDC analysis system is highly
demanded in order to improve diagnostic precision, speed and
reliability and to minimize valuable human resource costs. In
this study, we build a large WSI dataset with 16 456 anno-
tated cells of 19 BM cell types to evaluate the robustness and
generalizability of the proposed model.

Early screening and diagnostic information will aid in low-
ering death rates and in better understanding the aggressive-
ness of cancer stages. The Nottingham Grading System (NGS)
is commonly used to grade three major tumor features: tubule
development, nuclear pleomorphism and mitotic rate
(Balkenhol et al. 2019), and according to the NGS, the mitotic
rate has the highest predictive value among the three
(Balkenhol et al. 2019). Hence, mitotic detection and identifi-
cation are critical not only for accurate cancer diagnosis and
grading but also for predicting therapy success and survival
(Bray et al. 2018). Pathologists often do such mitotic identifi-
cation tasks visually, which is time-consuming, subjective and
poorly reproducible with considerable inter- and intra-rater
variability due to the difficulties in recognizing mitotic figures
and their varied distribution across WSIs (Bertram et al.
2020). Previous studies have found 17.0% to 34.0% inter-
rater disagreement in distinguishing individual mitotic figures
from other cell features in the canine cutaneous mast cell tu-
mor and human breast cancer (Malon et al. 2012, Bertram
et al. 2020). As a result, developing an automated computer-
aided approach for mitotic figure examination is highly
demanded. In recent years, there have been a number of inter-
national medical image analysis challenges in the field of auto-
matic identification of mitotic figures, such as MIDOG 2021
challenge (Aubreville et al. 2023), TUPAC16 challenge (Veta
et al. 2019), ICPR MITOS-ATYPIA-2014 challenge (Roux
2014) and ICPR MITOS-2012 challenge (Ludovic et al.
2013). However, the number of annotated mitotic figures in
these datasets is small (fewer than one thousand annotated
cells for each dataset). To evaluate robustness and generaliz-
ability of the proposed method, we utilized a large-scale WSI
dataset (Bertram et al. 2019) with 262 481 annotated cells of
five cell types for mitotic figure assessment.

In this study, we present an effective, fully automatic and
fast deep learning approach (CW-Net) for multitype cell de-
tection and classification in BM examination and mitotic fig-
ure examination. The proposed weakly supervised learner is
demonstrated to be useful for applications with partially an-
notated data and for boosting up the model performance in
both object detection and classification. The rest of this article
is organized as follows. Related works on weakly supervised
learning, (semi)-automatic BM analysis and (semi)-automatic
mitotic figure examination are described in Supplementary
Section S1. Figure 1 presents sample cells of various cell types
in the two datasets used in this study; see Supplementary
Section S2. Section 2 describes the proposed method. The ex-
perimental results in comparison with the benchmark meth-
ods are given in Section 3. Section 4 concludes the article.

2 Materials and methods
2.1 Proposed CW-Net

When the training data are partially labeled, causing many
unlabeled objects of interest wrongly defined as background

or contents of no interest, this severely confuses AI learners
during supervised learning and deteriorates the performance
of output AI models. The proposed deep learning approach is
devised with (i) a Jaccard-based soft sampling weighted loss
function to achieve a reasonable balance between hard exam-
ples and the rest of the background in instance sampling, (ii) a
dual layer filtered negative instance sampling (FNIS) strategy
to generate better detectors and classifiers, (iii) a multiclass
nonmaximum-suppression (MCNMS) strategy to ensure no
contradictory prediction of a cell and (iv) a data augmenta-
tion and normalization strategy to minimize generalization
errors and prevent overfitting.

In routine BM examination, examiners first determine an
adequate BM smear by the presence and cellularity of par-
ticles viewed under low magnification power to avoid diluted
regions. Second, examiners perform BM NDC analysis within
areas with well spread marrow cells in the cellular trails of the
BM smear behind the particles viewed under high magnifica-
tion power. In this study, we introduce an efficient and fully
automatic deep learning method (CW-Net) for multitype cell
differentiation of BM NDC WSI analysis in seconds. An over-
view of the proposed method is shown in Fig. 2. The first
layer CNN model rapidly locates BM particles and cellular
trails in low resolution as ROI(s), which is used to locate data
for further analysis in high magnification level where the sec-
ond layer CW-Net performs BM cell detection and classifica-
tion. The base deep learning model of the proposed method is
adapted from Cascade R-CNN (Cai and Vasconcelos 2021),
which is a multistage object detection and classification
method.

2.1.1 Proposed CW-Net architecture

The proposed CW-Net is composed of four components: a
backbone, a feature pyramid network (FPNþ; Cai and
Vasconcelos 2021), a region proposal network (RPN) and a
prediction head. Initially, a deep ResNet101 backbone is
employed to extract features, and the output of ResNet101 is
then sent into FPNþ, which integrates features from different
levels and creates multiple scale features by up-sampling. The
multiscale feature maps created from FPNþ are fed into RPN,
which generates proposal bounding boxes and assigns
anchors to feature maps of varying sizes. We devised RPN
with a Jaccard-based soft sampling weighted loss function,

Figure 1. Sample cells with the number of the annotated cells of various

cell types in the two datasets used in this study
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which achieved state-of-the-art performance on partially
annotated data in our previous study (Wang et al. 2022).
In training, soft sampling ensures that all positive and hard
negatives will contribute to the gradient, but with a lower at-
tention weight. An illustration of soft-sampling weighting
mechanism is given in Fig. 2b3.

2.1.2 Dual layer filtered negative instance sampling

As shown in Fig. 3a, single layer binary classification systems
are used in Cascade R-CNN to generate positive samples bdþ

and negative samples b
d� from candidate bounding boxes b

d

to train multiple classifiers with thresholds u ¼ fuzgz¼1...Z.

uzþ1 ¼ uz þ q (1)

bd
z ¼

(
b

dþ
z ; - � uz;

b
d�
z ; otherwise

(2)

where u1 ¼ 0:5;q ¼ 0:1 is the increasing confidence factor; Z
is the number of classifiers, and Z¼3 in this study.

However, for partially labeled data, the single layer design
causes serious confusions in AI learning and downgrades the
resulting detectors and classifiers because a number of unla-
beled cells will be used as negative samples for training. As a
result, to resolve this issue caused by partial annotations, we
propose a dual layer filtered negative instance sampling (DL-
FNIS) strategy by adding an extra layer in selection of positive
and negative samples with a new sample type, i.e. the ignored

class bdi
Z , in consideration with the Jaccard index - between

the reference standards and the candidate bounding boxes to
the last stage model in sample classification as shown in

Fig. 3a, producing positive samples b
dþ
Z and refined negative

samples ðbd�
Z Þ
� for training Zth classifier and detector. The

second layer binary classification system of the proposed DL-
FNIS is devised to select refined negative samples for training
and is formulated as follows.

b
d�
Z ¼

(
ðbd�

Z Þ
�; - � ui;

bdi
Z ; otherwise

(3)

where ui ¼ 0:1 is used to define ignored instances for training
in this study.

To further illustrate the contributions of DL-FNIS, Fig. 3b
compare the outputs of the original Cascade R-CNN, the pro-
posed CW-Net without DL-FNIS and the proposed CW-Net
with DL-FNIS using a low threshold for detection-
classification confidence of a cell, showing that even with
such a low threshold, for (b) original Cascade R-CNN there
are still many cells undetected, while for (c) the proposed
CW-Net without DL-FNIS many cells can be detected but
with very low confidence rates in classification, which how-
ever tend to be filtered out (disqualified) by common criteria
such as 0.5, and in (d) the proposed CW-Net with DL-FNIS,
the number of detected cells is comparably more than (b and
c) and confidence rates of cells are significantly higher. The re-
sult shows the effectiveness of DL-FNIS for improving both
detectors and classifiers.

2.1.3 Multiclass nonmaximum suppression

In the original Cascade R-CNN design, it was found that a
single cell object may be misidentified as various kinds of cells
because single class nonmaximum suppression (SCNMS) is
utilized for inference as shown in Fig. 2c. For each class, the

Figure 2. The proposed deep learning framework. (a) The first layer CNN

model conducts fast localization of BM particles and cellular trails in low

resolution as ROI(s), which is then mapped to high magnification level

where the second layer network performs BM cell detection and

classification inside ROI(s). (b and b2) The region proposal network (RPN)

of CW-Net produces candidate bounding boxes using (b3) the proposed

soft-sampling weighted loss function to decrease the influence of

unlabeled data in AI training and avoid confusions among unlabeled data,

targets and background. (b4) Sample classification models are then applied

to generate (b5) positive b
dþ

and refined negative samples ðbd�Þ� using
(b6) the proposed DL-FNIS to produce better detectors and classifiers in

training. In inference, (c) the original SCNMS is replaced with (d) the

proposed MCNMS to ensure that there is no contradictory classification

Figure 3. (a) Illustration of the proposed dual layer filtered negative

instance sampling (dual layer FNIS). A low threshold 0.001 for the

detection-classification confidence of a cell is used for compare (b) the

original Cascade R-CNN, (c) the proposed framework without DL-FNIS

strategy and (d) the proposed framework with DL-FNIS strategy, showing

that even with such a low threshold, for (b) original Cascade R-CNN there

are still many cells undetected, while in (c) the proposed framework

without DL-FNIS strategy many cells can be detected but with very low

confidence rates in classification, which however tend to be filtered out

(disqualified) by common criteria such as 0.5. In (d), the proposed

framework with DL-FNIS strategy, the number of detected cells is

comparably more than (b and c) and the confidence rates of cells are

significantly higher. The result shows the effectiveness of DL-FNIS

strategy for improving detectors and classifiers in Cascade R-CNN

CW-NET 3



initial output set oc are rendered if the probability of a
detected object is greater than ..

oc ¼ fðcbd0 ;b
d0Þjpðc

bd ;b
d Þ�.g

D0<D
d¼1 (4)

where pðc
bd ;b

dÞ is detected BM cell type probability, . is the

classification threshold and . ¼ 0:5 in this study.
SCNMS aims to suppress the initial detection results oc at

each class to generate the SCNMS output Oscnms.

ðcbd� ;b
d� Þ ¼ argmax

i
ðpðcbi ;biÞÞj-0�g ^ cbi¼c

bj
(5)

Oscnms ¼ [
K

c¼1
ðcbd� ;b

d� Þ (6)

where -0 is the Jaccard index between the detected BM cells
(bi, bj), and g¼0.3 in this study.

In inference, SCNMS is replaced with a MCNMS strategy,
which ensure no contradictory prediction of a cell. This strat-
egy greedily selects a subset of detection bounding boxes by
pruning away boxes that have high Jaccard overlap with al-
ready selected boxes.

MCNMS produces the output set OMCNMS with all class at
once as formulated as follows.

ðcbd�� ; b
d�� Þ ¼ argmax

i
ðpðcbi ;biÞj-0�gÞ (7)

Omcnms ¼ [
K

c¼1
ðcbd�� ; b

d�� Þ (8)

where -0 is the Jaccard index between the detected BM cells
(bi, bj), and g¼0.3 in this study.

2.1.4 Data augmentation and normalization

Methods trained with images from one hospital tend to per-
form poorly on images from other hospitals, even for state-of-
the-art deep learning-based methods (Tellez et al. 2019).
Minimizing generalization error is important for building a ro-
bust AI model for unseen data. Data augmentation could oper-
ate as a regularizer in neural networks, minimizing overfitting
and improving performance when dealing with unbalanced
classes. During training, data augmentation mimics a broad
range of actual changes, generating CNNs robust to variations
in stain, translation, perspective, size or lighting. Data normali-
zation, on the other hand, is designed to reduce data variation
and therefore improving model generalizability. In this work,
we built a Jaccard-based data augmentation method and a data
normalization process for reducing the model generalization er-
ror. First, the data augmentation is applied to the selected
patches if the associated Jaccard coefficient gzk

, which is deter-
mined in Equation (9), of an individual patch is >0. The se-
lected patches are used to supplement the training set with new
synthetically changed data with the following operations, in-
cluding rotation per 58 and 5 times and increment of 908, the
mirror-flipped along the horizontal and vertical axes, the con-
trast adjusted (random contrast, range 0%620%), the satura-
tion adjusted (random saturation, range 0%620%) and the
brightness adjusted (random brightness, range 0%612.5%)
during the training process.

gzk
¼ h \ zk

zk
(9)

where h is the reference positive samples, and zk is a patch.
Second, a data normalization method is built to maintain data
consistency and gradient stability in the training dataset, as
well as to prevent overflow from data augmentation. The
data normalization is performed by histogram specification,
which matches the color distribution PS of input data S to a
reference distribution PR trained from the ImageNet dataset
(Deng et al. 2009) and produces a normalized data S0.

2.1.5 Adaptive learning

Cascade R-CNN uses a fixed step size for reducing the learn-
ing rate by 10% at 160k and 240k iterations. However, the
training instances contribute less to the learned model as the
learning rate decreases, and some instances may not be
learned adequately if the learning rate reduces dramatically.
To address this problem, we proposed an adaptive learning
(AL) technique with a flexible data-oriented learning rate ad-
justment mechanism (.). Given the number of training images
I, the size of each image w� h, the size of each unit patch
q� q, the AL rate rK at iteration K is formulated as follows:

rK ¼ 1�
jK

.

k
� a (10)

. ¼ I

a
�w

q
� h

q
(11)

where I � w
q � h

q represents the total number of patches in the
training data, excluding data augmentation, and a ¼ 10%.

3 Experiments and results
3.1 Quantitative evaluation
3.1.1 Identification of 16 types of bone marrow cells

Quantitative evaluation was performed with patch-wise 10-
fold cross validation, for which cells on the same patches
were used exclusively in 1-fold and never assigned to both
training and testing set at the same time, and the proposed
CW-Net was compared with three recently published bench-
mark approaches, including two small-image-based
approaches (Yu et al. 2019, Chandradevan et al. 2020) and
our previous work for BM NDC WSI analysis (Wang et al.
2022; see Table 1 for the results where the best results are
highlighted in bold case and the reported numbers of Yu et al.
2019, Chandradevan et al. 2020, Wang et al. 2022 are re-
ferred). The experimental results show that the proposed CW-
Net demonstrates superior performance in BM NDC analysis
in WSIs with an averaged recall of 0.974 6 0.032, an aver-
aged accuracy of 0.997 6 0.003 and an averaged PR-AUC of
0.985 6 0.027. Moreover, the proposed method consistently
achieves >0.99 accuracy for all BM cell types and >0.95
recall for most types, respectively. In comparison with two
recent BM NDC analysis methods (Yu et al. 2019,
Chandradevan et al. 2020), which require human intervention
to manually cropped small image areas, the proposed fully au-
tomatic CW-Net method outperforms both benchmark
approaches for identification of all cell types. Moreover, in
comparison with Cascade R-CNN, the proposed CW-Net
consistently obtains higher recalls and accuracies, and impor-
tantly the proposed CW-Net achieves high recall values in
identification of many cell types such as blast, promyelocyte,

4 Wang et al.
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myelocyte and monocyte, which are comparably low by
Cascade R-CNN and notably boosted up >10%–37%.
Furthermore, based on confusion matrix provided in Fig. 4,
the proposed method shows excellent performance for 16 of
the 17 BM cells. To sum up, the proposed CW-Net greatly
improves the AI model performance, and the proposed frame-
work could also be integrated to other CNN methods to im-
prove model performance. Figure 5 presents sample results by
the proposed method, and a discussion on the system limita-
tion is provided in Supplementary Section S3.

3.1.2 Intra- and interobserver reliability analysis

Cohen’s kappa statistic is used to analyze the annotation
agreement of intra- and interobserver. The intraobserver
analysis is performed based on two sets of annotations pro-
duced at an interval of one week. For the intraobserver vari-
ability, we perform the kappa analysis on 665 randomly
selected BM cells from three WSIs, and for the interobserver
variability, we perform the kappa analysis on 1966 randomly
selected BM cells from five WSIs (see Supplementary Table
S1). Conventionally, a kappa value of <0.20, 0.21–0.40,

0.41–0.60, 0.61–0.80 and 0.81–1.00 are interpreted as a
poor, fair, moderate, good and excellent agreement, respec-
tively (Gianelli et al. 2014). The intraobserver reliabilities of
examiner 1 and 2 are interpreted as good with kappa values
of 0.608 and 0.789, respectively, and the interobserver reli-
ability between the two examiners is also good with a kappa
value of 0.8.

For the interobserver analysis between AI and examiners,
high kappa values of 0.824 and 0.908 were obtained, show-
ing that the proposed AI model is reliable and highly consis-
tent to the specialized medical examiners’ decisions.
Moreover, the results show that the second examiner who has
>20 years of expertise in BM NDC analysis produces more
consistent decisions, obtaining higher intraobserver kappa
than the first examiner. In addition, the results of interob-
server analysis show that the mean kappa between the pro-
posed AI model and the senior examiner is higher than the
one with the junior examiner. More information is provided
in Supplementary Section S4.

3.1.3 Mitotic figure examination of five cell types

Quantitative results are presented to evaluate the robustness
and effectiveness of the proposed CW-Net method in identifi-
cation of mitotic cells, with comparison of eight recently pub-
lished state-of-the-art approaches, including the Top 3
methods in 2021 challenge, in Tables 2 and 3 where the best
results are highlighted in bold cases, and the reported num-
bers of Li et al. (2018), Bertram et al. (2019), Alom et al.
(2020), Cai et al. (2021), Sohail et al. (2021), Aubreville et al.
(2023) are referred. Table 2 shows that the proposed CW-Net
demonstrates superior performance than the benchmark
methods in identification of mitotic figures with a recall of
0.843, precision of 0.858 and f1-score of 0.851 in detection
and high precision of 0.841, recall of 0.876 in classification of
mitotic figure, respectively. Furthermore, the proposed CW-
Net without FNIS achieves the second best precision of 0.762
and f1-score of 0.761 in detection and the highest recall of
0.943 and the second best f1-score of 0.862 in classification
of mitotic figure, respectively.

Table 3 further compares the performance of the proposed
CW-Net with and without FNIS strategy in classification of
five types of mitotic cells, including granulocyte, mitotic fig-
ure, tumor cells, mitotic figure lookalike and other ambiguous
cells. The experimental results indicate that the proposed
CW-Net achieves excellent performance in classification of
granulocyte, mitotic figure and tumor cells. The sample
results of mitotic analysis by the proposed CW-Net and one
of the benchmark method (Bertram et al. 2019) are displayed
in Fig. 6.

4 Conclusion

Fully automated examinations of BM slides and mitotic fig-
ures are highly demanded but challenging. First, the complex-
ity and poor reproducibility of BM and mitotic figure
examination on WSIs emerge from the cell type diversity, deli-
cate intralineage difference within the maturation process of
multitype cells, cell overlapping, lipid interference and stain
variations. Second, manual annotation on WSIs with enor-
mous data dimensions and complicated cell types is difficult,
which causes the supervised information restricted to limited,
easily identifiable and scattered cells annotated by human. In
this article, we develop a fully automatic and efficient

Figure 4. Confusion matrix for 17 cell types (in percentage) by comparing

the output of the proposed method and the reference standard of

validation dataset

Figure 5. Results of BM NDC analysis by the proposed method on (a) a

normal WSI sample and (b) a diseased WSI sample with acute

lymphoblastic leukemia (ALL). (1) A global view of the WSI with detection

results, (2) a global view of the WSI with the location of (3) the medium

zoom-in view and (4) a high-resolution zoom-in view
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cascaded weakly supervised deep learning framework (CW-
Net) for multitype cell detection and classification for both
BM examination and mitotic figure examination.
Comprehensive experiments demonstrate that the proposed
method has the discriminative ability in both applications and
achieves state-of-the-art performance.

Supplementary data

Supplementary data are available at Bioinformatics online.
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