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Abstract 
T cells play key protective but also pathogenic roles in COVID-19. We studied the expression of long non-coding RNAs (lncRNAs) in COVID-19 
T-cell transcriptomes by integrating previously published single-cell RNA sequencing datasets. The long intergenic non-coding RNA MALAT1 was 
the most highly transcribed lncRNA in T cells, with Th1 cells demonstrating the lowest and CD8+ resident memory cells the highest MALAT1 
expression, amongst CD4+ and CD8+ T-cells populations, respectively. We then identified gene signatures that covaried with MALAT1 in single T 
cells. A significantly higher number of transcripts correlated negatively with MALAT1 than those that correlated. Enriched functional annotations 
of the MALAT1- anti-correlating gene signature included processes associated with T-cell activation such as cell division, oxidative phosphoryl-
ation, and response to cytokine. The MALAT1 anti-correlating gene signature shared by both CD4+ and CD8+ T-cells marked dividing T cells in 
both the lung and blood of COVID-19 patients. Focussing on the tissue, we used an independent patient cohort of post-mortem COVID-19 lung 
samples and demonstrated that MALAT1 suppression was indeed a marker of MKI67+ proliferating CD8+ T cells. Our results reveal MALAT1 
suppression and its associated gene signature are a hallmark of human proliferating T cells.
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Introduction
T-cell plasticity and balance are crucial for protection and 
pathology [1, 2]. Such opposing roles have been appreciated 
in various provocations of the immune system and more re-
cently in the progression of COVID-19 [3, 4]. While antigen-
specific T cells may confer protection against SARS-CoV-2 
virus [5–7], lymphopenia is associated with severe COVID-19 
[8–10] and exhausted, senescent T cells and those expressing 
MKI67 [11, 12], a key proliferation marker, contribute to 
pathology [3, 13–15]. In CD8+ T cells, a strongly prolifera-
tive phenotype correlates with contraction and disappearance 
of clones in acute COVID-19 pathology [16].

Long non-coding RNAs (lncRNAs) are regulatory 
non-coding RNAs, longer than 200nt. In most cases, lncRNAs 
show low-medium expression with poor conservation across 

species often acting as scaffolds for recruitment, sequesters 
for chromatin-modifiers, or RNA binding proteins to specific 
genomic sites [17, 18]. LncRNAs may be cis- or trans-acting 
wherein the former influences transcription by affecting the 
loci near their transcription site (enhancer-like) while the latter 
transcripts leave the transcription site to affect gene expres-
sion (mRNA-like) via transcriptional or post-transcriptional 
mechanisms [19].

LncRNAs play essential roles in adaptive immunity, par-
ticularly in lymphocyte activation, signaling and effector 
functions [20]. For example, lncRNAs such as lncHSC-2 
commit HSCs to lymphoid specification as B or T cells [21]. 
T-cell development is regulated by Notch1 signaling [22] 
whose expression is in turn regulated by the lncRNA NALT1 
[23]. As T cells mature, their activation is triggered by T-cell 
receptors (TCRs) upon MHC-mediated antigen presentation 
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that is further modulated by co-stimulatory or co-inhibitory 
ligands. This activation leads to a switch to glycolysis [24] 
which is in turn is influenced by the lncRNA PVT1 [25, 26]. 
Indeed, sets of lncRNAs specifically regulate lineage-specific 
gene expression in activated T cells [27] such as Th1 [28], Th2 
[29], Th17, [30] and Treg [31] programs.

Profiling lncRNA expression in immune cells during the 
response to infection can provide insights into key transcrip-
tional and post-transcriptional mechanisms operating in 
health and disease. Of note, even though the transcriptomes 
of tissue and peripheral T cells during responses to infection, 
and more specifically SARS-CoV-2 have been extensively 
studied [32], the study of T-cell lncRNA profiles has been 
limited [33, 34].

We explored T-cell lncRNA profiles from three pub-
licly available datasets from individuals with COVID-19 
identifying several lncRNAs that are detectable in lung T 
cells during infection. We particularly focused on MALAT1, 
a long intergenic non-coding RNA (lincRNA, a sub-class 
of lncRNAs) remarkably conserved in vertebrates [35]. 
LincRNAs such as MALAT1 do not overlap with protein-
coding genes and can have various regulatory effects on gene 
expression [36]. Localized in nuclear speckles [37, MALAT1 is 
known to work in a variety of ways, such as through binding 
splicing factors [37], controlling the function of proteins in-
volved in transcription [38], miRNA sequestration [39], and 
associating with proteins [40]. MALAT1 has been associated 
with positively regulating cell cycle progression in cancer tis-
sues [41] a loss of which impairs cell proliferation [23]

MALAT1 has been shown to regulate T-cell function, pre-
dominantly in animal models of infection or immunopathology 
[42–45]. In a previous study, in CD4+ T cells, we reported that 
MALAT1 downregulation is a hallmark of naïve CD4+ T-cell 
activation and that MALAT1−/− CD4+ T cells express lower 
levels of IL-10, an anti-inflammatory cytokine resulting in en-
hanced inflammation or immunity in experimental models of 
leishmaniasis and malaria [46].

Here, we examined COVID-19 single-cell RNA sequencing 
(scRNA seq) datasets from bronchoalveolar lavage (BAL) 
[47, 48], explant/post-mortem lung cells [49], and peripheral 
blood [50] and discovered that MALAT1 was negatively cor-
related with cell cycle progression and proliferation in CD4+ 
and CD8+ T cells of severe COVID-19 patients. Performing 
RNAscope on COVID-19 post-mortem lung tissue from indi-
viduals who died of COVID-19, we confirmed that MKI67-
expressing CD8+ T cells had lower levels of MALAT1 mRNA 
in situ. Overall, our findings reveal that MALAT1 expression 
in T cells from COVID-19 patients is linked to a specific gene 
signature and that low MALAT1 expression is a hallmark of 
proliferative T cells.

Results
MALAT1 is differentially expressed in CD4+ and 
CD8+ subpopulations
We integrated T-cell BAL scRNAseq datasets [47, 48] to look 
at highly expressed lncRNAs in T cells from healthy volun-
teers and individuals with COVID-19 (Methods; Fig. 1A). 
We found MALAT1 to be the highest expressed lncRNA 
with similar distribution in both datasets which is ubiqui-
tously found across all T cells (Fig. 1A). We then normalized 
and integrated the two datasets (see Methods) and clustered 

them at a low resolution to infer coarse-grained T-cell hetero-
geneity (Fig. 1B; Supplementary Fig. S1). Cells visualized on 
UMAP showed both the datasets to be similarly spread across 
UMAP space indicating similar composition (Fig. 1C left). We 
then used cell type metadata [47,48] to obtain a finer-grained 
T-cell phenotyping (Fig. 1C middle). We found that there were 
marked differences between T cells based on disease severity 
(Fig. 1C right).

Importantly, we found that MALAT1 is differentially ex-
pressed within unbiased clusters, especially cluster 2 (Fig. 1D 
left) and within imputed T-cell subpopulations. We found that 
Th1 cells (CD4_TH1, inflammation-associated TNF/IFNγ 
expressing effector cells) demonstrate lower MALAT1 levels 
with respect to naïve CD4+ T cells (CD4_N, immature cells 
with no exposure to cognate antigen), confirming previous 
findings in mouse Th cells [46]. CD4_Treg (regulatory T cells) 
showed the highest MALAT1 levels. We also observed dif-
ferences in MALAT1 expression within CD8+ T cells, with 
CD8_RM subset showing the highest MALAT1 expression 
compared to all other subsets. The difference in MALAT1 
expression between CD8_RM (tissue-resident memory CD8) 
and CD8_EM/CD8_EMRA (memory cells/recently activated 
memory cells in periphery) may mark how a memory T cell is 
poised toward tissue homing [51]. While exhausted CD8+ T 
cells (CD8_EX, activated cells with exhausted effector func-
tion) had a lower median value of MALAT1 than naïve CD8+ 
cells (CD8_N), this was not significant. However, compared 
to CD8_EM, CD8_EX had lower MALAT1 levels. It is not-
able that the lower quartile of CD8_EX cells was the lowest 
among all CD8 subsets (Fig. 1D right). In our data integration 
(see Methods), we retained cell cycle genes, as MALAT1 has 
been previously linked to the cell cycle [23, 41]. In doing so, 
and as suggested [47, 48], we found cluster 2 (Fig. 1B) to be 
a mix of CD4_TH1 and CD8_EX T cells (Fig. 1C, middle 
panel). Interestingly, MALAT1 expression was reduced in 
T cells from BAL from severe patients in both the datasets 
(Fig. 1E), although we note that this may be biased due to 
the low proportion of cells from non-severe patients (Fig. 1F). 
Interestingly, among the top 10 highly expressed lncRNAs 
(Fig. 1A; Supplementary Fig. S2) only MALAT1 seemed to be 
down-regulated in severe cases with respect to both healthy, 
mild/moderate cells (Fig. 1E versus Supplementary Fig. S2).

MALAT1(anti-)correlated gene lists identify CD8 + 
TEX CD4+ TTH1 Cells
To understand the effect of variability in MALAT1 expression 
(Fig. 1D) across coarse- and fine-grained T-cell heterogen-
eity we looked at how MALAT1 gene expression correlated 
against all other genes across all T cells, or only CD4+ T cells 
or CD8+ T cells, respectively. Keeping a significance score of 
P = 0.05 and the positive correlation value > 0.1 or negative 
correlation value < −0.1 as a cut-off, we found that ~80% of 
the genes that significantly co-vary with MALAT1 are those 
anti-correlated to its expression (all T cells, Fig. 2A). This per-
centage is ~88% for CD4+ T cells and ~65% for CD8+ cells 
when correlations were calculated separately for CD4+ and 
CD8+ cells (Fig. 2A).

Upon analyzing the intersection of these gene lists we found 
that out of the genes that correlated positively with MALAT1 
for CD4+ and CD8+ cells, there were 79 genes that were 
common between the two T-cell types while there were over 
four times as many uniquely MALAT1 correlated genes in 

http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
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Figure 1. MALAT1 is differentially expressed in T cell subsets: (A) Stacked violin plots showing the top 10 highly expressed LncRNA in T cells in 
bronchoalveolar lavage fluid studies. (B) UMAP plots depicting single cells colored by their cluster identity as indicated by colored boxed labels. (C) 
UMAP plots depicting single cells colored and labeled by their respective study (Liao et al. (2020) and Wauters Mol et al. (2021)). Same as left but 
colored by imputed cell sub-population type and disease severity (healthy = 1225 (Liao et al. only), mild = 111, moderate = 2135, severe = 8275 T cells), 
respectively. (D) Violin plots showing normalized counts of MALAT1 expression across cluster identities of T cells and imputed cell sub-populations. 
Kruskal–Wallis multiple comparison P-values are indicated by asterisks (****P < 0.0001, ***P = 0.0001–0.005,**P = 0.005–0.001,*P = 0.01–0.05). For cell 
sub-populations, only a subset of comparisons is shown. (E) Violin plots showing normalized counts of MALAT1 expression across study and disease 
severity. Kruskal–Wallis multiple comparisons with p-value asterisks as defined in (D). (F) Barplot showing proportion of total CD4+/CD8 + T cells 
represented by each severity group pooled for both datasets.
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Figure 2. BAL T-cell sub-populations differentially express MALAT1-correlated genes. (A) Bar plots showing the number of genes that correlate or 
anti-correlate with MALAT1 for all T cells, CD4+ and CD8+ T cells. (B) Venn diagrams depicting the intersection of gene lists that correlated [Corr(CD8), 
Corr(CD4)] and that for those that anti-correlated [Acorr(CD8), Acorr(CD4)] with MALAT1 expression in CD4+ cells and CD8+  cells. (C) Heatmap of top 
25 MALAT1 correlating genes (highlighted in the rectangle) and top 25 anti-correlating genes in CD4 + T cells grouped by their cluster identities and by 
sub-population. Heatmap legend indicates expression values scaled to a mean of zero. (D) Same as C but for CD8+ T cells.
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CD8+ over CD4+ cells (210 versus 47; Fig. 2B). While CD4+ 
and CD8+ cells shared a high number of genes that were anti-
correlated to MALAT1, the number of genes that were unique 
in anti-correlation lists were four times as many in CD4+ T 
cells than CD8+ T cells (Fig. 2B).

We next identified whether the top 25 MALAT1-correlated 
and top 25 MALAT1-anti-correlated genes (based on cor-
relation value) in both CD4+ T cells (Fig. 2C) and CD8+ 
T cells (Fig. 2D) were differentially expressed in clusters 
identified previously (Fig. 1D left) or within imputed cell 
sub-populations (Fig. 1D center). When grouped by cluster 
identities, in CD4+ T cells, MALAT1 anti-correlated genes are 
upregulated in cluster 2 (bottom 25 genes, Fig. 2C) while a 
strong MALAT1 correlated signature is observed in clusters 
0, 1, and 5 (top 25 genes, Fig. 2C left). Cells in cluster 2 (Fig. 
2C left) may predominantly be CD4_TH1 cells (Fig. 2C right) 
while clusters 0, 1, and 5 (Fig. 2C left) may largely comprise 
either CD4_N (naïve) or effector memory (CD4_EM) CD4+ 
T cells (Fig. 2C right).

In a similar manner in CD8+ T cells, cluster 2 is charac-
terized by genes that are MALAT1 anti-correlated (bottom 
25 genes, Fig. 2D). When grouped by T-cell subpopulations, 
CD8+ TEX-cells appeared to be enriched in the MALAT1 
anti-correlated signature (Fig. 2D). When grouped by cluster 
identities, MALAT1 anti-correlated genes were expressed in 
cluster 2 of CD8+ T cells (Fig. 2D) as with CD4+ T cells (Fig. 
2C). Interestingly, CD8+ TEX-population appears heteroge-
neous in terms of expression of MALAT1 anti-correlating 
and correlating genes (Fig. 2D) which may explain why 
MALAT1 expression is not significantly different between 
CD8 TN and CD8 TEX cells (Fig. 1D right). In addition, 
MALAT1 correlated signature is enriched in the resident 
memory subset (CD8+ TRM) and effector memory (CD8+ 
TEM) sub-populations (Fig. 2D).

Importantly, MALAT1 is anti-correlated with MKI67, a 
commonly used marker of T-cell proliferation which is really 
a graded marker of the same and also marks T cells that may 
have recently divided [52], in both CD8+ and CD4+ and its 
expression is increased in cluster 2 (Fig. 2C and D) poten-
tially indicating the proliferative nature of cells in this cluster. 
Overall, these findings identified a core gene signature that 
anti-correlates with MALAT1 expression in T cells and indi-
cated that these genes were highly expressed in proliferative 
CD4_TH1 and CD8_EX cells.

MALAT1 anti-correlated genes include a core 
proliferation and cell-specific signature in T cells
Next, we used STRING-DB to perform network analysis for 
the top 100 genes (corresponding to approximately the top 
25th percentile of all correlation values) that anti-correlate 
with MALAT1 in both CD4+ and CD8+ T cells as networks 
(Fig. 3A). Upon clustering these using k-means (k = 3), the re-
sulting clusters showed FDR corrected enrichment for “Cell 
Division”, “Oxidative phosphorylation,” and “Response to 
Cytokine” (Fig. 3A).

Next, we investigated the gene lists using gene set enrich-
ment analysis [53] using the hallmark gene sets to look at 
signatures within our gene lists. MALAT1 anti-correlated 
genes were significantly enriched for cell-cycle targets of E2F 
transcription factors, genes regulated by MYC, progression 
through cell division (G2M) for CD4+ and CD8+ T-cells sug-
gesting the MALAT1 anti-correlated signature might play 

a role in proliferation and cell cycle progression (CD4 and 
CD8, Fig. 3B). Further, these gene sets showed enrichment for 
hypoxia, oxidative phosphorylation, and glycolysis for both 
CD4+ and CD8+ T cell whereas genes for DNA repair were 
only enriched in MALAT1 anti-correlated gene list for CD4+ 
T cells (CD4, Fig. 3B).

Genes upregulated in response to IFN-γ and IFN-α 
signaling were hallmarks uniquely associated with CD4+ T 
cells (unique to CD4, Fig. 3B). Genes involved in complement 
were associated with both CD4+ and CD8+ T cells while genes 
associated with xenobiotic metabolism were associated with 
CD4+ T cells (unique to CD4, Fig. 3B). Further, MALAT1 
anti-correlating genes uniquely in CD8+ T cells were enriched 
for genes involved in the p53 pathway and those regulated in 
response to TNF via NF-κB (unique to CD8, Fig. 3B).

We looked at the top 20 genes uniquely anti-correlated 
to MALAT1 in CD4+ T cells for STRINGDB interactions 
and found that genes related to response to TNF/IL-1 such 
as PSMA5, NFKBIA, and Ubiquitin cross-reactive protein 
(ISG15) (Fig. 3C). On the other hand, in CD8+ T cells, 
MALAT1 uniquely anti-correlates with genes associated with 
membrane targeting of proteins along with genes involved in 
CD8+ T-cell exhaustion like GNLY, GZMB, and HAVCR2 
(Fig.3D).

MALAT1 and MKI67 anti-correlate in COVID-19 
post-mortem lung tissue
The above cell-type gene signature and pathway analyses in-
dicated a potential link between MALAT1 expression and 
T-cell proliferation. To further test this, we checked if the 
MALAT1 anti-correlated gene list signature common to 
CD4+ and CD8+ T cells (Fig. 3A) identified in BAL samples 
was sufficient to mark proliferating T cells in lung tissue. For 
this purpose, we analyzed a COVID-19 explant/post-mortem 
lung scRNA seq dataset [49]. We pre-filtered barcodes labeled 
as “T cells” from the dataset and used the top 100 common 
genes that are anti-correlated with MALAT1 (Fig. 3A), of 
which 88 genes were found in Bharat et al., to calculate the 
‘area under recovery curve’ or AUC [54] for each cell to calcu-
late enriched gene set activity per cell (histogram, Fig. 4A) to 
identify gene list enrichment. Thresholding the AUC score (at 
AUC >= 0.39) based on the bimodality in AUC distribution 
(histogram, Fig. 4A), the cells were highlighted on a UMAP 
plot (Fig. 4A). The high AUC score highlights proliferating T 
cells as indicated by their corresponding MKI67 expression 
in UMAP space and lower MALAT1 levels is associated with 
cells with high MKI67 levels (Fig. 4B).

Interestingly, the proliferative T cells in post-mortem lung 
tissue appeared diverse in terms of their position in UMAP 
space. To investigate this further, we examined a subset of 
these cells (AUC scores >= 0.39) and visualized canonical 
T-cell markers in two-dimensional UMAP space (Fig. 4C). 
We further re-clustered these cells (Fig. 4C, bottom right) to 
understand whether the heterogeneity in proliferative T cells 
with a high AUC score (Fig. 4A) translates in terms of differ-
ential gene expression (Fig. 4D).

We found that that cluster 0 (Fig. 4C) comprised of CCL4, 
CXCR4 expressing CD8 + TEM (CD8A, GZMK, GZM, 
MKG7, and GZMH) cells (Fig. 4D, Supplementary Table S1). 
Cluster 1 was comprised of IFNG+ γδT cells (Fig. 4D) ex-
pressing TRDC and GNLY (Supplement Table S1). Cluster 
2 markers appeared to have a strong macrophage-like gene 

http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
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Figure 3. MALAT1 anti-correlates to genes that are related to cell cycle progression in T cells. (A) Network representation of STRING interactions 
plotted for top 100 MALAT1 anti-correlated genes and those that are common in CD4+ and CD8+ T cells with lines indicating interconnectedness in 
terms of co-expression or interaction. (B) Barplots showing negative log FDR values for HALLMARK GSEA enrichment for genes that anti-correlate with 
MALAT1 and those that are uniquely so in CD4+ and CD8+ T cells. The ‘x’ axis contains HALLMARK gene set names that were found to enriched. (C) 
Same as A but for top 20 unique genes for CD4+ T cells. (D) Network representation of STRING interactions for top 20 unique CD8+ T cells.
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Figure 4. MALAT1 expression is reduced in proliferating T cells from lung digests. (A) Histogram showing ‘area under recovery curve’ score for MALAT1 
anti-correlated gene list (number of genes = 88) for single cells. UMAP plot highlighting cells with AUC score from B that are greater than 0.39. (B) 
UMAP plot depicting MKI67 and a violin plot showing MALAT1 expression in groups created based on MKI67 levels of greater or less than 1.0. (C) 
UMAP plot depicting TRBC2, CD8A, and CD4 gene expression along with cluster identities of proliferative T cells (subset based on AUC score greater 
than 0.39 from A). (D)Heatmap showing top 10 genes expressed in each imputed cluster in (C). (E) UMAP plot depicting imputed cell cycle phase for 
each T cell. (F) Scatter plots and linear regression between imputed S-phase score (left) and G2/M score (right) per cell and MALAT1. P-values indicates 
the significance of the slope of the regression. (G) Histogram showing ‘area under recovery curve’ score for MALAT1 anti-correlated gene list (number 
of genes = 99) for PBMCs. (H) UMAP plot highlighting cells with AUC score in PBMCs from healthy volunteers and asymptomatic, mild, and severe 
COVID-19 patients and individuals with flu. The last UMAP shows MKI67 levels per cell.
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signature with complement genes, FCER1G, and LYZ being 
upregulated in this cluster (Fig. 4D). As this cluster also ex-
pressed T-cell markers (Fig. 4C), we postulated that these were 
doublets and were not further analyzed. Cluster 3 was en-
riched in markers for CD4 TREG such as IL12RA and CTLA4 
(Fig. 4C) whereas cluster 4 comprised of CD8+ (CD8B,  
Fig. 4C) cells with targets of E2F transcription factors such 
as MCM5.

We then tested whether MALAT1 expression levels were 
consistently lower in proliferative cells and whether this 
was dependent on their cell cycle state. We calculated a 
score based on genes involved in cell cycle progression[55] 
including those involved in the S, G2/M, and G1 phases. 
In Fig. 4E, we show how these proliferative T-cell clusters 
(Fig. 4C, bottom right) comprise cells in S, G2/M, and G1 
phases. We then calculated Spearman’s correlation between 
the imputed cell phase score and MALAT1 and found that 
MALAT1 levels are anti-correlated with the imputed S phase 
score and strongly positively correlated with the G2M score 
(Fig. 4F).

To test if our findings were limited to tissue T cells, we 
examined a COVID-19 PBMC dataset [50], using the above-
defined top 100 genes that anti-correlate with MALAT1 we 
identified a small proportion of cells within this dataset that 
expressed these genes differentially (99/100 genes were found 
in the dataset, Fig. 4G). In fact, this signature also picks out 
PBMCs from influenza patients, suggesting that this is a hall-
mark feature of T-cells responding to infection. As in the case 
of lung T-cells, these AUC > 0.42 cells (Fig. 4G and H) are 
found to be neighborly in UMAP space and express MKI67 
(Fig. 4H).

To test the above findings in situ, we examined post-mortem 
lung sections from the UK Coronavirus Immunology 
Consortium (UK-CIC) (patient_meta_data, Supplementary 
Table S1 and Milross et al., in prep). We analyzed lung aut-
opsy sections (n = 6) and representative sections stained 
with DAPI are shown in Fig. 5A. We concentrated on CD8+ 
T cells due to their roles in COVID-19 pathology [16] and 
the fact that MALAT1 expression co-varied with both pro-
liferation and exhaustion markers in these cells (Fig. 3D). 
We determined CD8 expression and MKI67 (as a marker 
for non-senescent cells that may be in any of G1, S, G2, and 
M phases) by immunofluorescence along with MALAT1 
by RNAScope. We found, qualitatively, that MALAT1 was 
seldom co-expressed with MKI67 unless MKI67 levels were 
high (Fig. 5B–D). Interestingly, this suggested some correl-
ation between MALAT1 and MKI67 when the latter was 
more highly expressed. This may be related to the MALAT1 
expression correlation we observed with the G2M phase 
T-cell score (Fig. 4F). We next performed quantitative ana-
lysis using QuPath (Fig. 5E). For all tested samples we ob-
served distinct MKI67-hi/MALAT1-lo populations, with the 
majority of highest MKI67 expressing CD8+ T cells (mean 
nuclear intensity > 2000) showing low MALAT1 levels. 
We also found double-positive CD8+ cells that co-express 
MALAT1 and MKI67 (Fig. 5F). These double-positive cells 
may be explained by the particular phase of the cell, as it has 
been shown that MKI67 is not a binary marker for prolifer-
ation but a graded marker for proliferation/senescence [56]. 
In general, however, we found that when MALAT1 expres-
sion is high then MKI67 expression is low and vice versa (Fig. 
5F) across all tested samples.

Discussion
MALAT1 is one of the most abundant non-ribosomal 
RNA transcripts in mammalian transcriptomes. Despite an 
increasing understanding of how MALAT1 upregulation con-
tributes to cancer development and progression [57], less is 
known about its physiological functions in non-transformed 
cells. Recent work from our and other laboratories has indi-
cated that MALAT1 plays a role in T-cell function and that, 
in preclinical models, antigenic activation of naïve T-cells re-
sults in suppression of MALAT1 expression [42–46]. Here, 
we used published annotated transcriptomic datasets in 
COVID-19 to specifically look at T-cell phenotypes ranging 
from naïve to effector memory and exhausted and found that 
MALAT1 is negatively correlated with a core gene signature 
in T cells, which in turn is linked to cellular proliferation. 
Using post-mortem lung autopsy samples, we experimentally 
validated this association and showed that MKI67+ prolif-
erative CD8+ cells are characterized by low MALAT1 expres-
sion.

T-cell proliferation can be spontaneous or homeostatic[58] 
and the conditions that regulate the same vary between CD4+ 
and CD8+ T cells [59]. CD8+ T-cell proliferation is essential 
with rapid proliferation in response to interaction with a for-
eign peptide but also during homeostasis if T-cell numbers 
fall below a threshold [60]. The former, however, progresses 
through to a CD8 effector memory phenotype [61]. In fact, 
it has been demonstrated in CD8+ T cells, that a T-central 
memory phenotype is marked by a higher number of prior 
divisions than the effector memory T-cell pool [62–64]. The 
replicative history of T cells is closely connected to its func-
tional repertoire[64]. Interestingly, CD8+ T exhausted cells in 
COVID-19 are connected via the CD8 TN, CD8+ TEM lineage 
(using pseudo time analysis) and have higher levels of prolif-
eration markers [48]. Indeed, using Wauters Mol, et al., 2021 
dataset, we note that CD8 + TEX have a corresponding lower 
MALAT1 level with increased expression of MALAT1 anti-
correlating genes (Fig. 2C).

MALAT1 has been long associated with enhanced prolif-
eration in cancer [35, 65] and the lack of the gene is shown 
in human diploid lung fibroblasts to have a reduction in their 
proliferation with an arrest at the G1/S phase with an increase 
in genes involved in the p53 pathway [41]. Interestingly, in T 
cells we observe a physiological downregulation of MALAT1 
that anticorrelates with the S-phase score of cells (Fig. 4F), 
suggesting MALAT1 suppression may be a consequence of 
T-cell proliferation. Interestingly, overall MALAT1 levels 
anti-correlate to HALLMARK_P53_PATHWAY (Fig. 3B) and 
is unique to CD8 + T cells. While MALAT1 in this work has 
been shown to anti-correlate with a cell’s S-phase score (Fig. 
4F), it has been shown that many lincRNAs peak during the 
S phase in human epithelial cells leading to transcriptional 
regulation during cell cycle progression [66]. In that study, 
it was found that MALAT1 peaks close to the beginning of 
G2/M [66]. In this respect, we found MALAT1 levels to cor-
relate with G2M score in T cells (Fig. 4F), which indicates the 
similarity of T cells to epithelial cells in terms of MALAT1 
expression during the cell cycle.

We find that more genes anti-correlate with MALAT1 
than those that correlate (Fig. 2A). Whether this is due to 
the direct effects of MALAT1 through its roles in gene regu-
lation [67] will need to be further tested. However, it sug-
gests that physiological regulation of MALAT1 levels may 

http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad034#supplementary-data
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Figure 5. MALAT1 expression is reduced in proliferating CD8+ T cells post-mortem tissue. (A) DAPI stained (grey) whole lung autopsy section. (B–D), 
Immunofluorescence and RNAScope images showing nucleus in grey (DAPI), MKI67 protein in green, CD8 surface protein in purple and MALAT1 RNA 
in yellow. Images show representative cells negative for MKI67 and positive for MALAT1 (B), weakly positive for MIK67 and with undetectable MALAT1 
(C) and highly expressing MKI67 along with MALAT1 (D). Dotted arrows in (D) highlight MALAT1 positive signal for clarity. (E) Strategy employed to 
detect cells wherein first nucleus was identified and then cell boundaries using QuPath (see Methods) and a positive cell was detected (shown here in 
red) based on CD8 fluorescence intensity of the cell. (F) Scatter/histogram plots per autopsy along with horizontal and vertical lines drawn at the mean 
nuclear MALAT1 (793, 671, 629, 516, and 703) and MKI67 (685, 530, 457, 534, and 476) intensities, respectively. The two straight lines divide the plot 
into four quadrants, into regions that include cells that highly express MKI67 only (IV), MALAT1 only (II), both (I), or neither (III).
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alter gene expression of T cells that are known for their 
plasticity [68]. Further still, as cell proliferation is central 
to T-cell activation [69, 70], it will be interesting to inves-
tigate how a lack of MALAT1 during proliferation may 
shape T-cell function upon subsequent activation and dif-
ferentiation. We have previously reported that a lack of 
MALAT1 results in lower levels of MAF and IL10 in mice 
and as a consequence, greater host resistance to infection 
or increased immunopathology [46]. Others have reported 
impaired CD8+ T-cell function upon MALAT1 loss [45]. 
Interestingly, MALAT1 mediates its function through inter-
actions with proteins and potentially RNA, interactions 
which based on the results presented here would be ex-
pected to be altered in MALAT1-lo proliferating T cells. 
Genes that may be associated with shaping T-cell func-
tion post proliferation may indeed lie amid the MALAT1 
anti-correlated signature that we find in CD4+ and CD8+ 
T cells, especially those involved in cytokine response and 
oxidative phosphorylation (Fig. 3A). As an example we 
find HAVCR2 (TIM-3) which is a marker for T-cell exhaus-
tion[71] anti-correlates with MALAT1 (unique to CD8+ T 
cells, Fig. 3D). How these genes may vary between T-cell 
subsets such as CD8+ T-central memory where lowly div-
ided cells are capable of mounting a better effector response 
upon re-infection[64] and exhausted CD8+ T-cell popula-
tion with increased cell cycle markers like MKI67[3, 48] 
requires further investigation.

Taken together our results reveal that suppression of 
MALAT1 expression is a feature of proliferating activated 
T cells. This means that MALAT1-associated functions are 
likely to be suppressed in proliferating T cells, but not ne-
cessarily that MALAT1 suppression drives the proliferation. 
There is a long list of reports supporting that MALAT1 pro-
motes cell proliferation at least within the context of cancer 
cells[72]. Based on this, we speculate that one possibility is 
that MALAT1 downregulation following T-cell activation can 
be a potential mechanism to limit uncontrolled T-cell prolifer-
ation. This however will need to be experimentally confirmed 
in future studies. Mechanistically, MALAT1 might affect T-cell 
activation, proliferation, or differentiation through its role in 
post-transcriptional regulation, for example through direct 
interaction with several RNA-binding proteins[73], many 
of which are involved in T-cell proliferation and differenti-
ation[74, 75]. The MALAT1-linked gene signatures identified 
here provide an initial insight into the potential functional 
consequences of MALAT1 suppression in human T cells, 
forming the foundation for further mechanistic studies on the 
function of this highly expressed lincRNA in T cells within 
and beyond viral infection.

Methods
Datasets
Single-cell RNA seq data from healthy and COVID-19 pa-
tients from gene expression omnibus accession number 
GSE145926 which is referred to throughout the paper as 
Liao et al. [47] and T-cell barcodes (using metadata from the 
original publication) were subset and used further for ana-
lysis. Dataset Wauters et al. [48] was obtained from https://
lambrechtslab.sites.vib.be/en/data-access. Specifically, the file 
T_NKT_cells.counts.rds was downloaded to use as counts 
matrix. Single-cell data for barcodes with ‘COVID19’ as 

metadata were included in the downstream analysis from the 
Wauters et al. dataset.

Finally, accession number GSE158127 [49] was used to 
analyze post-mortem T cells from the lungs and for valid-
ation. Further, GSE149689 [50] was used to look at MALAT1 
signatures in PBMCs and in flu.

Cell cycle genes were not regressed prior to dimensionality 
reduction and downstream analysis in any of the datasets to 
show proliferating T cells as a separate cluster owing to their 
distinct cell cycle-related gene expression.

In silico T-cell quality check and phenotype 
identification
Single T-cell transcriptomes from Liao et al. and Wauters et 
al. were loaded as Seurat (v4.0.5) objects and the latter Seurat 
object’s metadata describing T-cell phenotypes were used to 
impute T-cell phenotypes in Liao et al. using the functions 
FindTransferAnchors() and Transferdata(). Next, single tran-
scriptomes with greater than 5% mitochondrial genes were 
discarded from downstream analysis. Next, counts from both 
Seurat objects were regressed using percentage of mitochon-
drial genes, ribosomal genes, total RNA count, and number 
of unique features using method “glmGamPoi” which is 
available as an R package with the same name (https://
bioconductor.org/packages/release/bioc/html/glmGamPoi.
html). Finally, the anchors between the two Seurat Objects 
were found (functions SelectIntegrationFeatures() and 
FindIntegrationAnchors()) to then integrate (IntegrateData()) 
them into a single integrated Seurat object.

Dimensionality reduction
Principal components analysis was performed on the inte-
grated Seurat object (3000 variable features). Top 30 PCA 
components were used to cluster the data by a K-nearest 
neighbor clustering using FindClusters() with a resolution 
parameter of 0.8. UMAP was performed on the PCA space 
and single cells were represented on UMAP axes and colored 
by their cluster membership.

Correlation analysis
The correlation of all genes with MALAT1 was calculated 
using cor.test() from the stats package in R (4.1.1) imple-
mented with Spearman’s ranked correlation method. The 
level of significance associated with a correlation was set 
at 0.05. Correlation values between −0.1 and 0.1 (both in-
cluded) were excluded.

Network and gene set enrichment analysis
Network analysis of gene lists was performed on String-
DBGene set enrichment analysis was performed on STRING 
(https://string-db.org/). Gene set enrichment analysis (GSEA, 
http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) using 
the option to ‘Investigate Gene Sets’ to search for signifi-
cant (P-value corrected) overlaps with Hallmark gene sets, 
GO biological process, cellular component, and molecular  
function.

Area under curve
Gene list enrichment in cells was calculated using the R 
package AUCell, originally published as a part of SCENIC 
[54]. Expression matrices as obtained from the Seurat ob-
ject were provided to the function AUCell_buildRankings() 

https://lambrechtslab.sites.vib.be/en/data-access
https://lambrechtslab.sites.vib.be/en/data-access
https://bioconductor.org/packages/release/bioc/html/glmGamPoi.html
https://bioconductor.org/packages/release/bioc/html/glmGamPoi.html
https://bioconductor.org/packages/release/bioc/html/glmGamPoi.html
https://string-db.org/
http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp
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to build cell rankings which were then used to calculate an 
‘area-under-recovery-curve’ for the provided gene list. AUC 
score thresholds were selected based on visual inspection and 
are indicated in the relevant figure.

RNAScope and immunofluorescence
Post-mortem autopsy sections from UK-CIC first wave co-
hort (CIC003-9) were obtained on glass slides and stained for 
CD8, MKI67, and DAPI. MALAT1 was probed on the same 
section using RNAScope (Bio-techne) FISH assay as per the 
manufacturer’s instructions.

QuPath
All images were acquired on a Zeiss AxioScan.Z1 slide 
scanner. Exposure times and threshold settings for all three 
channels were used for each of the images. Images in the 
CZI format were loaded on QuPath-0.3.2 [76]. Whole im-
ages were analyzed for co-expression of MKI67, CD8, and 
MALAT1 at single-cell resolution, and count data were ana-
lyzed. CD8 + cells were detected using the module ‘positive 
cell detection’ using DAPI as a counterstain to draw nuclei 
and cell boundaries. Cellular CD8 intensity was then used to 
detect positive cell types. Data was exported and then further 
investigated in R. Cells with a circularity score of less than 
0.75 were excluded and expression positivity for MKI67 and 
MALAT1 was determined by selecting only those cells that 
had a maximum pixel intensity greater than the minimum de-
tected intensity.

Supplementary data
Supplementary data is available at Clinical and Experimental 
Immunology online.
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