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Abstract
Aims/hypothesis  Chronic hyperglycaemia and recurrent hypoglycaemia are independently associated with accelerated cog-
nitive decline in type 1 diabetes. Recurrent hypoglycaemia in rodent models of chemically induced (streptozotocin [STZ]) 
diabetes leads to cognitive impairment in memory-related tasks associated with hippocampal oxidative damage. This study 
examined the hypothesis that post-hypoglycaemic hyperglycaemia in STZ-diabetes exacerbates hippocampal oxidative stress 
and explored potential contributory mechanisms.
Methods  The hyperinsulinaemic glucose clamp technique was used to induce equivalent hypoglycaemia and to control 
post-hypoglycaemic glucose levels in mice with and without STZ-diabetes and Nrf2−/− mice (lacking Nrf2 [also known as 
Nfe2l2]). Subsequently, quantitative proteomics based on stable isotope labelling by amino acids in cell culture and biochemi-
cal approaches were used to assess oxidative damage and explore contributory pathways.
Results  Evidence of hippocampal oxidative damage was most marked in mice with STZ-diabetes exposed to post-hypogly-
caemic hyperglycaemia; these mice also showed induction of Nrf2 and the Nrf2 transcriptional targets Sod2 and Hmox-1. 
In this group, hypoglycaemia induced a significant upregulation of proteins involved in alternative fuel provision, reductive 
biosynthesis and degradation of damaged proteins, and a significant downregulation of proteins mediating the stress response. 
Key differences emerged between mice with and without STZ-diabetes following recovery from hypoglycaemia in proteins 
mediating the stress response and reductive biosynthesis.
Conclusions/interpretation  There is a disruption of the cellular response to a hypoglycaemic challenge in mice with STZ-
induced diabetes that is not seen in wild-type non-diabetic animals. The chronic hyperglycaemia of diabetes and post-
hypoglycaemic hyperglycaemia act synergistically to induce oxidative stress and damage in the hippocampus, possibly 
leading to irreversible damage/modification to proteins or synapses between cells. In conclusion, recurrent hypoglycaemia 
in sub-optimally controlled diabetes may contribute, at least in part, to accelerated cognitive decline through amplifying 
oxidative damage in key brain regions, such as the hippocampus.
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Data availability  The datasets generated during and/or analysed during the current study are available in ProteomeXchange, 
accession no. 1-20220824-173727 (www.​prote​omexc​hange.​org). Additional datasets generated during and/or analysed during 
the present study are available from the corresponding author upon reasonable request.
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Abbreviations
ACADL	� Long-chain acyl Co-A dehydrogenase
CDC37	� HSP90 co-chaperone
EDIC	� Epidemiology of Diabetes Interventions and 

Complications
HSP90B	� Heat shock protein 90-β
NRF2	� Nuclear factor erythroid 2-related factor 2
6PGD	� 6-Phosphogluconate dehydrogenase
PPP	� Pentose phosphate pathway
PSMA2	� Proteasome subunit α type-2
PSMA3	� Proteasome subunit α type-3
PSMB7	� Proteasome subunit β type-7
ROS	� Reactive oxygen species
SILAC	� Stable isotope labelling by amino acids in cell 

culture

STZ	� Streptozotocin
WT	� Wild-type

Introduction

Short-duration longitudinal studies in young adults with 
type 1 diabetes compared with matched adults without 
diabetes have reported small but significant increases in 
the rate of cognitive decline associated with prolifera-
tive retinopathy and systolic hypertension [1, 2]. More 
recently, the 32-year follow-up of participants enrolled in 
the DCCT/Epidemiology of Diabetes Interventions and 
Complications (EDIC) study reported that higher HbA1c 
levels over time and elevated systolic BP were associated 

http://www.proteomexchange.org
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with a greater rate of cognitive decline collectively equiva-
lent to 9.4 years accelerated brain ageing [3]. Within the 
EDIC cohort, an fMRI substudy of middle-aged and older 
adults found brain volume loss and increased vascular 
injury compared with control individuals without diabetes 
[4]. Severe hypoglycaemia was also reported to be inde-
pendently associated with cognitive decline in the EDIC 
cohort [3], a finding consistent with observational [5–7] 
and short-duration longitudinal [8] studies.

A reliance on glucose as a fuel, and limited capacity to store 
fuel, makes the brain especially vulnerable to hypoglycaemia 
[9]. Certainly, profound hypoglycaemia (to a degree that 
induces an isoelectric EEG) results in neuronal death in areas 
of the brain such as the hippocampus [10]. The hippocampus 
has been extensively researched for its role in memory func-
tion, processing speed, and intelligence [11]. Cognitive age-
ing is associated with loss of hippocampal volume [12]. In a 
recent report from our laboratory, we showed that rodents with 
chemically induced type 1 diabetes who had been exposed 
to recurrent hypoglycaemia demonstrated greater defects in 
memory function than rodents with type 1 diabetes who had 
not experienced recurrent hypoglycaemia. This was associated 
with evidence of lipid peroxidation and protein carbonylation 
in the hippocampus, markers of oxidative damage [13].

Although reactive oxygen species (ROS) play an integral 
part in the normal signalling response within many cell types, 
including neurons, large and frequent disturbances in glucose 
homeostasis cause excessive ROS production resulting in oxi-
dative stress [14, 15]. Chronic hyperglycaemia [16], severe 
hypoglycaemia [17] and post-hypoglycaemic glucose recovery 
all stimulate ROS production. Notably, ROS production post-
hypoglycaemia correlates directly with the degree of glucose 
increase during recovery from hypoglycaemia [18]. Chronic 
hyperglycaemia also impairs antioxidant defence mechanisms 
[19, 20]. This led us to hypothesise that marked glycaemic var-
iability may lead to excessive ROS production and irreversible 
oxidative damage to cells within the brain [13]. What is not 
clear from these studies is the relative contribution of each to 
oxidative damage and the key pathways that may underlie this. 
In the present study, we address this question directly using the 
hyperinsulinaemic glucose clamp technique combined with the 
measurement of ROS-induced protein modifications (protein 
carbonylation and lipid peroxidation) and stable isotope label-
ling by amino acids in cell culture (SILAC) proteomic analysis 
of the hippocampus in a variety of mouse models.

Methods

Experimental animals  Male C576BL/6J mice (20–25 g; 
Charles River, UK) were used. The generation (mice were 
backcrossed over six generations onto a C57BL/6J back-
ground) and genotyping of Nrf2−/− mice lacking Nrf2 (also 

known as Nfe2l2), kindly provided by K. Itoh and M. Yama-
moto (Centre for Tsukuba Advanced Research Alliance and 
Institute of Basic Medical Sciences, University of Tsukuba, 
Tsukuba, Japan), were performed as described previously 
[21]. Mice were housed four per cage with food and water 
available ad libitum, on a 12 h light–dark schedule. All ani-
mal procedures were approved by the University of Dundee 
Ethical Review Process and performed according to UK 
Home Office regulations and the ARRIVE 2.0 guidelines 
(under the auspices of Project License PIL PE82c1898).

Induction of diabetes  C576BL/6J mice were randomly 
assigned to receive streptozotocin (STZ; 150 mg/kg i.p.) to 
chemically induce STZ-diabetes or control (Hanks’ Buff-
ered Salt Solution buffer; Gibco, UK; i.p.). At 72 h and 7 
days post-injection, blood glucose was measured from tail-
vein samples using a hand-held glucose monitor (Accuread, 
Roche, UK); blood glucose ≥16.0 mmol/l was regarded as 
diabetic. Any mouse that failed to reach this criterion was 
given a second injection of STZ, and blood glucose was re-
tested. To maintain body weight and health, Linbit insulin 
implants (LinShin, Canada; at half of the recommended dose 
[~0.05 U/kg per day]) were inserted subcutaneously under 
isoflurane anaesthetic as described [13]. Control mice were 
also anaesthetised.

Vascular surgery and glycaemic clamping  After 4 weeks of 
stable hyperglycaemia (STZ-diabetes) or euglycaemia (wild-
type [WT] control and Nrf2−/−mice), the mice underwent 
surgery for the insertion of vascular catheters as described 
previously [22]. Mice were allowed to recover for 5 days (or 
until they reached pre-surgery weight).

Infusion protocol  As previously described, a 2 h 4 mU kg−1 
min−1 infusion of human short-acting insulin (Actrapid, 
Novo Nordisk, UK) was initiated in mice fasted for 5 h [23]. 
Mice were then allocated into groups (see Fig. 1 and the 
Text box detailing mouse groups). Target glucose levels (5.2 
mmol/l [euglycaemia], 2.8 mmol/l [hypoglycaemia] and >16 
mmol/l [hyperglycaemia]) were achieved and maintained for 
at least 30 min using a variable 50% glucose infusion based 
on frequent plasma glucose determinations. Additional 
blood samples to measure counterregulatory hormones were 
taken at the end of the second step of the clamp. At the end 
of the clamp, the mice were given food and water ad libitum 
and allowed to recover to their endogenous glucose levels 
(i.e., hyperglycaemia for STZ-diabetes mice and euglycae-
mia for WT control and Nrf2−/− mice).

Hormone analysis  Plasma glucagon and adrenaline levels 
were measured using commercially available ELISA kits 
(adrenaline, DEE5100R, Demeditec, Germany; glucagon, 
10-1281-01, Mercodia, Sweden).
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Biochemical analysis  Sixteen hours after the clamp, mice 
were killed humanely, and the brain (hippocampus) was 
dissected and flash-frozen in liquid nitrogen for subsequent 
biochemical analysis.

Sample preparation and SILAC  Hippocampal samples (sin-
gle lobe from each mouse) from groups A (WT-EE) and E 
(STZ-LH) were analysed using SILAC-based proteomic anal-
ysis [24]. Samples were randomised, and the analysts were 
blinded during data acquisition. Samples were homogenised, 
and the protein extracted in sodium dodecyl sulfate (SDS, 4% 
wt/vol.) dithiothreitol (DTT, 0.1% wt/vol.), 100 mmol/l Tris-
HCl (pH 7.6). After centrifugation, protein lysates from each 
experimental sample were spiked with an equivalent amount 
of SILAC protein lysate. After heating to 60°C for 30 min, 
the samples were alkylated by adding an equal volume of 150  

mmol/l iodoacetamide (in 100 mmol/l Tris-HCl buffer 
[pH 7.6]). The protein was precipitated using the MeOH–
chloroform method [25], and the protein concentration 
was measured using Protein 660 nm reagent (Pierce, UK). 
Samples were reduced/alkylated, digested with LysC 
(Pierce, 1:100), and then fractionated using a strong anion  
exchanger [26].

LC‑MS/MS and data processing  The top 6 ms/ms programs 
(collision-induced dissociation [CID] or pulse-Q dissociation 
[PQD]) on LTQ-Orbitrap (Thermo Scientific, Germany) pep-
tide identification and protein quantification were assessed 
using Maxquant (Ver 1.5.0.30; www.​maxqu​ant.​org) or 
PEAKS 7.0 (Bioinformatics Solution Inc, Canada; database 
=Uniprot mouse 2017-02-29). Quantification is based on the 
methods described [24]. Missing data points were replaced  

Fig. 1   Experimental design of 
mouse glycaemic clamps. (a) 
Control (A, B, C) and Nrf2−/− 
(G, H, I) mice were exposed 
to stable euglycaemia (WT- or 
Nrf2−/−-EE), hypoglycaemia 
(~ 2.8 mmol/l) with recovery 
to euglycaemia (~5.2 mmol/l) 
(WT- or Nrf2−/−-LE), or 
hypoglycaemia with recov-
ery to hyperglycaemia (>16 
mmol/l) (WT- or Nrf2−/−-LH). 
(b) STZ-diabetic (D, E, F) 
mice were exposed to stable 
hyperglycaemia (STZ-HH), 
hypoglycaemia with recovery to 
hyperglycaemia (STZ-LH), or 
hypoglycaemia with recovery to 
euglycaemia (STZ-LE)
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Group C: control mice exposed to hypoglycaemia with recovery to hyperglycaemia (>16 mmol/l glucose) 
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(with 0) only for principal component analysis (PCA). A false 
detection rate (FDR) was set to 1% at the identified peptide 
spectrum match level. N-terminal acetylation, cysteine car-
bamidomethylation, and phosphorylation at S/T/Y were the 
only permitted post-translational modifications. Normalisa-
tion was performed using z-score normalisation in Perseus 
(Version 1.5.4.0, www.​maxqu​ant.​org).

Western blot analysis  The second hippocampal lobe from all 
groups was powdered on liquid nitrogen using a pestle and 
mortar. A portion of the powder was homogenised in lysis 
buffer containing protease inhibitors and prepared for west-
ern blotting or proteomics analysis as described [27]. The 
remaining powder was frozen at −80°C for subsequent bio-
chemical analysis. Membranes were probed for the following 
target proteins identified from SILAC (all from Cell Signal-
ling Technology, UK): heat shock protein 90-β (HSP90B); 
proteasome subunit α type-2 (PSMA2); proteasome subunit 
α type-3 (PSMA3); proteasome subunit β type-7 (PSMB7); 
6-phosphogluconate dehydrogenase (6PGD); long-chain 
acyl Co-A dehydrogenase (ACADL); and HSP90 co-chap-
erone (CDC37). All blots were normalised to the housekeep-
ing protein GAPDH.

Lipid peroxidation  Malondialdehyde concentration was 
determined in all hippocampal samples (A–I) by the thiobar-
bituric acid-reactive substances assay [28] using a 96-well 
plate format. The amount of malondialdehyde was deter-
mined spectrophotometrically at 532 nm, and concentra-
tions were determined by standard curve. All samples were 
assayed in duplicate.

Protein carbonylation  The level of carbonylated protein 
within the hippocampus of all groups (A–I) was measured 
by ELISA (Caymen Chemicals, US). Protein carbonyl con-
centration was calculated using the following equation: pro-
tein carbonyl (nmol/ml) = CA/(× 0.011 [mmol/l]−1) (500 
ml/200 ml), where CA is the corrected absorbance (mean 
absorbance of controls – mean absorbance of samples).

RNA extraction and PCR  Total RNA was extracted from hip-
pocampal tissue from all groups (A–I) using TRIzol rea-
gent (Invitrogen, UK). Reverse transcription was performed 
with 1 ng RNA using SuperScript III First-Strand Synthesis 
System for RT (Invitrogen). Real-time PCR was performed 
using TaqMan gene expression assays for the following 
genes: Nrf2 (encoding for nuclear factor erythroid 2-related 
factor 2 [NRF2]); Nqo1 (encoding for NAD(P)H: quinone 
oxidoreductase 1); Hmox-1 (encoding for haem oxygenase 

1); and Sod2 (encoding for superoxide dismutase 2). All 
samples were performed in triplicate and normalised to the 
housekeeping genes Actb and Ppia. Values are expressed as 
a fold-change relative to group A (WT-EE) for STZ-diabetic 
mice and group G (Nrf2−/−-EE) for Nrf2−/− mice.

Statistical analysis  Data were analysed using SPSS version 
18 (IBM, UK). One-way ANOVA was used to compare 
clamp groups within each genotype (groups A–F for control 
[WT] and STZ-diabetes mice; groups G–I for Nrf2−/− mice). 
Post hoc analysis was performed using Tukey’s multiple 
comparisons test. For data that were not normally distrib-
uted, Kruskal–Wallis, followed by Dunn’s multiple compari-
sons test, was performed. Data are expressed as mean values 
± SEM. Statistical significance was set at p<0.05.

Results

Hyperinsulinaemic clamp studies on control and STZ‑dia-
betic mice  Stable hypoglycaemic (groups B, C, E and F) 
and hyperglycaemic plateaus (groups C, D, E and F) were 
achieved during the clamp procedures (Table 1; p<0.05 for 
each group vs WT control [group A]). In groups B and C, 
hypoglycaemia from a euglycaemic baseline resulted in sig-
nificantly elevated glucagon and adrenaline plasma levels 
compared with group A. In contrast, in the STZ-diabetic 
mice (groups E and F), consistent with human type 1 dia-
betes, the glucagon response to a hypoglycaemic challenge 
was impaired (Table 1) [29] and the adrenaline response was 
severely blunted. The hormonal counterregulatory response 
to hypoglycaemia in Nrf2−/− mice was comparable with that 
in C57Bl6/J control mice (Table 1).

Chronic hyperglycaemia acts synergistically with acute 
hypoglycaemia to induce NRF2 target genes  To examine 
the impact of hypoglycaemia on Nrf2 and NRF2 target genes 
Nqo1, Sod2 and Hmox-1, their expression levels were meas-
ured in the hippocampus of all control and STZ-diabetes 
groups (electronic supplementary material [ESM] Table 1). 
Transcript levels of Nqo1 and Sod2 were significantly ele-
vated in STZ-diabetic mice following acute hypoglycaemia 
(STZ-LH vs WT-EE; p<0.05 for both genes), and the lev-
els of Sod2 were further increased (>fivefold) in chronic 
hyperglycaemia. In WT non-diabetic mice, Sod2 and Hmox-
1 transcript levels were significantly elevated by hypo-
glycaemia (WT-LE vs WT-EE; p<0.05). As anticipated, 
RNA levels of these NRF2 target genes were unaltered in 
Nrf2-knockout mice (ESM Table 2), demonstrating NRF2  
dependence.

http://www.maxquant.org


1345Diabetologia (2023) 66:1340–1352	

Acute hypoglycaemia in STZ‑diabetic mice but not in 
non‑diabetic WT mice induces oxidative damage in the hip-
pocampus  In non-diabetic WT control mice, acute hypo-
glycaemia did not significantly increase lipid peroxidation 
irrespective of the glucose level at which the clamp finished 
(Fig. 2b; WT-EE vs WT-LE, p>0.05; WT-EE vs WT-LH, 
p>0.05). In contrast, hippocampal lipid peroxidation was 
significantly increased in all STZ-diabetic models, with 
the most significant effect seen where there was post-hypo-
glycaemic hyperglycaemia (Fig. 2a; STZ-LH vs WT-EE, 
p<0.01). In STZ-diabetes, maintaining post-hypoglycaemic 
euglycaemia ameliorated this effect (STZ-LE vs STZ-LH, 
p<0.05). The levels of lipid peroxidation in Nrf2−/− mice 
were elevated in all conditions when compared with control 
(WT-EE) mice (Fig. 2c; main effect of genotype, p<0.01).

Protein carbonylation is commonly used as a biomarker 
of oxidative damage for many proteins. Levels increase with 
age, and this increase has been linked to changes in specific 
enzymes, such as members of the tyrosine kinase family 
[30], GLUT4 [31] and the 19s and 20s proteasomal subunits  

[32], and to diseases such as diabetes [33–35]. In non-
diabetic WT mice, there was no impact of a single acute 
hypoglycaemic challenge on levels of carbonylated pro-
teins when returned to euglycaemic levels (Fig. 2e; WT-EE 
vs WT-LE, p>0.05). In contrast, in STZ-diabetic mice, 
hypoglycaemia followed by recovery to hyperglycaemia 
resulted in a marked increase in protein carbonylation 
(Fig. 2d; WT-EE vs STZ-LH, p<0.01). There were also 
small but significant increases in carbonylated protein 
levels in STZ-diabetic mice that had not been exposed to 
hypoglycaemia (Fig. 2d; WT-EE vs STZ-HH, p<0.05), as 
well as non-diabetic mice who were exposed to post-hypo-
glycaemic hyperglycaemia (Fig. 2e; WT-LH vs WT-EE, 
p<0.05). Interestingly, recovery of STZ-diabetic mice to 
euglycaemia largely reversed the increase in protein car-
bonylation (Fig. 2d; WT-EE vs STZ-LE, p>0.05). Nota-
bly, levels of carbonylated proteins were significantly 
elevated in the hippocampus of all Nrf2−/− mice com-
pared with non-diabetic WT mice (Fig. 2f; main effect of  
genotype, p<0.01).

Table 1   Mean plasma glucose levels during each phase of the hyperinsulinaemic glucose clamps along with counterregulatory hormone levels 
(glucagon and adrenaline) measured at the end of the eu/hypoglycaemia period

Results represent mean values ± SEM, n=10–12 per group
a Glucose level during which the hyperinsulinaemic clamp was maintained and glucagon and adrenaline measurements were made
*p<0.05, **p<0.01 vs group A; ¶¶p<0.01 vs both groups B and C; †p<0.05, ††p<0.01 vs group G (one-way ANOVA followed by Tukey’s multi-
ple comparisons test)
E, euglycaemia ~5.2 mmol/l; H, high, hyperglycaemia >16.0 mmol/l; L, low, hypoglycaemia ~2.8 mmol/l, Nrf2, Nrf2−/−

Group Mean glucose (mmol/l) Glucagon (ng/l) Adrenaline (pg/ml)

WT
  A WT Ea E Ea Ea

5.6±0.4 5.4±0.2 5.7±0.3 35±3 175±43.7
  B WT La E La La

5.4±0.3 2.7±0.3* 5.6±0.4 143±10** 802±81.9**
  C WT La H La La

5.8±0.5 2.6±0.1* 20.8±0.4** 135±8** 770±65.5**
STZ-diabetes
  D STZ Ha H Ha Ha

19.3±1.0** 18.3±2.2** 18.8±2.3** 22±6¶¶ 267±49.1¶¶

  E STZ La H La La

22.1±2.9** 3.3±0.6* 21.3±1.9** 48±12¶¶ 333±92.8¶¶

  F STZ La E La La

20.9±1.8** 2.9±0.7* 6.1±2.4 43±13¶¶ 355±81.9¶¶

Nrf2−/−

  G Nrf2 Ea E Ea Ea

6.3±0.3 6.3±0.4 6.3±0.3 42±6 251±38.2
  H Nrf2 La E La La

6.2±0.2 2.5±0.1† 6.4±0.2 116±12†† 704±54.6††

  I Nrf2 La H La La

6.2±0.3 2.6±0.1† 17.1±0.5†† 125±8†† 753±81.9††
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SILAC quantitative proteomics reveals changes in markers 
of cellular stress responses to hypoglycaemia  SILAC is a 
method of accurately quantifying changes in protein expres-
sion [24]. In vivo SILAC with label-free proteomics was 
used to assess changes in hippocampal protein expression 
in STZ-diabetic mice exposed to post-hypoglycaemic hyper-
glycaemia (STZ-LH, group E) compared with control mice 
(WT-EE, group A). This procedure identified 71 proteins 
that were differentially expressed between groups (ESM 
Table 3 [upregulated proteins] and ESM Table 4 [down-
regulated proteins]). Pathway analysis identified significant 
upregulation of proteins involved in long-chain fatty acid 
metabolism (predominantly β-oxidation) and components of 
the proteasome, suggesting an enhanced capacity for long-
chain fatty acid oxidation and the degradation of damaged 
proteins (ESM Table 3). Conversely, significant downregu-
lation of proteins involved in mediating the stress response, 
including several heat shock proteins, was observed (ESM 
Table 4).

Dysfunction of markers of protein chaperone function follow-
ing hypoglycaemia in diabetes  We then examined candidate  

proteins from the key pathways identified in the SILAC analysis 
(fatty acid metabolism, proteasomal degradation and chaperone/
stress response) across all study groups. ACADL, a mitochon-
drial protein involved in the initial step of fatty acid β-oxidation, 
was increased following hypoglycaemia in STZ-diabetic mice, 
an effect that was not seen when glucose was recovered to eug-
lycaemia (Fig. 3a). In addition, we considered upregulation of 
6PGD of interest in relation to the oxidative damage associ-
ated with the post-hypoglycaemic hyperglycaemic phase (ESM 
Table 3). 6PGD is a key enzyme of the oxidative arm of the 
pentose phosphate pathway (PPP) and the largest contributor to 
cytosolic NADPH, an important component of cellular antioxi-
dant defences. 6PGD was enhanced in control and STZ-diabetic 
mice exposed to an acute hypoglycaemic challenge compared 
with control mice, although the impact of hypoglycaemia was 
less pronounced in STZ-diabetic mice (Fig. 3e, i; WT-EE vs  
STZ-LH, p<0.05; WT-EE vs WT-LE, p<0.01).

PSMA2 (Fig. 3b, h), PSMA3 (Fig.  3c, i) and PSMB7 
(Fig. 3d, h), which form part of the 20S core structure, were 
all significantly increased following exposure to hypoglycae-
mia in both non-diabetic and STZ-diabetic mice (all p<0.05). 
HSP90, a chaperone protein that assists in correct protein  

Fig. 2   Chronic hyperglycaemia is associated with hippocampal oxi-
dative damage. (a) Levels of hippocampal lipid peroxidation were 
increased in STZ-diabetic mice (white bars) compared with control 
(WT) mice (black bars) maintained at euglycaemia. (b) Euglycaemic 
control mice exposed to an acute episode of hypoglycaemia exhib-
ited no change in hippocampal lipid peroxidation. (c) Euglycaemic 
Nrf2−/− mice (grey bars) displayed increased levels of hippocam-
pal lipid peroxidation irrespective of hypoglycaemic challenge. (d) 
Protein carbonylation levels were elevated in STZ-diabetic mice 

exposed to hyperglycaemia compared with control mice at euglycae-
mia. (e) Control WT mice exposed to an acute hypoglycaemic epi-
sode showed a rise in protein carbonylation only when recovered to 
a hyperglycaemic state. (f) Nrf2−/− mice displayed increased levels 
of protein carbonylation irrespective of glycaemic variability. n=4–7/
group. Results represent mean values ± SEM. *p<0.05, **p<0.01 
vs WT-EE; ¶p<0.05 vs STZ-diabetes (one-way ANOVA followed by 
Tukey post hoc test). E, euglycaemia; H, high, hyperglycaemia; L, 
low, hypoglycaemia; MDA, malondialdehyde
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folding and aids degradation of damaged proteins [36], was 
reduced following hypoglycaemia in STZ-diabetic mice 
(Fig. 3f, i; WT-EE vs STZ-LH, p<0.05). This contrasts with 
non-diabetic mice where acute hypoglycaemic challenge 

induced an increase in expression of HSP90B (Fig. 3f, i; 
WT-EE vs WT-LE, p<0.05). Similarly, hypoglycaemia in 
STZ-diabetic but not non-diabetic mice downregulated CDC37, 
an HSP90B co-chaperone protein (Fig. 3g). Interestingly, this  
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Fig. 3   Effect of glycaemic variability on SILAC-outcome selected 
protein levels in the hippocampus of WT control and STZ-diabetic 
mice. (a–g) Hippocampal protein levels (ratio of signal intensities 
to control euglycaemia [WT-EE] data) in mice exposed to an acute 
hypoglycaemic episode from a euglycaemic (WT control mice, 
black bars) or hyperglycaemic (STZ-diabetic mice, white bars) base-
line and returned to euglycaemia or hyperglycaemia: ACADL (a); 

PSMA2 (b); PSMA3 (c); PSMB7 (d); 6PGD (e); HSP90B (f); and 
CDC37 (g). (h–j) Representative immunoblots of ACADL, PSMB7 
and PSMA2 (h), HSP90B, 6PGD and PSMA3 (i), and CDC37 (j) and 
their respective GAPDH loading controls. Results represent mean 
values ± SEM. *p<0.05, **p<0.01, ***p<0.001 (Kruskal–Wallis 
one-way ANOVA followed by Dunn’s multiple comparisons test). E, 
euglycaemia; H, high, hyperglycaemia; L, low, hypoglycaemia
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effect was lost when STZ-diabetic mice were recovered to 
euglycaemia; however, CDC37 was also suppressed in non-
diabetic mice recovered from hypoglycaemia to hypergly-
caemia, suggesting that post-hypoglycaemic hyperglycaemia 
suppresses CDC37.

To further examine the role of NRF2 in mediating protec-
tion against the oxidative stress associated with both hyper- and 
hypoglycaemia, we also assessed the impact of acute changes 
in glycaemia on hippocampal levels of these proteins. Protein 
abundance of the mitochondrial protein ACADL was signifi-
cantly elevated, whereas 6PGD did not increase in Nrf2−/− 
mice (Fig. 4a, e). The increase in 6PGD was also seen in STZ-
diabetic mice that had been exposed to acute hypoglycaemia 
euglycaemia (Fig. 3e). Exposure to hypoglycaemia increased 
the expression of PSMA3 and PSMB7 (Fig. 4c, i; p<0.05 vs 
WT-EE; and Fig. 4d, h; p<0.01 vs WT-EE) in Nrf2−/− mouse 

hippocampus, with a non-statistically significant increase in 
PSMA2 (Fig. 4b, h; p=0.07). Similarly, the pattern of change 
in HSP90B after hypoglycaemia in Nrf2−/− mice was also 
seen in STZ-diabetic mice but not non-diabetic WT mice who 
experienced post-hypoglycaemia (Fig. 4f). This suggests roles 
for NRF2 particularly in mediating the increase in reductive 
biosynthesis and chaperone/stress responses, which appear key  
pathways in the cellular response to hypoglycaemia.

Discussion

In the present study, the hyperinsulinaemic clamp technique 
was combined with tissue analysis using SILAC proteomics  
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Fig. 4   Effect of glycaemic variability on SILAC-outcome selected 
protein levels in the hippocampus of Nrf2− /− mice. (a–g). Hip-
pocampal protein levels (ratio of signal intensities to Nrf2-/- mice at 
euglycaemia [Nrf2-/--EE] data) in Nrf2−/− mice exposed to an acute 
hypoglycaemic episode from a euglycaemic baseline and returned to 
euglycaemia or hyperglycaemia: ACADL (a); PSMA2 (b); PSMA3 
(c); PSMB7 (d); 6PGD (e); HSP90B (f); and CDC37 (g). (h–j) 

Representative immunoblots of ACADL, PSMB7 and PSMA2 (h), 
HSP90B, 6PGD and PSMA3 (i), and CDC37 (j), and their respec-
tive GAPDH loading controls. Results represent mean values ± SEM. 
*p<0.05, **p<0.01 (Kruskal–Wallis one-way ANOVA followed by 
Dunn’s multiple comparisons test). E, euglycaemia; H, high, hyper-
glycaemia; L, low, hypoglycaemia
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and measures of oxidative stress to reveal a profound disrup-
tion in the cellular response to a hypoglycaemic challenge in 
a mouse model of chemically induced type 1 diabetes that 
increases the vulnerability of the hippocampus to oxida-
tive damage. Of note, post-hypoglycaemic hyperglycaemia 
in STZ-diabetes was associated with a downregulation of 
proteins mediating the stress response and reductive biosyn-
thesis. This is likely to result in proteotoxic stress through 
a reduced ability of cells to maintain the correct folding of 
proteins damaged by the stress challenge. This may, in turn, 
lead to irreversible damage/modification to proteins or syn-
apses between cells within crucial brain regions such as the  
hippocampus.

In the current study, a single episode of hypoglycaemia in 
non-diabetic WT mice resulted in significant upregulation of 
Nrf2 and NRF2 target genes Hmox-1 and Sod2 in WT control 
mice but with no oxidative damage. This supports long-term 
studies showing that recurrent non-severe hypoglycaemia 
in rodents without diabetes has no cognitive sequelae and 
may even be neuroprotective [13, 36]. NRF2 controls cel-
lular adaptation to oxidative stress and increases during 
redox perturbation, inflammation and nutrient/energy fluxes, 
thereby enabling the factor to orchestrate adaptive responses 
to diverse forms of stress (for review, see [37]). The pre-
sent study suggests that with a normally functioning NRF2-
mediated response to cellular stress, there are no long-term  
cognitive sequelae to acute hypoglycaemia.

In contrast, when glucose levels were recovered from 
hypoglycaemia to hyperglycaemia, there was evidence of a 
small but significant increase in oxidative damage. This is 
consistent with prior work in neuronal cultures and in vivo 
models showing that hyperglycaemia after hypoglycaemia 
results in increased superoxide production and neuronal death 
[18]. It is of interest that the percentage increases in hip-
pocampal lipid peroxidation and protein carbonylation in the 
present study is similar to those reported in transgenic mouse 
models [38, 39] and human post-mortem studies of Alzhei-
mer’s disease [40, 41]. However, it is important to recognise 
that these represent chronic rather than acute disease mod-
els. Another notable finding in the present study is that the 
increase in hippocampal protein carbonylation was accom-
panied by a much smaller (1.67-fold vs 4.83-fold) increase in 
Sod2 expression and the absence of Hmox-1 upregulation in 
STZ-diabetes compared with non-diabetic WT mice exposed 
to post-hypoglycaemic hyperglycaemia. This indicates that 
chronic hyperglycaemia in diabetes may impair the ability to 
mount a robust antioxidant response.

SILAC labelling and quantitative proteomics of hip-
pocampal tissue revealed that post-hypoglycaemic hypergly-
caemia in STZ-diabetic mice resulted in an increased expres-
sion of several mitochondrial proteins involved in long-chain 
lipid-oxidation (hydroxyacyl-CoA dehydrogenase trifunc-
tional multienzyme complex subunit α and β [HADHA and  

HADHB]), lipid transfer (sterol carrier protein 2 [SCP2]) 
and β-oxidation (ACADL). Previous research has shown a 
shift towards alternative fuel use following hypoglycaemia 
[42, 43]. Consistent with this, hypoglycaemia increased levels 
of ACADL in almost all groups in the current study, includ-
ing Nrf2−/− mice. The higher levels of ACADL seen in STZ-
diabetic mice per se likely reflect increased lipid transport and 
β-oxidation because of chronic uncontrolled diabetes.

In contrast, clearer differences emerged between groups 
in the expression of a key enzyme, 6PGD, which sits within 
the oxidative arm of the PPP. The increase in 6PGD expres-
sion, while significant in STZ-diabetic mice exposed to 
hypoglycaemia, was much smaller than that induced in the 
non-diabetic WT control mice. Increased flux through this 
pathway increases the production of the reducing equivalent 
NADPH required for the reactive biosynthesis of fatty acids 
and cholesterol and the production of intermediates used in 
synthesising nucleotides. Increased levels of NADPH are 
also essential for ameliorating oxidative stress by reducing 
oxidised glutathione (GSH). Notably, there was no change 
in 6PGD expression in Nrf2 null mice following hypogly-
caemia. This finding is in keeping with a recent report dem-
onstrating that NRF2 regulates the transcription of 6PGD 
through direct binding to the antioxidant response element 
within its promoter region [44]. Interruption of glucose 
supply with reduced PPP and NADPH generation, such as 
during a hypoglycaemic event in type 1 diabetes (where 
induction of Sod2 and Hmox-1 is impaired), will further 
hamper detoxification of ROS and the induction of antioxi-
dant defence proteins. Indeed, previous work has shown that 
glucose withdrawal abrogates the induction of Hmox-1 by 
the classical NRF2 activator sulforaphane [45]. This sug-
gests that in STZ-diabetes, there is an impairment in reduc-
tive biosynthesis that may increase cellular vulnerability to 
oxidative stress.

Hypoglycaemia also increased the expression of proteaso-
mal subunits (PSMA2, PSMA3 and PSMB7) in both control 
and STZ-diabetic mice. The proteasome is an integral part of 
the ubiquitin–proteasome system (UPS) and corresponding 
cellular protein quality control (PQC) [46]. If proteasome 
complex assembly and function are impaired, this can lead to 
reduced proteolytic activities and the accumulation of dam-
aged or misfolded protein species [47]. In the present study, 
hypoglycaemia increased levels of proteasomal proteins in 
all groups, suggesting this response to an oxidative insult is 
intact, although the rise was less pronounced in Nrf2−/− mice. 
NRF2 activation has been demonstrated to increase the 
expression of proteasomal genes and enhance the removal 
of oxidised proteins following oxidative insult, so this 
may contribute at least in part to the cellular response to  
hypoglycaemia [48, 49].

In contrast to the broadly similar impact of hypoglycaemia 
on the proteasome in all study groups, we found divergent 
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effects of hypoglycaemia on the stress response protein 
HSP90B when comparing mice with and without STZ-dia-
betes. Other stress response proteins (heat shock protein 90, 
α [cytosolic], class A member 1 [HSP-90AA1], heat shock 
protein family H [HSP110] member 1 [HSPH1] and stress-
induced phosphoprotein 1 [STIP1]) were also shown by 
SILAC to be downregulated in STZ-diabetic mice exposed 
to hypoglycaemia and recovered to hyperglycaemia. In addi-
tion, the HSP90B co-chaperone protein CDC37 was down-
regulated following acute hypoglycaemia in the STZ-diabetic 
mice. Interestingly, hypoglycaemia also decreased HSP90B in 
Nrf2 null mice, independently from CDC37, indicating a pos-
sible involvement of NRF2 in this cell protective mechanism. 
Indeed, STIP1 plays an essential role in the ability of HSP90 
to stabilise the NRF2–kelch-like ECH-associated protein 1 
(KEAP1) complex [50], supporting functional connectivity 
between these important cellular stress response pathways. 
These data suggest that activation of stress response pro-
teins is impaired in STZ-diabetic mice exposed to hypogly-
caemia, leading to proteotoxic stress. Furthermore, NRF2 
may be required for this aspect of the cellular response to 
hypoglycaemia.

Limitations of this study include the use of a chemi-
cally induced mouse model of type 1 diabetes that does not 
entirely replicate the human condition, the inclusion of only 
male mice, and the analysis being performed on the whole 
hippocampus rather than on isolated neurons or astrocytes. 
Additionally, lipid peroxidation and protein carbonylation 
measures provide a global oxidative damage index. Still, 
they do not allow the identification of specific proteins or 
pathways that may be directly impacted in this context. It 
would have been interesting to determine whether there was 
a correlation between the amount of oxidative damage, depth 
of hypoglycaemia and degree of post-hypoglycaemic hyper-
glycaemia, as demonstrated in neuronal cell cultures [18]. 
However, this requires multiple groups and is best studied 
ex vivo or in vitro. In addition, it would have been interest-
ing to examine whether normalising glucose levels in the 
rodent type 1 diabetes model reversed the changes seen. 
Future studies are planned to address this question.

In conclusion, results from the present study suggest that 
a functioning NRF2-mediated response to cellular stress in 
non-diabetic rodents protects the hippocampus from any 
consequences due to acute non-severe hypoglycaemia. In 
contrast, in a mouse model of chemically induced type 1 dia-
betes, the chronic exposure to hyperglycaemia that character-
ises diabetes (especially when sub-optimally controlled) and 
post-hypoglycaemic hyperglycaemia result in sufficient oxi-
dative stress to induce oxidative damage in the hippocampus 
and may then contribute to longer-term cognitive sequelae. 
Proteomic analysis of hippocampal tissue revealed evidence 
of disruption in proteins mediating the stress response and 
reductive biosynthesis in STZ-diabetes mice exposed to a 

single episode of non-severe hypoglycaemia. This is likely to 
result in proteotoxic stress through a reduced ability of cells 
to maintain the correct folding of proteins damaged by the 
stress challenge and may lead to irreversible damage modi-
fication to proteins or synapses between cells within crucial 
brain regions such as the hippocampus. Future research that 
more specifically examines underlying mechanisms in neu-
rons, astrocytes and microglia may enable more targeted 
therapies, such as enhancing NRF2 activity. It is also impor-
tant to consider the impact of reducing glycaemic variability 
prior to and/or following hypoglycaemia on oxidative stress 
in different brain regions.
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