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Abstract

We propose to apply a 2D CNN architecture to 3D MRI image Alzheimer’s disease classification. 

Training a 3D convolutional neural network (CNN) is time-consuming and computationally 

expensive. We make use of approximate rank pooling to transform the 3D MRI image volume 

into a 2D image to use as input to a 2D CNN. We show our proposed CNN model achieves 9.5% 

better Alzheimer’s disease classification accuracy than the baseline 3D models. We also show that 

our method allows for efficient training, requiring only 20% of the training time compared to 3D 

CNN models. The code is available online: https://github.com/UkyVision/alzheimer-project.
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1. Introduction

Alzheimer’s disease (AD) is the sixth leading cause of death in the U.S. [1]. It heavily 

affects the patients’ families and U.S. health care system due to medical payments, social 

welfare cost, and salary loss. Since AD is irreversible, early stage diagnosis is crucial 

for helping slow down disease progression. Currently, researchers are using advanced 

neuroimaging techniques, such as magnetic resonance imaging (MRI), to identify AD. MRI 

technology produces a 3D image, which has millions of voxels. Figure 1 shows example 

slices of Cognitive Unimpaired (CU) and Alzheimer’s disease (AD) MRI images.

With the promising performance of deep learning in natural image classification, 

convolutional neural networks (CNNs) show tremendous potential in medical image 
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diagnosis. Due to the volumetric nature of MRI images, the natural deep learning model 

is a 3D convolutional neural network (3D CNN) [10]. Compared to 2D CNN models, 3D 

CNN models are more computationally expensive and time consuming to train due to the 

high dimensionality of the input. Another issue is that most current medical datasets are 

relatively small. The limited data makes it difficult to train a deep network that generalizes 

to high accuracy on unseen data. To overcome the problem of limited medical image training 

data, transfer learning is an attractive approach for feature extraction. However, pre-trained 

CNN models are mainly trained on 2D image datasets. There are few suitable pre-trained 3D 

CNN models. In our paper, We propose to apply approximate rank pooling [3] to convert 

a 3D MRI volume into a 2D image over the height dimension. Thus, we can use a 2D 

CNN architecture for 3D MRI image classification. The main contributions of our work are 

following:

• We propose to apply a CNN model that transforms the 3D MRI volume 

image into 2D dynamic image as the input of 2D CNN. Incorporating with an 

attention mechanism, the proposed model significantly boosts the accuracy of the 

Alzheimer’s Disease MRI diagnosis.

• We analyze the effect of skull MRI images on the approximate rank pooling 

method, showing that the applied approximate rank pooling method is sensitive 

to the noise introduced by the skull. Skull striping is necessary before using the 

dynamic image technology.

2. Related Work

Learning-based Alzheimer’s disease (AD) research can be mainly divided into two branches 

based on the type of input: (1) manually selected region of interest (ROI) input and (2) 

whole image input. With ROI models [6] [14], manual region selection is needed to extract 

the interest region of the original brain image as the input to the CNN model, which is 

a time consuming task. It is more straightforward and desirable to use the whole image 

as input. Korolev et al. [11] propose two 3D CNN architectures based on VGGNet and 

ResNet, which is the first study to prove the manual feature extraction step for Brain MRI 

image classification is unnecessary. Their 3D models are called 3D-VGG and 3D-ResNet, 

and are widely used for 3D medical image classification study. Cheng et al. [4] proposes to 

use multiple 3D CNN models trained on MRI images for AD classification in an ensemble 

learning strategy. They separate the original MRI 3D images into many patches (n=27), 

then forward each patch to an independent 3D CNN for feature extraction. Afterward, the 

extracted features are concatenated for classification. The performance is satisfactory, but 

the computation cost and training time overhead are very expensive. Yang et al. [18] uses 

the 3D-CNN models of Korolev et al. [11] as a backbone for studying the explainability 

of AD classification in MRI images by extending class activation mapping (CAM)[20] and 

gradient-based CAM[16] on 3D images. In our work, we use the whole brain MRI image as 

input and use 3D-VGG and 3D-ResNet as our baseline models. Dynamic images where first 

applied to medical imagery by Liang et al. [13] for breast cancer diagnosis. The authors use 

the dynamic image method to convert 3D digital breast tomosynthesis images into dynamic 

images and combined them with 2D mammography images for breast cancer classification. 
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In our work, we propose to combine dynamic images with an attention mechanism for 3D 

MRI image classification.

3. Approach

We provide a detailed discussion of our method. First, we summarize the high-level network 

architecture. Second, we provide detailed information about the approximate rank pooling 

method. Next, we show our classifier structure and attention mechanism. Finally, we discuss 

the loss function used for training.

3.1. Model Architecture

Figure 2 illustrates the architecture of our model. The 3D MRI image is passed to the 

approximate rank pooling module to transform the 3D MRI image volume into a 2D 

dynamic image. We apply transfer learning for feature extraction with the dynamic image 

as the input. We leveraged a pre-trained CNN as the backbone feature extractor. The feature 

extraction model is pretrained with the ImageNet dataset [5]. Because we use a lower input 

resolution than the resolution used for ImageNet training, we use only a portion of the 

pre-trained CNN. The extracted features are finally sent to a small classifier for diagnosis 

prediction. The attention mechanism, which is widely used in computer vision community, 

can boost CNN model performance, so we embed the attention module in our classifier.

3.2. Dynamic Image

The temporal rank pooling [7] [3] was originally proposed for video action recognition. For 

a video with T frames I1, …, IT, the method compresses the whole video into one frame by 

temporal rank pooling. The compressed frame is called a dynamic image. The construction 

of the dynamic image is based on Fernando et al [7]. The authors use a ranking function 

to represent the video. ψ It ∈ ℜd is a feature representation of the individual frame It

of the video. V t = 1
t ∑τ = 1

t ψ Iτ  is the temporal average of the feature up to time t . V t is 

measured by a ranking score S t ∣ d = < d, V t >, where d ∈ ℜm is a learned parameter. By 

accumulating more frames for the average, the later times are associated with larger scores, 

e.g q > t S q ∣ d > S t ∣ d , which are constraints for the ranking problem. So the whole 

problem can be formulated as a convex problem using RankSVM:

d* = ρ I1, …, It; τ argmin
d

E d (1)

E d = λ
2 ∥ d ∥2 + 2

T T − 1 ×
q > t

max 0, 1 − S q ∣ d + S t ∣ d (2)

In Equation (2), the first term is a quadratic regularization used in SVMs, the second term is 

a hinge-loss counting incorrect rankings for the pairs q > t.
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The RankSVM formulation can be used for dynamic image generation, but the operations 

are computationally expensive. Bilen et al. [3] proposed a fast approximate rank pooling for 

dynamic images:

ρ̂ I1, …, It; ψ =
t = 1

T
αt ⋅ ψ It (3)

where, ψ It = 1
t ∑τ = 1

t Iτ is the temporal average of frames up to time t, and αt = 2t − T − 1

is the coefficient associated to frame ψ It . We take this approximate rank pooling strategy 

in our work for 3D MRI volume to 2D image transformation. In our implementation, the 

z-dimension of 3D MRI image is equal to temporal dimension of the video.

3.3. Classifier with Attention Mechanism

The classifier is a combination of an attention mechanism module and a basic classifier. 

Figure 3 depicts the structure of attention mechanism, which includes four 1×1 

convolutional layers. The first three activation functions of convolutional layers are ReLU, 

the last convolutional layer is attached with softmax activation function. The input feature 

map A ∈ RH × W × C are passed through the four convolutional layers to calculate attention 

mask S ∈ RH × W × 1. We apply element-wise multiplication between the attention mask and 

input feature maps to get the final output feature maps O ∈ RH × W × C. Our basic classifier 

contains three fully connected (FC) layers. The output dimensions of the three FC layers are 

512, 64, and 2. Dropout layers are used after the first two layers with dropout probability 

0.5.

3.4. Loss Function

In previous AD classification studies, researchers mainly concentrated on binary 

classification. In our work, we do the same for ease of comparison. The overall loss function 

is binary cross-entropy. For a 3D image V  with label l and probability prediction p l ∣ V , the 

loss function is:

loss l, V = − l ⋅ log p l ∣ V + 1 − l ⋅ log 1 − p l ∣ V (4)

where the label l = 0 indicates a negative sample and l = 1 indicates a positive sample.

4. Evaluation

We use the publicly available dataset from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [2] for our work. Specifically, we trained CNNs with the data from the “spatially 

normalized, masked, and N3-corrected T1 images” category. The brain MRI image size is 

110×110×110. Since a subject may have multiple MRI scans in the database, we use the 

first scan of each subject to avoid data leakage. The total number of data samples is 100, 

containing 51CU samples and 49 AD samples.

The CNNs are implemented in PyTorch. We use five-fold cross validation to better evaluate 

model performance. The batch size used for our model is 16. The batch size of the baseline 
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models is 8, which is the maximum batch size of the 3D CNN model trained on the single 

GTX-1080ti GPU. We use the Adam optimizer with beta a1 = 0.9 and beta a2 = 0.999. The 

learning rate is 0.0001. We train for 150 epochs. To evaluate the performance of our model, 

we use accuracy (Acc), the area under the curve of Receiver Operating Characteristics 

(ROC), F1 score (F1), Precision, Recall and Average Precision (AP) as our evaluation 

metrics.

4.1. Quantitative Results

High quality feature extraction is crucial for the final prediction. Different pre-trained CNN 

models can output different features in terms of size and effective receptive field. We test 

different pre-trained CNNs to find out which CNN models perform best as our feature 

extractor. Table 1 shows various CNN models and the corresponding output feature size.

Since our dynamic image resolution is 110×110×3, which is much smaller than the 

ImageNet dataset resolution: 256×256×3, we use only part of the pre-trained CNN as the 

feature extractor. Directly using the whole pre-trained CNN model as feature extractor will 

cause the output feature size to be too small, which decreases the classification performance. 

In the implementation, we get rid of the maxpooling layer of each pre-trained model except 

for the MobileNet_v2 [15], which contains no maxpooling layer. Also, because there is 

a domain gap between the natural image and medical image we set the pre-trained CNN 

models’ parameters trainable, so that we can fine tune the models for better performance.

When analyzing MRI images using computer-aided detectors (CADs), it is common to strip 

out the skulls from the brain images. Thus, we first test the proposed method using the MRI 

with the skull stripped. Our proposed model takes dynamic images (Dyn) as input, VGG11 

as feature extractor, and a classifier with the attention mechanism: Dyn +VGG11+Att. The 

whole experiment can be divided into three sections: the backbone and attention section, 

the baseline model section, and the pooling section. In the backbone and attention section, 

we use 4 different pre-trained models and test the selected backbone with and without the 

attention mechanism. Based on the performance shown in Table 2, we choose VGG11 as the 

backbone model. In the baseline model section, we compare our method with two baselines, 

namely 3D-VGG and 3D-ResNet. Table 3 shows the performance under different CNN 

models. The proposed model achieves 9.52% improvement in accuracy and 15.20% better 

ROC over the 3DResNet. In the pooling section: we construct two baselines by replacing 

the approximate rank pooling module with the average pooling (Avg.) layer or max pooling 

(Max.) layer. The pooling layer processes the input 3D image over the z-dimension and 

outputs the same size as the dynamic image. Comparing with the different 3D-to-2D 

conversion methods under the same configuration, the dynamic image outperforms the two 

pooling methods.

4.2. Pre-processing Importance Evaluation

In this section, we show results using the raw MRI image (including skull) as input. We 

perform experiments on the same patients’ raw brain MRI image with the skull included to 

test the performance of our model. The raw MRI image category is “MT1,GradWarp,N3m”. 

The image size of the raw MRI image is 176×256×256 Figure 4 illustrates the dynamic 
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images of different participants’ MRI brain images with the skull. The dynamic images 

are blurrier than the images under skull striping processing. This is because the skull 

variance can be treated as noise in the dynamic image. Table 4 shows the significant 

performance decrease when using 3D Brain MRI images with skull. Figure 4 shows a visual 

representation of how the dynamic images are affected by including the skull in the image. 

In this scenario, the model can not sufficiently diagnose the different groups. A potential 

cause of this decrease in performance is that the approximate rank pooling module is a 

pre-processing step, and the module is not trainable. We believe an end-to-end, learnable 

rank pooling module would improve performance.

4.3. Models Training time

Another advantage of the proposed model is faster training. We train all of our CNN models 

for 150 epochs on the same input dataset. Table 5 shows the total training time of the 

different 2D and 3D CNN models. Compared with the 3D-CNN networks, the proposed 

model trains in about 20% of the time. Also, due to the higher dimension of the 3D 

convolutional layer, the number of parameters of the 3D convolutional layer is naturally 

higher than the 2D convolutional layer. By applying the MobileNet [9] or ShuffleNet [19] in 

medical image diagnosis, there is potential for mobile applications. We used MobileNet for 

our experiments. We used the MobileNet v1 achitecture as the feature extractor and obtained 

84.84% accuracy, which is similar in accuracy to the 3D ResNet.

5. Conclusions

We proposed to apply the approximate rank pooling method to convert 3D Brain MRI 

images into 2D dynamic images as the inputs for a pre-trained 2D CNN. The proposed 

model outperforms a 3D CNN with much less training time and improves 9.5% better 

performance than the baselines. We trained and evaluated on MRI brain imagery and 

found out that brain skull striping pre-processing is useful before applying the approximate 

rank pooling conversion. We used an offline approximate rank pooling module in our 

experiments, but we believe it would be interesting to explore a learnable temporal rank 

pooling module in the future.
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Fig. 1. 
The MRI sample slices of the CU and AD participants and the corresponding dynamic 

images.
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Fig. 2. 
The architecture of our 2D CNN model.
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Fig. 3. 
The attention mechanism structure in our CNN model.

Xing et al. Page 10

Comput Vis ECCV. Author manuscript; available in PMC 2023 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The MRI sample slices with skull of the CU and AD participants and the corresponding 

dynamic images.
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Table 1.

The different pre-trained CNN model as feature extractors and the output feature sizes

CNN model Output feature size

AlexNet [12] 256 × 5 × 5

VggNet11 [17] 512 × 6 × 6

ResNet18 [8] 512 × 7 × 7

MobileNet_v2 [15] 1280 × 4 × 4
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Table 2.

The performance results of different backbone models with dynamic image as input

Model Acc ROC F1 Precision Recall AP

AlexNet 0.87 0.90 0.86 0.89 0.83 0.82

ResNet18 0.85 0.84 0.84 0.86 0.81 0.79

MobileNet_v2 0.88 0.89 0.87 0.89 0.85 0.83

VggNet11 0.91 0.92 0.91 0.88 0.93 0.86
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Table 3.

The performance results of different 2D and 3D CNN models

Model Acc ROC F1 Precision Recall AP

3D-VGG [11] 0.80 0.78 0.78 0.82 0.75 0.74

3D-ResNet [11] 0.84 0.82 0.82 0.86 0.79 0.78

Max. + VGG11 0.80 0.77 0.80 0.78 0.81 0.73

Avg. + VGG11 0.86 0.84 0.86 0.83 0.89 0.79

Max. + VGG11 + Att 0.82 0.76 0.82 0.80 0.83 0.75

Avg. + VGG11 + Att 0.88 0.89 0.88 0.85 0.91 0.82

Ours 0.92 0.95 0.91 0.97 0.85 0.90
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Table 4.

The performance results of different 2D and 3D CNN models on the MRI image with skull.

Model Acc ROC F1 Precision Recall AP

3D-VGG [11] 0.78 0.62 0.77 0.80 0.75 0.72

Ours 0.63 0.52 0.63 0.62 0.64 0.57
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Table 5.

The total 150 epochs training time of different CNN models.

Training time(s)

3D-VGG [11] 2359

3D-ResNet [11] 3916

Ours 414
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