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Field-controlled microrobots have attracted extensive research in the biological and medical fields 
due to the prominent characteristics including high flexibility, small size, strong controllability, remote 
manipulation, and minimal damage to living organisms. However, the fabrication of these field-controlled 
microrobots with complex and high-precision 2- or 3-dimensional structures remains challenging. The 
photopolymerization technology is often chosen to fabricate field-controlled microrobots due to its fast-
printing velocity, high accuracy, and high surface quality. This review categorizes the photopolymerization 
technologies utilized in the fabrication of field-controlled microrobots into stereolithography, digital light 
processing, and 2-photon polymerization. Furthermore, the photopolymerized microrobots actuated by 
different field forces and their functions are introduced. Finally, we conclude the future development and 
potential applications of photopolymerization for the fabrication of field-controlled microrobots.

Introduction

Microrobots have become one of the most promising tools in 
the biomedical field due to their increasing abilities of mini-
mally invasive surgery, targeted therapy, and cell manipulation 
[1–4]. Besides, microrobots also show great potential in 
environmental fields, including decontamination and toxic-
ity screening under conditions too dangerous or too small for 
humans to access [5,6]. In particular, the untethered micro-
robots controlled by multiple physical fields, such as magnetic 
[7], optical [8], acoustic [9], and electric fields [10], show better 
performance and a more comprehensive range of applications. 
With the increasing application fields and task requirements, 
field-controlled microrobots are becoming more intelligent 
and talented, which mainly relies on the complex purposeful 
2-dimensional (2D) and 3D structure design of the micro-
robots. Thus, the microfabrication technology for fabricating 
the robots on a microscale with precise 2D/3D arbitrary struc-
tures is the key issue in the development and promotion of the 
field-controlled microrobots.

The untethered field-controlled microrobots can be used in 
biological surgery and medical diagnosis/treatment due to its 
low damage and invasiveness to targets. To date, various fabri-
cation methods have been used to produce field-controlled 
microrobots. Researchers used a membrane template-assisted 
electrodeposition method to fabricate physically controlled 
microrobots [11–14]. The physical vapor deposition technology 
is also used to fabricate field-controlled microrobots [15,16]. 
Although these methods enumerated can be used to fabricate 
field-controlled microrobots, however, the fabricated microrobot 

shapes are limited to simple structures such as spherical and 
cylindrical shapes.

In recent years, multiple 3D printing technologies have been 
used to fabricate field-controlled microrobots, for example, 
the microrobots with complex structural magnetic field control 
using direct ink printing technology [17,18] and fused depo-
sition modeling technology [19]. These 3D printing tech-
nologies show great advantages in fabricating field-controlled 
microrobots with complex structures. However, these printing 
techniques are insufficient in the precision required by the 
microrobots to operate single cells and deliver the drug in 
microvessels.

Photopolymerization is a widely used 3D printing technology. 
Typically, it fabricates the structures through selectively polymer-
izing liquid photopolymer by light following layer-by-layer. The 
photopolymerization technology outperforms the other fabrica-
tion methods in terms of printing velocity, accuracy, and surface 
quality [20–22]. With the increasing requirements on multiple 
functions and access to the microenvironment, the structure of 
field-controlled microrobots is becoming smaller and more com-
plex. Employing photopolymerization in the fabrication of 
field-controlled microrobots provides an ideal solution. Although 
researchers have made many efforts to fabricate field-controlled 
microrobots by photopolymerization [23,24], few articles intro-
duce this field.

In this review, we summarize the recent research on field- 
controlled microrobots fabricated by photopolymerization  
as shown in Fig. 1. First, the typical photopolymerization 
technologies for microrobot fabrication are introduced in the 
Fabrication Based on Photopolymerization section. Then, the 

Citation: Liang X, Chen Z, Deng Y,  
Liu D, Liu X, Huang Q, Arai T.  
Field-Controlled Microrobots 
Fabricated by Photopolymerization. 
Cyborg Bionic Syst. 2023;4:Article 
0009. https://doi.org/10.34133/
cbsystems.0009

Submitted 18 October 2022  
Accepted 11 December 2022  
Published 6 June 2023

Copyright © 2023 Xiyue Liang et al. 
Exclusive Licensee Beijing Institute of 
Technology Press. No claim to original 
U.S. Government Works. Distributed 
under a Creative Commons 
Attribution License 4.0 (CC BY 4.0).

https://doi.org/10.34133/cbsystems.0009
mailto:7520220119@bit.edu.cn
mailto:liuxiaoming555@bit.edu.cn
https://doi.org/10.34133/cbsystems.0009
https://doi.org/10.34133/cbsystems.0009


Liang et al. 2023 | https://doi.org/10.34133/cbsystems.0009 2

Photopolymerized Microrobots Controlled by Varied Field 
Forces section analyses the recent progress of photopolymer-
ized micro robots controlled by magnetic fields, optical, acous-
tic, and electric fields. Finally, we summarize the fabrication of 
field-controlled microrobots based on photopolymerization and 
look forward to the future development of photopolymeriza-
tion for microrobot fabrication in the Conclusion and Outlook 
section. We believe that photopolymerization technology pro-
motes the progress of field-controlled microrobots in many 
terms, including manipulation accuracy, function, flexibility, 
and size. Meanwhile, the requirements on the structure, mate-
rial, and size of field-controlled microrobots also positively ac -
celerate the development of photopolymerization technology.

Fabrication Based on Photopolymerization
3D printing is a process that fabricates 3D objects layer-by-layer. 
Photopolymerization, as one of the widely used printing tech-
nologies, utilizes the light source to irradiate a reservoir filled 
with a photosensitive liquid polymer, which cures layer-by-
layer at a specific location to form a 3D solid structure [25]. 
Photopolymerization has the advantages of fast-printing velocity, 
high accuracy, and high surface quality that can be used to 
fabricate high-quality components with smooth surfaces and 
fine details [26]. Typical photopolymerization technologies such 
as stereolithography (SLA), digital light processing (DLP), and 
two-photon polymerization (TPP) are described in this section.

Stereolithography
SLA is the first 3D printing technology created on the basis of 
Chuck Hull’s view [27]. SLA technology first appeared as a top- 
down printing method [28], and then the bottom-up printing 
method is designed to address the size limitations of top-down 
machines (Fig. 2A). SLA is a method that uses a mobile photon 
source to activate the photopolymerization of photocurable resin 
and successively prints solid layer-by-layer [27]. The printed 3D 

structure is formed by point-by-point illumination and guided 
by 3D interpretation software [29,30]. SLA is a relatively slow 
production technology due to the refilling of the materials when 
printing layer-by-layer, as well as material viscoelastic limita-
tions. However, benefit from the single-point irradiation that 
controls the laser, SLA can precisely produce a wide variety of 
objects. Currently, the resolution of SLA printing can be as 
satisfactory as 10 μm, and it is possible to fabricate microrobots 
with SLA printing.

Digital light processing
DLP, as a particular type of SLA technology [31–33], adopts a 
digital micromirror device (DMD) chip as the core component 
(Fig. 2B). DMD can selectively reflect light to print the targets 
layer-by-layer [34–37]. The printing accuracy of DLP depends 
mainly on the quality of DMD chips. Compared with the 
traditional SLA technique, DLP improves the velocity of sample 
fabrication [38]. Moreover, DLP technology has more selectivity 
for light sources, i.e., light-emitting diode lamps, mercury 
lamps, and lasers. However, the resin materials used in DLP 
printing are expensive, and the stiffness and heat resistance 
after molding are poor. The print resolution of DLP is heavily 
limited by the number and size of micromirrors in the DMD.

Two-photon polymerization
TPP technology, also known as direct laser writing (DLW), has 
become increasingly popular in 3D printing due to its high pre-
cision peculiarity [39–41]. TPP uses a femtosecond near- infrared 
pulse laser as the light source that induces the polymerization 
of the photosensitive material by absorbing the energy of 
2 photons inside the material (Fig. 2C) [42]. Moreover, the TPP 
technology can break the optical diffraction limit and has a 
spatial resolution of nanometer level [43,44]. What is unique 
about TPP compared with other photopolymer printing tech-
nologies is that the overall fabrication is designed in the way 
of hole-in-hole instead of layer-by-layer aggregation [39,45]. 
However, the kinds of photosensitive materials used for TPP 
technology are limited, and the processing of micro- and nano-
scale takes a long time, so it is difficult to use it to process large-
scale products.

Photopolymerized Microrobots Controlled by 
Varied Field Forces
Various field forces have been employed to drive the micro-
robots fabricated by polymerization. In this section, recent 
advances in actuating microrobots via magnetic, optical, 
acoustic, and electric fields and the respectively utilized photo-
polymerization methods are discussed in detail.

Magnetically controlled microrobots
Magnetic field actuation is promising for microrobots locomo-
tion due to its noninvasive control and navigation method 
[1,46]. A magnetically controlled microrobot system consists 
of microrobots made of magnetic material and an external 
magnetic field. The magnetic microrobot is actuated by mag-
netic force or magnetic torque to generate motion under the 
action of an external magnetic field. At present, the magnetic 
field can be divided into a rotating field, gradient field, and 
oscillating field according to the form of actuating magnetically 
driven microrobot. The magnetic fields are usually generated 

Fig.  1.   Schematic illustration of field-controlled microrobots fabricated by 
photopolymerization.
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by 3 types: permanent magnet, air core coil, and iron core coil. 
The permanent magnet can produce sizeable magnetic field 
intensity and magnetic field gradient. However, problems such 
as remanence and nonclosed magnetic fields must be addressed. 
Air core coils mainly include the Helmholtz coil and Maxwell 
coil [47], which can produce a uniform magnetic field and gra-
dient magnetic field, respectively. Air core coils are convenient 
to model and control, but the magnetic field strength and work-
ing space are limited. The iron core coil consists of an iron core 
and copper wire, generating a gradient magnetic field to control 
the movement of microrobots directly [48]. Nevertheless, the 
iron core coil is unable to produce a uniform magnetic field, 
which is unsuitable for microrobot deformation and rotation. 
Usually, the magnetic-field-controlled microrobots fabricated 
by photopolymerization can be divided into rigid microrobots 
and soft microrobots.

Magnetically controlled rigid microrobots
The rigid microrobots mainly refer to helical-type swimming 
microrobots. The helical-type swimming microrobots mainly 
consist of magnetic materials and helical bodies. The magnetic 
material obtains driving force through the external magnetic 
field, and the helical body simulates the bacterial flagella to 
carry out the spiral motion. The helical microstructures were 
obtained by photopolymerization, and the magnetic materials 
were deposited on the helical microstructures by electron beam 

evaporation. Tottori et al. [49] reported a helical-type micro-
robot fabrication method using 3D DLW and physical vapor 
deposition to fabricate helical-type microrobots with arbitrary 
shapes. It has a length of 8.8 μm and a diameter of 2.0 μm. As 
shown in Fig. 3A, DLW with negative-tone photoresist is 
employed to produce the helical-type microrobots. Nickel (Ni)/
titanium (Ti) thin bilayer is deposited on the helical-type 
microrobot surface by electron beam evaporation. The helical- 
type microrobots use the body and microholder to transport 
cargo, and it has good drive controllability and biocompatibil-
ity. On this basis, Lee et al. [48] used a TPP technology to create 
3D capsule-type microrobots. The microrobot is 65 μm in 
diameter and 290 μm in length. Fig. 3B shows that the cap-
sule-type microrobot consists of the plunger and the cap. Ni 
and Ti layers are deposited on the plunger to respond to the 
magnetic field and enhance biocompatibility. The cap coats 
a Ti layer to avoid the effect of the magnetic field while con-
trolling the plunger. The capsule-type microrobot exhibits a 
“pick-and-drop” motion with a broader range of application 
prospects. To improve the biocompatibility of microrobots. 
Giltinan et al. [50] proposed a 3D microprinting technique 
based on TPP that utilized iron platinum nanoparticles with fer-
romagnetic and biocompatible to produce 30-μm-long micro-
robots. Trimethylol propane-ethoxylated triacrylate polymer is 
printed directly through using TPP as shown in Fig. 3C. Instead 
of Ni/Ti thin bilayer, FePt nanoparticles are deposited by electron 

Fig. 2. Fabrication technology by photopolymerization. (A) Schematic of SLA. (B) Schematic of DLP. (C) Schematic of TPP.
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beam evaporation deposition, which enables magnetic field actu-
ation and biological compatibility. Currently, many challenges 
lie ahead for untethered microrobots, such as poor biocompati-
bility and navigation in complex environments [51]. Helical-type 
microrobots are used not only in biomedical fields but also in the 
ecological environment field. Bernasconi et al. [6] combined SLA 
3D printing and wet metallization to generate microrobots for 
water purification. Fig. 3D shows that different metallic layers 
are deposited on 3D printed parts using electroless and electro-
lytic deposition to impart desired functionalities. Taking advan-
tage of the flexibility and versatility of electrolytic codeposition, 
pollutant photodegradation and bacteria killing are combined 
for the first time on the same device by covering a composite 
nanocoating containing titania nanoparticles in a silver matrix. 
From the perspective of water purification, the devices exhibit 
evident photocatalytic activity against water pollutants and anti-
microbial activity against Gram-negative bacteria. On the basis 
of the above work, some scholars have optimized the fabricating 
method [52]. As shown in Fig. 3E, 3-turn helical structures with 
5-μm pitch and 5-μm radius were fabricated. Only a layer of 
CoNiP alloy is deposited on the surface of the microrobot by 
electroless deposition, which enables the microrobot to have 
magnetically responsive properties. Moreover, the flexible and 
scalable fabricating approach also applies multiple metallic layers 
on the microrobot surface to enable 3D printed microstructures 
with multiple functions.

Magnetically controlled soft microrobots
Inspired by creatures in nature, soft microrobots are mainly 
biomimetic structure microrobots [53–55]. Soft microrobots 
are made of flexible materials and magnetic particle composite 
and hold great promise in many essential applications due to 
its inherent mechanical compliance that can enhance safety 
during operation [56]. Joyee et al. [57] printed a monolithic 
and untethered inchworm-inspired soft microrobot using a 
magnetic field-assisted projection SLA process. The soft robot 
is about 40 mm in length and 2 mm in height. As shown in Fig. 
4A, the soft microrobot is directly printed by a 3D computer 
without any manual assembly or complex processing steps, and 
it is driven by the magnetic field. On the basis of ultraviolet 

(UV) lithography, Xu et al. [58] used controlled reorientation 
of magnetic particles to encode magnetic particles in planar 
materials with arbitrary 3D orientation, and the size of the 
printed microrobot is about 100 μm. The microrobot realizes 
multiple movements of multiarm grasping and multilegged 
crawling, as shown in Fig. 4B. In terms of the actuation method, 
the spatial magnetic field distribution output has improved with 
the improvement of the electromagnetic driving performance 
and optical microimaging technology. Although recent research 
has extensively promoted the fabricating of small-scale mag-
netic soft microrobots, integrating multiple material compo-
nents remains a challenge. Hu et al. [59] employed TPP to 
selectively link Janus microparticles by 3D printing polymer 
microstructures and links. The microrobots are assembled and 
fabricated at the micrometer scale. As shown in Fig. 4C, each 
microactuator is positioned at the desired location by rolling 
and rotating to desired position and orientation by applying a 
magnetic field. Then, 3D printed links connect other tempo-
rarily fixed microactuators. Zhang et al. [60] produced a 3D 
magnetically driven soft microrobot based on multimaterial 
heterogeneous assembly. As shown in Fig. 4D, using TPP to 
fabricate models, various materials are cast into models to get 
multimaterial voxels. Last, the microrobot has multimaterial 
crystal and arbitrary 3D geometries by combining the voxels, 
which has a broad application prospect in the biomedical area.

Magnetic-field-controlled photopolymerization microrobots 
have many advantages, such as noninvasive, remote maneuvera-
bility, reconfigurability, and programmability of magnetic mate-
rials. However, the process of magnetization affects the rapid and 
continuous production of the microrobot. Moreover, the working 
spaces of the magnetic-field-controlled microrobots are also lim-
ited by the electromagnetic coil. Currently, microrobots with 
model-assisted voxel combinations of multiple materials have 
been designed, but the microrobots with multimaterials directly 
produced by photopolymerization still have many challenges. On 
the one hand, the light transmission properties of different mate-
rials and the complex operation when the materials are changed 
are the factors that restrict the development of photopolymeriza-
tion to directly prepare multimaterial microrobots. On the other 
hand, photopolymerization multimaterial microrobots need to 

Fig. 3. Magnetically controlled rigid microrobots. (A) Fabrication of the helical swimming micromachines and helical micromachine with a microholder [49]. Copyright 2012 
John Wiley and Sons. (B) Fabrication of the capsule-type microrobot using 3D laser lithography [48]. Copyright 2018 John Wiley and Sons. (C) Scanning electron microscopy 
(SEM) image of microrobot and actuation trajectory [50]. Adapted from ref [50] with the permission under the terms of the CC license. (D) Microrobot structure and 2 models 
are driven in silicone oil [6]. Copyright 2019 Elsevier. (E) Wet metallized artificial bacterial flagella.
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change light sources and materials, which leads to complicated 
operation.

Optically controlled microrobots
Recently, optical-field-controlled microrobots have attracted 
more interest from researchers [61–63]. The optical field is 
expected to play an important role in controlling the cooperative 
motion of multiple microrobots due to the maturity and diver-
sity of beam modulation and optical microscopy technologies 
[64]. According to different control principles, the optical-field- 
controlled microrobots are divided into optical tweezer (OT) 
control microrobots, optoelectronic tweezer (OET) control 
microrobots, and thermoresponsive material microrobots.

Microrobots controlled by OTs
OTs have been utilized to manipulate cells and biomolecules 
since those were invented in 1986 [65,66]. With the develop-
ment of microrobots, the OT has been used to manipulate 
artificial microstructures [67,68]. OT relies on the momentum 
transfer of particles when light interacts with an object. The 
microrobot is controlled by optical gradient force and radiation 
pressure. In recent years, researchers have conducted several 
studies on optical polymerization microrobots controlled by 
the OT. Phillips et al. [69] employed TPP systems to fabricate 
and capture nonspherical particles. As shown in Fig. 5A, the 
optically trapped probe was fabricated from the shaped parti-
cles with linear tapers that can be used as a passive force clamp. 
The tip of passive force clamp is 3 μm in length and 200 nm in 
diameter. The passive force clamp is capable of applying a constant 
force over a displacement of several micrometers. As shown in 
Fig. 5B, Villangca et al. [70] designed a novel optical controlled 
microrobot using TPP. The microrobot is about 40 μm in size 
and has 2 openings with diameters of 6 and 8 μm. In addition to 

controlling microrobots by the OT, they are capable of loading 
and unloading cargo using photothermally induced convection 
currents within the microrobot body. Such type of microrobot 
is much faster than optical control. Optical-field-controlled 
microrobot can induce local microflow to control the target. 
For the first time, photopolymerization technology integrates 
multiple functions into a single stand-alone microrobot. Butaite 
et al. [71] designed a microrobot with a microrotor structure 
by utilizing TPP. Microrotors can be printed repeatedly with 
feature sizes as low as 100 nm by sweeping the beam across the 
photoresist. As shown in Fig. 5C, the OT is used to control the 
rotation of the microrotor to generate hydrodynamic force that 
can operate microtargets. Furthermore, photopolymerization 
technology shows clear advantages in the fabrication of micro-
robots with complex structures such as joints. Avci et al. [72] 
proposed that the joint microrobot based on TPP enables indi-
rect manipulation of biological cells (Fig. 5D).

Microrobots controlled by OETs
OETs rely on optically induced-dielectrophoresis (DEP) force 
to actuate micro-objects [64]. The photoconductive substrate 
is used to induce a nonuniform electric field in the liquid 
medium above, and the electric field interacts with the sample 
in the medium to generate a DEP force that controls its 
motion [73,74]. Unlike the OT, the OET not only has a greater 
manipulation force that can control larger microrobots but also 
can operate multiple microrobots simultaneously [75–78]. Many 
scholars have recently combined the OET actuation with 
photopolymerization technology. Yang et al. [79] created com-
plex and reconfigurable microrobots in hydrogels through DLP. 
As shown in Fig. 6A, using the OET, the building blocks with 
different units in the microfluidic chip can be arranged into 
desired geometric shapes. As shown in Fig. 6B, Zhang et al. 
[80] reported the topographical micropatterns based on OET 

Fig. 4. Magnetically controlled soft microrobots. (A) The model of untethered soft microrobot. (B) Schematic of microgripper; image of multilegged paddle-crawling microrobot; 
the movement image of microrobots [58]. Copyright 2019 the American Association for the Advancement of Science. (C) Schematic of the untethered multiarm magnetic 
microgripper fabrication [59]. Adapted from ref [59] with the permission under the terms of the CC-BY license. (D) Diagram of the multivoxel assembly process [60]. Copyright 
2021 the American Association for the Advancement of Science. NIR, near-infrared; VSM, vibrating sample magnetometer.
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in either “bottom-up” or “top-down” modes and then combined 
with in situ photopolymerizations to form permanent structures. 
Therefore, the OET has great promise in constructing artificial 
electronic and photonic microstructures.

Optically controlled thermoresponsive microrobots
Apart from OT- and OET-controlled microrobots, microrobot 
fabricated by thermoresponsive material can also be controlled 
by optical fields [81]. The thermoresponsive materials, such as 

hydrogels [82–84] and liquid-crystal elastomers [85,86], can 
be mechanically deformed to drive microrobots. As shown in 
Fig. 7A, Raman et al. [87] utilized stereolithographic apparatus 
to assist in fabricating a light-stimulated artificial muscle 
microrobot. The microrobot obtained by this method can gen-
erate a passive tension force of 3.2 kPa and an active tension 
force of 0.56 kPa under external stimulation. Zeng et al. [88] 
proposed that a microrobot based on liquid crystalline elastomer 
(LCE) artificial muscles produced by TPP is entirely powered 
by an optical field. Fig. 7B illustrates a microrobot with 2 pairs 

Fig. 6. The OET controlled microrobots. (A) Schematic of microstructures fabricated in the polydimethylsiloxane (PDMS) device; the optically induced DEP manipulation and 
assembly [79]. Copyright 2016 John Wiley and Sons. (B) Diagram of the experimental setup; UV photopolymerization process of sol-form hydrogel solution [80]. LED, light-
emitting diode. Copyright 2021 John Wiley and Sons.

Fig. 5. The OT-controlled microrobots. (A) Schematic of a tapered test particle and a probe tip [69]. (B) Schematic of microrobot fabrication; cargo transportation [70]. Adapted from 
ref [70] with the permission under the terms of the CC license. (C) Schematic of microrobots control; optical image of the experiment [71]. Adapted from ref [71] with the permission 
under the terms of the CC license. (D) The diagram of articulated microrobot; optical image of the articulated microrobot manipulation [72]. Copyright 2012 John Wiley and Sons.
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of IP-Dip polymer legs and a minimum leg size of 500 nm. The 
LCE structure is heated above the glass transition temperature 
when illuminated with a focused green beam because the dyes 
in the LCE matrices absorb the green light. It shows approxi-
mately 20% contraction of the LCE body under illumination. 
With repeated on–off light signals, the structure exhibits a 
reversible contraction-swelling mode, which enables it to move 
along the glass substrate in the air.

As a rich renewable energy source, the optical field can realize 
the independent control of multiple microrobots. Moreover, 
optical fields show good performance in controlling micro-
robots in superficial locations such as close to the skin. However, 
high-energy optical fields can damage organisms and cause 
other diseases. The optical-field-controlled force is relatively 
small and not enough to drive microrobots of large size and 
weight. Complex and expensive control equipment also limits 
the development of optical-field-controlled microrobots.

Acoustically controlled microrobots
Acoustics can be regarded as a robust and reliable source to manip-
ulate microrobots remotely [89,90]. Compared with other fields, 
the acoustic field offers distinct relatively inexpensive in terms of 
strong penetration, high flexibility, and excellent biocompatibility 
[91,92]. Over the past few years, acoustic- field-controlled micro-
robots have gained extensive attention due to their broad applica-
tion prospects [93–100]. Acoustic-field-controlled microrobots 
can be divided into 2 types according to the working principles: 
bubble propulsion and sharp-edge propulsion. This section aims 
to clarify the main features of the 2 types of microrobots.

Bubble propulsion
The working principle of bubble propulsion is that the acoustic 
field excites the vibrations. The vibration is the most intense 
when the acoustic field frequency reaches the bubble resonance 
frequency. During bubble vibration, the liquid in the device is 

Fig. 7. The optically controlled thermoresponsive microrobots. (A) Schematic of light-stimulated artificial muscle microrobot fabrication and stimulation. (B) SEM image of a 
microwalker; experiments of actuating microrobot [88]. Adapted from ref [88] with the permission under the terms of the CC license.
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discharged and sucked as the bubble moves outward and 
inward. According to the nonlinear terms in the Navier–Stokes 
equation, the flow pattern generates a net momentum source 
that creates a driving force to push the entire device forward. 
Microrobots based on bubble propulsion is usually designed 
to have a streamlined structure with cavities. The cavity is used 
to generate and preserve bubbles, and the streamlined structure 
can improve the propulsion efficiency of the microrobots. 
Ahmed et al. [97] fabricated a microswimmer with an inden-
tation structure using UV photopolymerization. The indenta-
tion of microswimmer is 50 to 100 μm in diameter as shown 
in Fig. 8A. The dents have different sizes of and determine the 
size of the air bubbles. When the microswimmer is submerged 

in the liquid-filled chamber, an air bubble can spontaneously 
become trapped in each of its indentations. By controlling the 
bubbles, individual microswimmer can be selective actuated. 
Aghakhani et al. [101] produced the bullet-shaped microrobot 
with a body length of 25 μm by TPP, and spherical voids are 
created in the microrobot to increase the stability of trapped 
bubbles. Fig. 8B shows that the microrobots complete a fast, 
unidirectional surface slipping locomotion on both flat and 
curved surfaces through the resonance of a bubble. Fig. 8C 
shows that the double reentrant microstructure cavity design is 
proposed. The structure not only increases the liquid repellency 
and the operational lifetime of the microrobots but also enhances 
the bubble stability [102].

Fig. 8. Acoustically controlled microrobots based on bubble propulsion. (A) Schematic of microswimmer fabrication; experiments of driving swimmers [97]. Adapted from 
ref [97] with the permission under the terms of the CC license. (B) Schematics of bullet-shaped microrobot fabrication and propulsion [101]. Adapted from ref [101] with the 
permission under the terms of the CC BY-NC-ND license. (C) Schematics of microrobot fabrication and propulsion; image of microrobot structure [102]. Adapted from ref 
[102] with the permission under the terms of the CC-BY license. (D) Design and control principles of a microswimmer [103]. Copyright 2021 Royal Society of Chemistry. (E) 
Schematic of the CeFlowBot microrobot; the ultrasound imaging of the microrobot motion [104]. Adapted from ref [104] with the permission under the terms of the CC license. 
(F) The diagram of microdrone; the experiments of actuating microrobot [105]. Copyright 2021 Royal Society of Chemistry. CB, center of buoyancy; CG, center of gravity.
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Instead of a single bubble, Luo et al. [103] proposed a 2-bubble 
microswimmer via TPP. The overall shape of the microswimmer 
is triangular, and the back is composed of 2 bubbles with a 
diameter of 18 μm. As shown in Fig. 8D, the microswimmer 
can be propelled and steered using a single ultrasound transducer 
since the 2 bubbles have different diameters [103]. The control 
of the microrobot depends on the bubble vibration, and the 
presence or absence of the bubble is related to the actuation 
time. To improve the actuation time of microrobots, Mohanty 
et al. [104] fabricated the CeFlowBot microrobot with a com-
plex structure of 6 bubble arrays using TPP, as shown in Fig. 8E. 
The propulsion speeds and actuation time of the microrobots 
have been increased because of multiple bubbles being actuated 
in tandem. Liu and Cho [105] have also fabricated microrobots 
with complex structures through TPP. Fig. 8F shows that the 3 
microtubules are embedded in the microrobot body, thereby 
obtaining 3 bubbles and realizing the 3D movement of the 
microrobot by selectively exciting the bubble vibration. However, 
in low Reynolds, the motion behavior of bubble propulsion 
microrobots is complex. When the microbubble size is less than 
30 μm, the microbubble vibrates near the solid wall due to 
nonlinear acoustic forces [106]. These kinds of acoustic-field- 
controlled microrobots have not been thoroughly studied, and 
directional control is still challenging.

Sharp-edge propulsion
In nature, many microorganisms have flagellar structures 
and are powered by flagellar oscillations [107]. The flagellar 

structure inspires sharp-edge propulsion [108,109]. Microrobots 
based on sharp-edge propulsion are usually made with sharp 
structure, and the sharp structure can generate reverse rotating 
eddy currents around the tip of the acoustic field to control the 
motion of the microrobots. Some sharp edges also wobble in 
the acoustic field, providing power for the microrobots. The 
sharp-edge propulsion microrobots have been fabricated by 
photopolymerization. Kaynak et al. [110] produced a micro-
robot with flagellar structures in the microchannel by UV 
photopolymerization, as shown in Fig. 9A. The exposure time 
of a microrobot only needs approximately 50 ms. Microrobot 
is about 180 μm in length, 60 μm in width (at the head of the 
swimmer), and 45 μm in height. Subsequently, Kaynak et al. 
[111] fabricated a polymeric microrotor with predefined oscil-
lating sharp-edge structures in situ by applying a patterned UV 
light that polymerizes a photocrosslinkable polyethylene glycol 
solution. As shown in Fig. 9B, single-step in situ fabrication of 
microrotors with complex structures is employed by UV photo-
polymerization in a microchannel. Piezoelectric transducer 
enables acoustofluidic actuation of the microrotor through 
microflows induced by the oscillations of sharp-edge structures. 
Inspired by ciliary bands on the surface of the starfish larvae, 
Dillinger et al. [112] fabricated arrangements of cilia using UV 
photopolymerization. Fig. 9C shows that the microrobot has 2 
to 8 cilia on each side, and the ciliary bands can be obtained by 
one-step fabricating. The movement of the microrobot is real-
ized by acoustically controlled small-amplitude oscillations of 
the cilia.

Fig. 9. Acoustically controlled microrobots based on sharp-edge propulsion. (A) Schematic of microswimmer fabrication and actuation [110]. Copyright 2017 Royal Society 
of Chemistry. (B) Schematic of microrotor fabrication and actuation [111]. Copyright 2016 Royal Society of Chemistry. (C) Schematic of artificial microrobot; the image of 
driving microrobot [112]. Adapted from ref [112] with the permission under the terms of the CC license. (D) Schematic of microfluidic multiple microrotor setup; The image 
of microstreaming flow lines [114]. Copyright 2020 John Wiley and Sons. (E) Schematic of the microrobot actuation [115]. Adapted from ref [115] with the permission under 
the terms of the CC license.
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Similarly, TPP has exhibited tremendous advantages in 
realizing exquisite microstructure design [113]. As shown in 
Fig. 9D, Zhou et al. [114] fabricated multiple microrotors 
adopting TPP. The microrotor consists of a stator and a rotor: 
The diameter of the stator was 100 μm, and the distance 
between 2 rotors was 360 μm. An axially movable rotor is more 
easily obtained in this way. The tunable acoustic vibration of 
the multiple microrotors is achieved using a piezoelectric vibra-
tion stage, and the rotational speed of microrotors with sharp 
curved tips can reach 1,600 rpm in water. This approach enables 
not only easy microrotor fabrication but also simple remote 
actuation of multiple rotors, which provides promising pros-
pects in various microfluidic manipulation applications. To 
fabricate microrobots with more complex structures, Kaynak 
et al. [115] developed a microjet engine microrobot using TPP. 
Fig. 9E shows that the microrobot consists of a cylindrical shell 
wrapped in a flexible conical wedge made of hydrogel and pol-
yethylene glycol diacrylate. It performs micromanipulation 
through local body deformation that produces fluid, such as 
on-demand collection, encapsulation, and processing of micro-
scopic samples. This paves the way for the development of soft 
microrobots with tailored performance and functionality.

The acoustic field can realize the remote driving of microrobots 
and is a reliable actuation source. Furthermore, the noninvasiveness 
to the living body makes the acoustic-field-controlled have 
broad application prospects. However, it is difficult for the 
acoustic field to achieve accurate movement and control of the 
microrobots alone, so it is necessary to combine other control 
methods to achieve the desired control precision. Currently, 
acoustic-field-controlled is still in its early stages. In the acoustic 
field environment, the forces on the microrobots and the targets 
are complex, and the utilization of the acoustic field to achieve 
precise control of the microrobots requires continued research. 
In addition, we should take the practicability of acoustic- field-
controlled microrobots instead of focusing on the effective 
control microrobots. Realizing the real application of acoustic- 
field-controlled microrobots in vivo environment may be the 
main goal of the researchers.

Electrically controlled microrobots
Electric field power is one of our most common power sources. 
Electric fields can not only be applied to large-scale types of 
equipment but also have great potential in controlling microscale 
microrobots [116]. In the electric field, the control of particles 
by the electrophoretic motion of charged particles or molecules, 
such as electrophoresis and electroosmosis of diodes [117–120]. 
Bipolar electrochemical phenomena in electric fields can also 
be adapted to control particles [121].

Moreover, the soft microrobot made of electroactive smart 
materials that can respond to electrical stimulation has attracted 
much attention [122]. Han et al. [123] designed soft micro-
robots with electroactive hydrogels using DLP. The thickness 
of the “body”, “legs”, and “arms” of microrobot can reach 220, 
300, and 220 μm, respectively. As shown in Fig. 10, electroac-
tive hydrogel microrobots are placed in an electrolyte solu-
tion (phosphate-buffered saline) to generate ionization, and 
the microrobot becomes a network anionic. The anionic net-
work forms osmotic pressure with surrounding cations, and 
the osmotic pressure reaches equilibrium [124–127]. The bal-
ance is broken when the microrobot is placed in the electric 
field and the shape of the microrobot changes. The microrobots 

can achieve bidirectional motion by changing the direction 
of the electric field. However, a drawback of electric actua-
tion is the presence of electrodes in the work area, which may 
limit the bio-oriented applications. At present, electroactive 
hydrogel microrobots have been obtained through DLW 
[124], template-assisted UV curing [128], and laser cutting [129]. 
Never  theless, there are few electroactive hydrogel microrobots 
designed by photopolymerization, and it is believed that photo-
polymerization will be widely used for microrobot applications 
in the future.

Electric field control is a contact-free and fuel-free driving 
system, which can control the microrobot at the microscopic 
scale using dielectric electrophoresis force. However, the electric 
field is harmful to biological targets. The rapid attenuation of 
the electric field with distance leads to the shorter working dis-
tance of microrobots. Moreover, the electric field may not be 
compatible with the body fluids containing high ionic medium, 
such as tissue fluid or blood, causing harm to the organism.

Conclusion and Outlook
In this review, we focus on state-of-the-art works on fabricating the 
field-controlled microrobots by photopolymerization, including 
the different photopolymerization approaches, the materials, 
and the different actuating field forces. Photopolymerization 
has the advantages of fast-printing velocity, high accuracy, and 
high surface quality, which make it one of the most commonly 
utilized field-controlled fabrication technologies. In contrast, 
the template-assisted electrodeposition method and the physical 
vapor deposition method are highly limited in printing speed and 
precision. Under different actuating fields, photopolymerization 
microrobots can accomplish complex and various tasks, which 
allows their massive applications in the biomedical field.

There are 2 main future developing directions of the field- 
controlled microrobots fabricated by photopolymerization, 

Fig.  10.  Schematic and the bending mechanism of the electroactive hydrogel 
microrobot [123]. Copyright 2018 American Chemical Society.
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including the smart materials and capabilities for real applica-
tions. In terms of printing materials, smart materials with self- 
actuating, self-sensing, and shape-changing abilities in response 
to external stimuli offer more possibilities for photo polymerization 
technology. At the same time, the development of fabrication 
technology has promoted the fusion of different intelligent 
materials, enabling microrobots to combine multiple capa-
bilities to achieve various behaviors. Moreover, the research on 
microrobots is still executed in the laboratory but away from the 
application. Both fabrication and performance aspects should be 
considered and optimized to apply microrobots from the labora-
tory to in vivo clinical. The performance of photo polymerization 
technology is one of the essential precautions that should be 
enhanced, such as the development of field-assisted photopoly-
merization technology to improve multimaterial fabricating 
capabilities and the producibility of complex designs. Besides, 
the biocompatibility and biodegradability of microrobots are vital 
to be considered to minimize the impact and damage of micro-
robots on the human body. It is also critical to select suitable and 
effective control methods to meet the requirements of complex 
environments and tasks in vivo clinical. Collaborative control 
of microrobots through multiple combinations of physics may 
be a viable approach.

It is convincing that with the improvement of printing tech-
nology, the development of new materials, and the rational 
design of multiple control methods, field-controlled microro-
bots fabricated by photopolymerization with better perform-
ance will usher in vigorous development. As more and more 
field-controlled microrobots continue to be designed and 
fabricated by photopolymerization, we expect that more pro-
gress for microrobots applied in fields of biomedicine, envi-
ronmental governance, aerospace, and other fields will be 
made soon.
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