
Modulation of the immune system of chickens a key factor in maintaining
poultry production—a review
Sebastian Wla�zlak ,* El _zbieta Pietrzak ,y Jakub Biesek ,* and Aleksandra Dunislawska y,1

*Department of Animal Breeding and Nutrition, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084,
Poland; and yDepartment of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology,

Bydgoszcz 85-084, Poland
ABSTRACT The awareness of poultry production
safety is constantly increasing. The safety of poultry pro-
duction is defined as biosecurity and the health status of
birds. Hence the constant pursuit of developing new strat-
egies in this area is necessary. Biosecurity is an element of
good production practices that ensures adequate hygiene
and maintaining the health status of poultry production.
Poultry production is the world leader among all livestock
species. Producers face many challenges during rearing,
which depend on the utility type, the direction of use,
and consumer requirements. For many years, the aim
was to increase production results. Increasing attention is
paid to the quality of the raw material and its safety.
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Therefore, it is crucial to ensure hygiene status during
production. It can affect the immune system’s functioning
and birds’ health status. Feed, water, and environmental
conditions, including light, gases, dust, and temperature,
play an essential role in poultry production. This review
aims to look for stimulators and modulators of the poul-
try immune system while affecting the biosecurity of poul-
try production. Such challenges in current research by
scientists aim to respond to the challenges posed as part
of the One Health concept. The reviewed issues are a mas-
sive potential for an innovative approach to poultry pro-
duction and related risks as part of the interaction of the
animal-human ecosystem.
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INTRODUCTION

Poultry production is the world leader among all live-
stock species. Producers face many challenges during
rearing, which depend on the utility type, the direction
of use, and consumer requirements. For many years, the
aim was to increase production results, including weight
gain (or the number of eggs), while trying to reduce feed
intake. Therefore, it is crucial to ensure biosecurity dur-
ing production. It can affect the immune system’s func-
tioning and birds’ health status. Feed, water, as well as
environmental conditions, including light, the presence
of gases and dust, and temperature, play an essential
role in poultry production (Nawab et al., 2018; Saeed
et al., 2018; Hafez and Attia, 2020; Parolini et al., 2020;
Abd El-Hack et al., 2021).

This review aims to look for stimulators and modula-
tors of the poultry immune system while affecting the
biosecurity of poultry production. Such challenges in
current research by scientists aim to respond to the chal-
lenges posed as part of the One Health concept. The con-
cept of One Health focuses on health and infectious
disease in the context of the relationship between
humans, animals, and the environment. It combines
human and veterinary medicine in response to zoonose
(Dunislawska et al., 2022). The reviewed issues are a
huge potential for an innovative approach to poultry
production and related risks as part of the interaction of
the animal-human ecosystem.
IMMUNE SYSTEM OF THE CHICKEN

Basic Mechanisms of the Immune Response

Despite the significant evolutionary distance, many
elements of birds’ innate and adaptive immune
responses are common. Leukocytes, macrophages, den-
dritic cells, and natural killer (NK) cells are involved in
the action of the innate immune response. They recog-
nize pathogen-associated molecular patterns (PAMPs)
and then bind to pattern recognition receptors (PRRs)
such as Toll receptors (TLRs) (Sebo��k et al., 2021). In
chickens, 10 types of TLR have been identified
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(compared to 13 in mammals) (Turin and Riva, 2008).
TLRs modulate signaling pathways in the host’s defense
system to control infection and repair damaged cells.
After the appropriate TLR is bound to the microbial
ligand, macrophages, various adapter proteins, tran-
scription factors are activated, and cytokine genes are
stimulated (Kawasaki and Kawai, 2014). Certain func-
tions of the chicken TLRs depend on genetic polymor-
phism and are susceptible to dietary influence (Iqbal
et al., 2005). Knowing the relationship between specific
TLRs and pathogens provides a tool for improving
chickens in terms of disease affinity (Iqbal et al., 2005).
In the context of disease affinity, studies on the chicken
HD11 cell line have demonstrated strong activation of
TLR2t2/16, TLR4, and TLR21 by Campylobacter spp.
derived lysate (De Zoete et al., 2010).

Another mechanism to defend the host is innate
humoral factors, including cytokines and antimicrobial
peptides (AMP). There is some similar functionality of
individual cytokines in chickens and mammals despite
the differences in their protein structures (Giansanti
et al., 2006). The panel of proinflammatory cytokines
released due to TLR binding to ligands includes interleu-
kin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor-alpha
(TNF-a) (Xu et al., 2019).

Lymphocytes are the main tool of acquired immunity.
In chickens, we distinguish B and T lymphocytes. B lym-
phocytes are generally responsible for the production of
antibodies, while cytotoxic T lymphocytes actively
destroy pathogens. Subtypes of T lymphocytes mediate
cell killing. CD8+ T-cells are associated with the charac-
teristic CD8 glycoprotein, which binds to the constant
part of the MHC class I molecule. Their cytotoxic effect
allows—this means them are able to kill cells infected with
the pathogen and cancer cells directly. CD8+ T-cells use
cytokines to engage other cell types, generating an
immune response. CD4+ T-cells, also called helper cells
(Th), are associated with a class of MHC II molecules.
They express the CD4 glycoprotein on their surface. They
activate B lymphocytes (inducing immune memory) and
CD8+ T-cells (Petteri Arstila et al., 1994). Their role is,
therefore, crucial in preventing/minimizing the effects of
viral diseases that are dangerous for poultry production,
both as a result of protective vaccinations and infections.
For example, Collisson et al. (2000) showed that CD8+T-
cells play a significant role in eliminating infectious bron-
chitis virus (IBV). In comparison, another experiment
discussed the role of CD4+ T-cells in this context. IBV
antigens activate these after antigen presentation. Once
activated, CD4+ T-cells interact with other T and B cells
to enhance cytotoxic and humoral responses to IBV in
chickens (Janse et al., 1994).

In chickens, the major histocompatibility complex
(MHC) contains 46 genes. MHC I and MHC II genes
are located on the same chromosome 16 in the MHC-B
and MHC-Y regions. Their distribution in the genome is
approximately 209 kb (da Silva and Gallardo, 2020). It
proves a much simpler and more compact structure in
the context of the MHC system of mammals (Trowsdale
and Knight, 2013).
Organization of the Immune Organs in the
Chicken

The immune system in chickens can be divided into
primary immune organs and lymphoid tissue. The pri-
mary immune structures are the thymus, where T lym-
phocytes are produced and mature; the bursa of
Fabricius, where B lymphocytes mature; and the bone
marrow, where blood cell precursors are produced. In
addition, during the embryonic development of chick-
ens, the source of maternal antibodies is the yolk sec.
Primary lymphoid organs mainly act as a center for the
production and maturation of adaptive immune cells.
Secondary lymphoid tissues specialize in controlling
immune responses. They activate immune effector cells,
such as lymphocytes (Boehm and Swann, 2014). After
maturing in primary lymphoid organs, T and B lympho-
cytes re-enter the bloodstream and colonize secondary
lymphoid tissues to facilitate antigen presentation to
lymphoid cells and initiate and regulate the adaptive
immune response.
The fundamental difference between the immune sys-

tem in mammals and chickens is the lack of encapsulated
lymph nodes. Instead, we find in them “diffuse” lymphoid
tissue and its clusters in organizations such as Peyer
patches, cecal tonsils, and Meckel’s diverticulum (Per-
alta et al., 2017). Lymphoid tissues include the spleen
and mucosa-associated lymphoid tissues (MALT), also
classified as the mucosal immune system (MIS). Lym-
phoid tissues in mucous membranes lining systems asso-
ciated with nutrition (gut-associated lymphoid tissue—
GALT), respiration (nasal-associated lymphoid tissue
—NALT, bronchus-associated lymphoid tissue—
BALT), and vision (conjunctiva-associated lymphoid
tissue—CALT). In chickens, these tissues are immuno-
logically well-developed and are the first line of defense
against pathogens (McGhee and Fujihashi, 2012). In
about 20-wk-old chickens, the primary immune organs,
that is, the bursa and thymus, are involuted, and it is in
the MIS that the humoral immune response occurs.
Chickens have 3 immunoglobulins (Ig) classes: IgA,

IgM, and IgY. The chicken IgA and IgM are similar in
structure to mammalian IgA and IgM. There are no ana-
logs to mammalian IgE and IgD in chickens (Zhang
et al., 2017). IgM is associated with the primary immune
response in chickens, and its monomer is a B-cell recep-
tor (Morgan, 2021).
SHAPING THE IMMUNE RESPONSE

Development of Acquired Immunity in
Poultry Practice

Good poultry production practices must be conducted
in such a way as to ensure safety not only with consum-
ers but also with epizootic protection. Some unique ele-
ments of the structure of the immune system of birds
(discussed in this review) allow the widespread use of
vaccination techniques that are impossible or ineffective
in the animal production of mammalian species. Such
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methods include the delivery of in ovo vaccination dur-
ing embryonic development and early postnatal stimula-
tion of antibody production through spray and drop
vaccines (Peebles, 2018). This technology stimulates
innate and adaptive immune response from Harder’s
glands and local MALT (Mebrahtu et al., 2018). In addi-
tion, automatic whole-house vaccination by spraying
can be used for both small- and large-scale poultry pro-
duction. This is effective against poultry diseases such as
Newcastle disease (NDV) and viral infectious bronchitis
(IBV) (Mebrahtu et al., 2018; Purswell et al., 2019).
The Importance of Maternal Immune Status

The immune system is a complex that takes time to
mature. This makes maternal antibodies critical for young
bird health. To some extent, protection against potential
pathogens is provided by maternal antibodies. In chick-
ens, IgY transfer takes place via the yolk during in ovo
nutrition (Brierley and Hemmings, 1956). In addition, it
has recently been suggested that in chickens, there is a
cross-generational influence of the maternal immune sys-
tem on the specific antibody response in the next genera-
tion. An experiment was conducted to examine the effect
of specific and nonspecific endotracheal (i.t.) immune acti-
vation of laying hens on the production of specific anti-
bodies in the next generation. Two experimental designs
were proposed in which laying dams received an intratra-
cheal immune stimulus with human serum albumin
(HuSA) or lipopolysaccharide (LPS). Maternal immune
activation with LPS increased the offspring’s HuSA-spe-
cific IgY and IgM responses. It suggests a cross-genera-
tional influence of the maternal immune system on the
specific antibody response in the next generation.

Moreover, maternal immune stimulation with LPS
reduced anti-HuSA IgY responses after HuSA immuni-
zation in chicks fed a diet supplemented with b-glucan
(known for its prebiotic properties). This suggests a
cross-generational link between the maternal innate
immune system and specific antibody responses in the
offspring. These results may indicate maternal innate
immune system activation influences immune-modulat-
ing dietary interventions and vaccination strategies in
next-generation poultry (Verwoolde et al., 2022).
Despite the lack of direct evidence in the cited experi-
ment for the intergenerational transmission of epigenetic
patterns, there are indications of their impact on the
activity of genes related to the immunity of offspring.
Ways to Stimulate Innate Immunity in Poultry

Microorganisms associated with poultry production
directly impact the immune status of animals, food
safety, and public health. The chicken has already been
extensively studied, and the effect of gut microbiota
composition on the chicken’s performance and health
has been demonstrated (Fathima et al., 2022). The com-
position of the intestinal microbiota of animals is shaped
in the perinatal period. At this time, intensive intestinal
development occurs (Iji et al., 2001). During this period,
the chicks switch from utilizing the nutritional resources
of the egg to being fed with starter feed, which brings
several metabolic and physiological changes. This period
coincides with the so-called hatching window (48−72 h)
in the intensive poultry production system. During this
time, chicks are at risk of delayed water and feed. An
alternative to this system may be using a patio where
the chickens receive water and feed. Chicks with a patio
have increased body weight and immune organs, indicat-
ing advanced metabolism and physiological develop-
ment, possibly due to early feeding (van de Ven et al.,
2013). Reducing fasting after hatching chicks by provid-
ing feed and water promotes the development of intesti-
nal microbiota (Proszkowiec-Weglarz et al., 2022).
Typical support for the development of the intestinal

microbiota, and thus the immunological status of poul-
try, is the introduction of bioactive substances as an
additive to feed/water or by in ovo injection. In recent
years, many bioactive substances with immunomodula-
tory potential have been tested, which will be discussed
in later chapters of this review. Nevertheless, when dis-
cussing the effect of bedding, the combined supplemen-
tation system and adding bioactive substances to the
litter material is worth mentioning. For example, alumi-
nosilicates as a feed additive and litter have a positive
local immunomodulating effect in GALT and are benefi-
cial in broiler performance (Biesek et al., 2021b).
In shaping the immune response of chickens, it is

essential to protect them against immunosuppression
caused by stress factors. Factors that cause stress in
poultry include temperature (high and low) and light
management. The flashing light program is effective
during heat stress to down-regulate inflammation
markers such as corticosterone, TNF-a, and malondial-
dehyde (MDA) in blood plasma (Alaqil et al., 2022).
The immune status of poultry is also affected by the
color of the light-emitting diodes (LEDs) used in the
poultry house. Initially, light blue light and then bright
blue light stimulates the production of macrophages in
broilers (Seo et al., 2016).
As the immune system takes time to mature in fast-

growing chickens, there is a greater sensitivity to patho-
gens. Intensive growth and the use of feed to meet growth
needs may be at the expense of the development of the
immune system. A study on broilers showed low levels of
cytokines in peripheral blood and intestinal mucosa
between 6 and 13 d of age. Moreover, it was established
that the immune system of broilers did not mature until
30 to 34 d of age (Song et al., 2021). In such a system,
boosting immunity is especially important.
IMMUNOSAFETY AND IMMUNE SECURITY

The Role of Feed in the Immunological
Safety of Poultry

A high threat to the health of birds and the safety of
animal products is the contamination of feed with fungi,
particularly their secondary metabolites known as
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mycotoxins (Monson et al., 2015; Mehtab et al., 2022).
Most of these substances are produced by the fungi
Aspergillus, Penicillium, and Fusarium. Sixty percent of
the identified fungi in feed samples could produce myco-
toxins. In addition, the authors also found high feed con-
tamination with fumonisin (100%), deoxynivalenol
(90%), ochratoxin A (90%), aflatoxin (89.8%), and zear-
alenone (86%). The negative impact of mycotoxins in
feed on poultry production results can be manifested by
reducing body weight gain, feed conversion rate, and
nutrient digestibility (Yang et al., 2014) and laying hens
with lower egg quality (Murugesan et al., 2015).

The Aflatoxin B1 (AFB1) example also demon-
strated the immunotoxic effect. AFB1 can activate
extracellular heterophile traps (HETs), which are con-
sidered to be one of the basic mechanisms of the immune
response. At the same time, active HETs increased bio-
chemical liver indices such as alanine aminotransferase
(ALT) and aspartate aminotransferase (ASP), and the
histopathological study showed a harmful effect on liver
and kidney cells (Gao et al., 2022). Adverse changes in
the liver and kidneys depending on the dose of AFB1
were also found in the appearance of renal tubular necro-
sis and necrotic changes in the liver parenchyma
(Naseem et al., 2018). The presence of AFB1 reduced
the number of immune cells (IgA+) in the duodenum
and jejunum and the level of mRNA expression, among
others, IgA, IgM, and IgG on the 14th and 21st day of
broiler chicken rearing (Jiang et al., 2015).

Another example is the cytotoxic activity of AFB1.
According to Zimmermann et al. (2014), AFB1 at 10
and 20 mg/mL damaged lymphocytes and reduced their
activity (Zimmermann et al., 2014). On the other hand,
further research found contamination of poultry feed
with Salmonella spp. from 0 to 3.5% in samples from
2007 to 2010, indicating an increase in hygienic status
compared to previous years (Kukier et al., 2012).

The hygienic status of feed can be influenced by pro-
cesses such as pelleting, extrusion, and expansion. They
allow for the effective elimination of potentially harmful
pathogenic microorganisms and also regulate the avail-
ability of nutrients, affect the intestinal microbiota
(Goodarzi Boroojeni et al., 2016), and affect increased
feed intake (FI), higher body weight gain (BWG) of
birds, and feed conversion ratio (FCR) (Sibanda and
Ruhnke, 2017). Feed pelleting can also contribute to a
reduction (P < 0.05) in the number of fungi compared to
loose feed (Ghaemmaghami et al., 2018).
The Role of Water in the Immunological
Safety of Poultry

Regular water sanitation is one of the essential ele-
ments affecting the rearing of birds while maintaining a
high health status and, at the same time, better produc-
tion results and increased welfare (Jacobs et al., 2020).
Poor quality water can be contaminated with patho-
genic bacteria Salmonella spp., Escherichia coli, Cam-
pylobacter (Maharjan et al., 2017), and Pseudomonas
spp. (Maes et al., 2019). Measures limiting the growth of
bacteria in water include the addition of chlorine, hydro-
gen peroxide (Maharjan et al., 2017), chlorhexidine (de
Oliveira Branco et al., 2016), sodium bisulfate (Pineda
et al., 2021), or calcium hypochlorite (Mohammed et al.,
2020). Salmonella and Campylobacter are also character-
ized by the ability to be highly organized and adhere to
various types of surfaces in livestock buildings, defined
as biofilm (Schonewille et al., 2012). It may be one of the
main reasons for the emergence of disease in the flocks
due to the increased virulence and resistance of patho-
gens to antimicrobial agents (Bobinien _e et al., 2012;
Czy _zewska-Dors et al., 2018).
The main factors influencing biofilm formation

include the substrate’s chemical composition, tempera-
ture, oxygen (O2) content, and interactions between
microbes (García-Gonzalo and Pag�an, 2015). In addi-
tion to pathogenic microorganisms, water can also be
contaminated with harmful xenobiotics that can cause
an increase in macrophages, decrease the number of
CD8+ lymphocytes, and initiate inflammatory reactions
in the body (More-Bayona et al., 2020). Heavy metals
such as copper (Cu) and lead (Pb) are other pollutants.
They harm the immune system, causing a decrease in
the antibody titers to Newcastle disease (ND) and
inflammatory bowel disease (IBD) (Haggag et al.,
2016). Watering birds with alkaline water (pH at level
8.05) can support the immune system of birds and
improve production indicators (BWG, FCR) compared
to water with a lower pH (Chung et al., 2020).
The Role of Light in the Immunological
Safety of Poultry

The color of light, its intensity, and the length of the
daylight (lightning program) is one of some critical fac-
tors in the microclimate of poultry buildings that affect
the proper growth, development, and health of birds
(Patel, 2016; Rault et al., 2017; Purswell et al., 2018;
Mohammed, 2019). In previous studies with broiler
chickens, the color of light had immunomodulatory
properties. The use of green light increased antibody
titer against ND (Firouzi et al., 2014), and light (LED),
light blue (blue light), and pure blue (sky blue) had a
positive effect on the proliferation of splenocytes (Seo
et al., 2015). Changes in the level of B-lymphocyte pro-
liferation in the bursa cloacae (Fabricius bursa) with a
green light could also be associated with antioxidant
processes and more intense melatonin secretion (Li
et al., 2015).
On the other hand, the beneficial effect was achieved

using blue light (5 W/m2; 5.73 lux) at a stocking density
of 10 birds/m2 (Abdel-Azeem and Borham, 2019). In
addition, bicolor light (green and blue) also increased
antibody titer and lymphocyte proliferation index.
Bicolor light may reduce the effects of stress reactions in
broiler chickens (Zhang et al., 2014). White and green
LED light with an intensity of 10 lux significantly
affected the body’s immune response through increased



IMMUNE SECURITY OF POULTRY PRODUCTION 5
levels of interleukin-2 (IL-2) compared to blue light at 5
and 15 lux (Tan et al., 2022). Another issue related to
lighting is the photoperiod, which is the length of day
and night. Pekin ducks reared in a building with 20 h of
uninterrupted light achieved improved FCR, lower
stress hormone levels, and enhanced immune response
against ND (House et al., 2021). One of the methods of
reducing the negative impact of heat stress is intermit-
tent lighting (from 1 h of light to 3 h of darkness).
According to Alaqil et al. (2022), it positively affected
production indicators, the immune system, and liver
functions.
The Influence of Harmful Gases on the
Immunological Safety of Poultry

The air in livestock buildings intended for the produc-
tion of poultry meat or table eggs may be polluted with
harmful and toxic gases, which include ammonia
(NH3), hydrogen sulfide (H2S), and carbon dioxide
(CO2) (Kic et al., 2012; Brou�cek and �Cerm�ak, 2015;
Nissa et al., 2018). Following Council Directive 2007/
43/EC of 28 June 2007 laying down minimum rules for
the protection of chickens kept for meat production
(Council Directive, 2007), the permissible concentration
of NH3 should not exceed 25 ppm and CO2—3,000 ppm.

Increasing the NH3 concentration to 70 ppm can
reduce spleen weight, lysozyme, and globulin concentra-
tions and limit lymphocyte proliferation. At the same
time, the increased relative humidity of the air (85%)
decreased the weight of the thymus and bursa fabricii.
Also, it increased the expression of IL-1B and OL-4 com-
pared to chickens kept in a building with a humidity of
60% (Wei et al., 2015). The negative effect of NH3 may
result in a decrease in mRNA expression of genes affect-
ing the appearance of oxidative stress (e.g., GPx) and
inflammation in the thymus of birds (e.g., IL-1B, IL-6)
(Chen et al., 2019). Impairment of the immune response
due to the high concentration of NH3 is also the result of
the toxicity of this gas to the bursa fabricii. Damage and
disintegration of bursa cells and impaired functioning of
mitochondria have been demonstrated (Shah et al.,
2020). Lower spleen weight was found in laying ducks,
significantly correlated with intestinal microbiota com-
position (Tao et al., 2019). The appearance of NH3 at a
concentration of 15 ppm affects the microbiota of the
chickens’ trachea, increasing the possibility of upper
respiratory tract infections (Zhou et al., 2021). NH3

increased the number of E. coli and Shigella in the lung
tissue and activated inflammation (Liu et al., 2020). In
Hy-Line Brown laying hens, high NH3 and high temper-
ature combination increased IgG and decreased IgA. In
addition, the increased cortisol level confirmed the
stress-inducing effect of this gas on the birds’ organisms
(Li et al., 2020).

H2S is a toxic gas that can cause oxidative stress,
inhibits the appropriate functioning of energy metabo-
lism, and stimulates inflammatory reactions in the
spleen of chickens (Chi et al., 2019). Impairment of
immune function by H2S was also observed in the spleen,
which caused inflammatory reactions and initiated cell
apoptosis (Zheng et al., 2019). Similar changes were
found in bursa fabricii at 20 ppm H2S (Hu et al., 2018)
and the thymus (Xueyuan et al., 2021; Wang et al.,
2022). Considering the muscular system, the action of
the above factor contributes to the breakdown of heart
muscle cells due to mitochondrial fission (Wang et al.,
2019).
The Role of Temperature in the
Immunological Safety of Poultry

Global temperature rise is currently one of the main
challenges poultry producers face. High temperatures
lead to economic losses and affect birds’ health through
heat stress (Goel, 2021). As a result, higher stress hor-
mone levels (corticosterone) were observed (Honda
et al., 2015; Xu et al., 2018). Immunological changes in
the spleen of birds manifest the negative effect of heat
stress. These include an increase in cytokines (interleu-
kin-4 and interleukin-12) and a decrease in interferon-g
(IFN-g) and even atrophy (Ohtsu et al., 2015).
In other research, high temperature (34.5°C for 14 d of

rearing) damages the thymus cortex and bursal follicles
while disturbing the maturation of T and B lymphocytes
(Hirakawa et al., 2020). Temperature increases the
expression of heat shock proteins (HSP70, 60, and 47).
It is related to the presence of cytokines in the small
intestine, constituting an element of adaptation to the
prevailing environmental conditions (Siddiqui et al.,
2020). The housing system for laying hens also affects
the immune function when exposed to heat stress (Abo
Ghanima et al., 2020). Lower values of immune cells
were found in hens from the barn system, for example,
lymphocytes, basophils, eosinophils, and decreased
phagocytic index. There is also an increased risk of infec-
tions with pathogenic bacteria (Salmonella spp.) due to
intestinal damage and limiting the proper functioning of
immune mechanisms, that is, an increase in the concen-
tration of inflammatory cytokines TNF-a and IL-2
(Alhenaky et al., 2017). Already at the stage of embry-
onic development of poultry, an attempt can be made to
adapt the birds to the unfavorable effects of tempera-
ture. Increasing the egg incubation temperature to 39°C
allows for the higher adaptation of the birds’ organism
to the conditions of heat stress in the area of action of
the immune response (Saleh and Al-Zghoul, 2019).
PATHWAYS OF IMMUNOSTIMULATION AND
IMMUNOMODULATION

Immunomodulation is the regulatory adjustment of the
immune system. This is homeostasis in the immune sys-
tem whereby the system self-regulates to adjust the
immune response to adaptive levels (using signaling mole-
cules, etc.). The modulator, in this case, may be a gene or
protein capable of changing the expression of an endoge-
nous gene (Flores et al., 2013 ). Immunostimulation is
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defined as the overactivation of the immune system under
the influence of exposure to pathogens or substances
(immunostimulants) (Volger, 2014). The search for alter-
native solutions in poultry production for the health sta-
tus while increasing production results and improving the
quality of meat or eggs was subjected by many authors.
The ban on antibiotic growth stimulants prompted pro-
ducers and scientists to look for new ones. Following the
trends prevailing in the agrifood and consumer markets,
these substances should affect birds’ growth and health.
At the same time, it is required that these solutions will
be natural and safe for the environment. In recent years,
the use of bioactive additives has become popular. These
include probiotics, prebiotics, synbiotics, phytobiotics,
eubiotics, organic acids, and minerals. Most studies indi-
cate their beneficial effect on production results, pheno-
typic features, and the health status of birds. Early
stimulation of the intestinal microbiota in ovo is also a
promising method (Dhama et al., 2014; Oladokun and
Adewole, 2020; Abd El-Hack et al., 2022).

Probiotics

Probiotics most often belong to the genus Lactobacil-
lus, Bacillus, Lactococcus (Park et al., 2016), Entero-
coccus, Bifidobacterium, and Saccharomyces (Adhikari
and Kim, 2017). Many studies have confirmed the
health-promoting effect of probiotics on the organism of
birds in the aspect of the digestive tract (Biswas et al.,
2019a), the immune system (Zhang et al., 2016; Fathi
et al., 2018; Alaqil et al., 2020), intestinal microbiota
(Khan et al., 2020) or by preventing bacterial infections
(Smialek et al., 2018; Ahmed et al., 2019; Tabashsum
et al., 2020), viral (Al-Khalidi et al., 2020), and proto-
zoan (Erdo�gmuş et al., 2019). The immunomodulatory
properties of probiotics include changes in the levels of
interleukins (IL-2, IL-10) and immunoglobulins (IgG,
IgA) (Rajput et al., 2013), as well as an increase in the
weight of the immune system organs (spleen, thymus,
bursa fabricii), as demonstrated by the use of Bacillus
subtilis in ducks (Guo et al., 2016).

Higher diversity of intestinal microbiota and changes
in the secretion of some immunoglobulins and cytokines
under Clostridium butyricum (Liu et al., 2021). Probiot-
ics also had a positive effect on the immune system of
laying hens by increasing immunoglobulin M (Bacillus
subtilis) (Fathi et al., 2018), antibody titers against
sheep red blood cells (SRBC), and proliferation of T
and B lymphocytes (Alaqil et al., 2020), and antibodies
against ND (L. acidophilus) (Forte et al., 2016). Probi-
otics may also affect birds’ immunity by regulating the
expression of immune genes during Salmonella enteriti-
dis infections (Adhikari et al., 2019). The combination
of a probiotic with chicory or coriander seed powder
reduced the content of E. coli and Salmonella spp. in the
small intestine of chickens (Gurram et al., 2022). Higher
antibody titers against ND were found using a probiotic
with garlic (Elbaz et al., 2021). The combination of men-
tioned mixture with the Bidens pilosa reduced the effec-
tive infection with Eimeria (Memon et al., 2021). The
possibility of modulating the intestinal microbiota com-
position occurs without the appearance of inflammation
in the intestines of birds (Yu et al., 2021).
Prebiotics

Prebiotics are substances that support the functioning
of beneficial bacteria (probiotics) in the host organism
(Bikric et al., 2022) and have a positive effect on the
immune system (Madej et al., 2015a; Mahmoud et al.,
2018; Rehman et al., 2020) and have the ability to mod-
ulate the microbiome of the gastrointestinal tract (Ricke
et al., 2020). In poultry nutrition, fructooligosaccharides
(FOS), galactooligosaccharides (GOS), and mannooli-
gosaccharides (MOS) are mainly used (Ricke, 2018).
The beneficial effect of prebiotics on immunity has

been demonstrated by enhancing the humoral and cellu-
lar immune responses in birds (Biswas et al., 2019b) and
the weight of thymus and bursa fabricii (Madej et al.,
2015; Mahmoud et al., 2018). Health-promoting effects
of these substances on the organism of birds occur dur-
ing infections with E. coli, among others, increased lym-
phocytes and activity of phagocytes, as a consequence of
which the number of pathogens in the intestinal con-
tents decreased (Mohamed and Younis, 2018). FOS sup-
plementation in poultry nutrition can effectively
influence changes in the immune system, which are pro-
tective during potential infections with Salmonella
enteritidis. They concern, for example, changes in cyto-
kine gene expression and leukocyte and immunoglobulin
levels (Shang et al., 2015; Adhikari et al., 2018).
Prebiotics have a positive impact on the health of

broiler chickens (Froebel et al., 2019). The addition of a
prebiotic reduced the spread of Campylobacter in the
intestines (Abu-Akkada and Awad, 2015). The number
of Eimeria tanella oocysts excreted was also reduced.
The beneficial production results of chickens fed with
the addition of prebiotics may result from elongating
intestinal villi (Abudabos et al., 2015). Prebiotics also
protect the birds’ organisms during heat stress (Mah-
moud et al., 2018).
Synbiotics

Another feed additive with bioactive properties is a
synbiotic (combination of a probiotic and a prebiotic)
(Yadav et al., 2016; Sharma et al., 2018). Since they can
be treated as one of the alternatives to the use of antibi-
otics in poultry production, they affect the health of
birds, biochemical blood indicators, and modulate the
functioning of the immune system of birds ( _Zbikowski
et al., 2020), and also limit the negative impact of high
density in the building on the organism of birds (Krid-
tayopas et al., 2019).
Using a synbiotic with a water disinfectant increased

the number of immune cells, such as B and T lympho-
cytes (Chechet et al., 2022). These substances can mod-
ify the intestinal microbiota by increasing the number of
beneficial bacteria and the concentration of lactic acid in
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the intestines (Sli _zewska et al., 2020). The study by
Dibaji et al. (2014) has also demonstrated similar
results. The effect of prohealth synbiotics is the ability
to mitigate the adverse effects of heat stress, which was
found by lowering the level of heat shock proteins in
birds kept at higher temperatures (Jiang et al., 2020)
and elongation of the intestinal villi (Ghasemi et al.,
2020). At the same time, under similar conditions, the
use of synbiotics increased the BWG and final BW of
the birds (Mohammed et al., 2018). A positive effect was
also found in reducing FCR (Mookiah et al., 2014;
Abdel-Hafeez et al., 2016). Beneficial histological
changes have been demonstrated in Ross 308 chickens
infected with Clostridium perfringens (Al-Baadani
et al., 2016). A significant effect on the immune system
was confirmed by the increase in serum antibody titers
in infectious bronchitis, infectious bursa fabricii (Naghi
Shokri et al., 2017), and ND (Hassanpour et al., 2013).
Minerals

Aluminosilicates are a group of natural minerals.
They include zeolite, halloysite, kaolin, or bentonite
(Trckova et al., 2004; Korczy�nski et al., 2013). Zeolite is
the most commonly used mineral in research. It is char-
acterized by many sorption properties that bind water.
This type of aluminosilicates, of volcanic origin, has
found its application in medicine and other industries,
including animal production (Lamprecht et al., 2022).

Previous studies on using aluminosilicates in poultry
production confirmed their effect as a feed or bedding
additive on production results, slaughter yield, meat
quality, and intestinal morphology (Banaszak et al.,
2020, 2021a, 2022b; Biesek et al., 2021a). Aluminosili-
cates also affect the expression of intestinal mucosa
genes in the context of supporting health status (Biesek
et al., 2021b; Dunislawska et al., 2022).

The addition of zeolite and halloysite to the feed at
the level of 0.5 to 2% and bedding (800 g/m2 surface, in
various proportions) had a beneficial effect on BWG and
FI, as well as on the qualitative characteristics of the
breast muscles (water absorption, proteins) (Banaszak
et al., 2022a). The authors suggested using aluminosili-
cates in production due to their beneficial effects (Banas-
zak et al., 2021a,b, 2022b). The cited studies focused on
the production results of broiler chickens. However, each
was performed using different proportions of aluminosili-
cates as an additive to feed and bedding (wheat, rye, pel-
let, and peat straw). The use of aluminosilicates may
additionally have a beneficial effect on intestinal mor-
phology. In the study where zeolite or halloysite was
used for feed, the authors found a beneficial effect of the
addition of halloysite on the histomorphometry features
of the jejunum (Banaszak et al., 2020).

Using zeolite in the feed at the level of 0.5% increased
the expression of interleukin and interferon genes in the
intestinal mucosa. Studies have shown an improvement
in the intestinal barrier and increased intestinal tight-
ness. Zeolite might be an immunomodulatory agent of
the immune system (Dunislawska et al., 2022). When
using aluminosilicates in other proportions (0.650 kg/m2

of halloysite or zeolite and 0.5−2% in the feed, in the
ratio of zeolite and halloysite, 1:1), a beneficial effect on
the immune status of chickens was found (immunosti-
mulating and regulating properties) (Biesek et al.,
2021b). The other authors studied the effect of zeolite in
feed at the level of 2 and 3% on the immune system of
poultry and production performance (Jarosz et al.,
2017). Higher BWG and increase with CD4+ CD25+ T
and B lymphocytes and higher level of IL-2 and IL-10
were demonstrated. Zeolite improves antigen presenta-
tion and leads to an increase in Th1 and Th2 responses.
However, it was concluded that too much zeolite in the
feed could damage the intestinal barrier by inducing a
local inflammatory reaction in the body. An excessive
supply of zeolite can also negatively affect production
results. In a study where zeolite was added to loose feed
for ducks at 4%, lower production efficiency was shown
(Biesek et al., 2021a). The mechanism of action of zeolite
on the immune system may consist of stimulating intra-
cellular adhesion molecules of enterocytes, the adhesion
of leukocytes to the epithelium, and their migration and
activation. The result of these actions is the production
of proinflammatory cytokines that trigger a systemic
immune response (Jarosz et al., 2017). In addition, zeo-
lite can modulate the intestinal microbiome and affect
the maturation and development of the immune
response associated with the mucosa. Similar conclu-
sions have been reported in the study by Grądzki et al.
(2020).
Organic Acids

Another feed additive with a health-promoting and
immunostimulating effect is organic acids (Fathi et al.,
2016; Sugiharto et al., 2019). They are classified as
organic chemical compounds that contain the carboxyl
group −COOH in their structure (Hajati, 2018). In poul-
try nutrition, formic, acetic, propionic, malic, fumaric,
and citric acids are used primarily (Haq et al., 2017).
These substances are an additive that has a positive
effect on feed hygiene through their preservative impact
(Feye et al., 2021) and inhibition of the development of
pathogenic microorganisms as a result of lowering the
pH of the environment (Pope et al., 2022). One of the
basic mechanisms of the bacteriostatic function of
organic acids is their ability to penetrate through the
biological membranes of microorganisms. Then, the pro-
cess of electrolytic dissociation takes place, resulting in
the formation of molecules that disrupt the proper func-
tioning of cells (Ragaa et al., 2016).
The beneficial effects of formic acids on the broiler

chickens were demonstrated in the production indicators
(BWG, FI, or FCR) (Venkatasubramani et al., 2014;
Sohail et al., 2015), gastrointestinal tract (elongation of
the intestinal villi) (Tawfeeq and Al_Mashhdani, 2020)
and immunological functions (increase in the number of
lymphocytes in the spleen, antibody titers against
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Gumboro disease) (Sohail et al., 2015; Ragaa and
Korany, 2016). Similarly, in laying hens, administration
of formic acid at 1 or 1.5 mL/L of water increased the
quality of eggs and the immunity of birds against ND
(Abbas et al., 2013). Formic and propionic acids can be
effective agents against the spread of Salmonella, poten-
tially transmitted through the poultry products (Bour-
assa et al., 2018). Adhikari et al. (2020) confirmed the
effect of a mixture of organic acids against the pathogens
mentioned above. Selected immunological and biochemi-
cal indicators may also be improved (Mohamedy et al.,
2022). The use of formic and propionic acids positively
affected the digestibility of nutrients (Ndelekwute et al.,
2015; Palupi et al., 2022). Also, the use of a combination
of formic acid with the yeast Saccharomyces cerevisiae
had a positive effect on the quality of chicken meat by
increasing the protein content in the breast muscles
(Ukhro et al., 2021), as well as with thyme, which
increased the share of breast and leg muscles in the car-
cass (Ragaa et al., 2016). Combining formic acid with
essential oil (cinnamaldehyde) effectively reduced the
negative impact of E. coli infection in birds (improved
BWG and FCR). It also reduced the number of Clostrid-
ium spp. in the small intestine (Pathak et al., 2016).
Herbs

Herbs have long been used in human medicine (Ekor,
2014) and for feeding livestock, including poultry (Rad-
kowska, 2013). The main advantages of herbs are the
high content of biologically active substances that affect
the processes of digestion and absorption of nutrients
and the immune system (Maka»a, 2022). As a herbal
additive to feed for poultry, for example, thyme (Yalçin
et al., 2020), oregano (Ri et al., 2017), rosemary (Alaga-
wany and Abd El-Hack, 2015), mint, fenugreek (Abed
and Kadhim, 2014), ginger (Salih and G€urb€uz, 2015), or
garlic (Sangilimadan et al., 2019) were used. Prohealth
significance is also attributed to herbal extracts (Sko-
morucha and Sosn�owka-Czajka, 2014; Omar et al., 2016;
Habibi et al., 2016) and phytobiotics—additives whose
main components are bioactive substances of plant ori-
gin (Rafeeq et al., 2022).

The beneficial properties of oregano essential oil
(OEO) are mainly due to the high content of 2 main
components—carvacrol and thymol (Zhang et al.,
2021). Some studies have confirmed the beneficial effect
of OEO on production results, such as BW, average
daily BWG, and FCR (Peng et al., 2016; Hern�andez-
Coronado et al., 2019). It could be due to the increase in
the ratio of the height of the intestinal villi to the depth
of the intestinal crypts (Peng et al., 2016). On the other
hand, OEO can modify the intestinal microbiota of
birds, which was found in the Cherry Valley ducks,
where this additive was used at 150 and 300 mg/kg of
feed (Abouelezz et al., 2019). The powder form of oreg-
ano improved bird growth and antioxidant properties in
the blood serum (Ri et al., 2017). In addition, using
OEO affects the humoral and cellular immune response
(Galal et al., 2015) by increasing selected antibodies in
chickens (Ruan et al., 2021).
Thyme, particularly its essential oils, contains the pre-

viously mentioned bioactive compounds (found in oreg-
ano). However, there are also substances from the group
of flavonoids with antioxidant properties. The beneficial
effect of thyme on the organism of birds was found after
its use at the level of 2%, affecting the quality of eggs
and the immune system of laying birds (Yalçin et al.,
2020). The research on broiler chickens found a definite
production improvement, indicating daily BWG, final
BW, and FCR (Ali, 2014).
Biologically active substances in ginger affected the

increased secretion of digestive enzymes, as a result of
which the ingredients from the feed were better
absorbed, and the birds characterized with the higher
BWG (Abd El-Hack et al., 2020) and could modulate
the intestinal microbiota (Adeyemo et al., 2016). The
beneficial effect of adding ginger root and its extracts on
poultry products, that is, meat and eggs (Abd El-Hack
et al., 2020).
The use of rosemary in the amount of 9 g/kg of feed

affected the concentration of IgA and IgM and the con-
tent of cholesterol and triglycerides in the serum of lay-
ing hens (Alagawany and Abd El-Hack, 2015). Yildirim
et al. (2018) described where an ethanol extract of rose-
mary was used in feed for Ross 308 broiler chickens (200
mg/kg). In the case of the addition of rosemary in the
form of a powder, other authors indicate an increased
secretion of the thyrotropic and growth hormone (Tayeb
et al., 2019).
Garlic and its substances (mainly allicin) are consid-

ered additives with prohealth effects due to their anti-
bacterial, antifungal, and antioxidant properties
(Ogbuewu et al., 2019). At the same time, it can be one
of the natural alternatives to antibiotic growth stimu-
lants with high biological activity. It stimulates body
weight gain (Islam et al., 2018). In the study by Puvaca
et al. (2015), the most favorable effect on production
indicators was found using 0.5 g of garlic per 100 g of
feed.
DNA Immunostimulators

The innate system in chickens can be stimulated using
DNA immunostimulators. For this purpose, unmethy-
lated CpG oligodeoxynucleotides (CpG-ODN) are
used. They are molecules that activate the host’s
immune system. These short single strands act as anti-
gen-associated molecular patterns (PAMPs). They ini-
tiate an immune response by binding to a specific
pattern recognition receptor (PRR) in dendritic cells,
macrophages, and B lymphocytes responsible for antigen
presentation (Klinman et al., 1996). Chicken TLR21
and its human TLR9 homolog recognize CpG-ODN con-
taining the GTCGTT motif (Keestra et al., 2010).
Already at the beginning of the 21st century, their
immunoprotective effect on Eimeria infection (Dalloul
et al., 2004), Escherichia coli (Gomis et al., 2003, 2004)
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and Typhimurium septicemia (Taghavi et al., 2008)
were demonstrated. The administration of CpG-ODN to
neonatal chickens via the mucosa accelerates the devel-
opment of immunity by enriching the immune niches in
the chicks. It was reported that intrapulmonary aerosol
administration of CpG-ODN provided protective immu-
nity against E. coli sepsis, enhancing local mucosal
immunity and systemic immune response (Goonewar-
dene et al., 2020). A commercial poultry DNA immuno-
modulator has been available for several years. Victrio
(Elanco Canada Limited, Mississauga, Canada) is a bac-
terial plasmid DNA rich in unmethylated CpG motifs in
a liposomal envelope. It is administered in ovo in the
perinatal period (according to the manufacturer’s rec-
ommendations, the 18th day of egg incubation) and
effectively prevents posthatch mortality in chickens
associated with Escherichia coli infection. Comparative
studies on in vitro models (HEK293-NFkB-SEAP,
HD11) have shown that Vicrio stimulation compared to
ODNs (2006-PTO, 2006-PDE, 2007-PTO, 2007-PDE)
on TLR21 activity is not higher than the indicated
ODNs. The study’s author showed that, most likely, the
specific liposomal formula of Victrio provides a clear
advantage in the in ovo application (due to a much
lower dose compared to the ODNs in the in ovo applica-
tion, about 1,000-fold less). Another possibility is that
Victrio has a second mode of operation that PTOODNs
do not. It may be related to the cGAS/STING pathway
(Ilg, 2020). Recently, the activation of this pathway was
confirmed in studies using another commercial formula-
tion approved for cattle, which contains the same lipo-
some-loaded plasmid as Victrio (Ilg, 2017).
SUMMARY

The awareness of production safety is constantly
increasing. The safety of poultry production is defined
as biosecurity and the health status of birds. Hence the
constant pursuit of developing new strategies in this
area is necessary. Biosecurity is an element of good pro-
duction practices that ensures adequate hygiene of poul-
try production.
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R. Torres De Melo, E. Carvalho Guimar~aes, A. Monteiro, and
C. Lima. 2016. Biofilm production by Escherichia coli in poultry
water drinkers. R. Bras. Ci. Vet. 23:133–137.

De Zoete, M. R., A. M. Keestra, P. Roszczenko, and
J. P. M. van Putten. 2010. Activation of human and chicken toll-
like receptors by Campylobacter spp. Infect. Immun. 78:1229.

Dhama, K., R. Tiwari, R. U. Khan, S. Chakraborty, M. Gopi,
K. Karthik, M. Saminathan, P. A. Desingu, and
L. T. Sunkara. 2014. Growth promoters and novel feed additives
improving poultry production and health, bioactive principles and
beneficial applications: the trends and advances − a review. Int. J.
Pharmacol. 10:129–159.

Dibaji, S. M., A. Seidavi, L. Asadpour, and F. M. da Silva. 2014.
Effect of a synbiotic on the intestinal microflora of chickens. J.
Appl. Poult. Res. 23:1–6.

Dunislawska, A., J. Biesek, M. Banaszak, M. Siwek, and
M. Adamski. 2022. Effect of zeolite supplementation on gene
expression in the intestinal mucosa in the context of immunosafety
support in poultry. Genes 13:732.

Ekor, M. 2014. The growing use of herbal medicines: issues relating to
adverse reactions and challenges in monitoring safety. Front. Neu-
rol. 4:177.

Elbaz, A. M., N. S. Ibrahim, A. M. Shehata, N. G. Mohamed, and
A. M. E. Abdel-Moneim. 2021. Impact of multi-strain probiotic,
citric acid, garlic powder or their combinations on performance,
ileal histomorphometry, microbial enumeration and humoral
immunity of broiler chickens. Trop. Anim. Health Prod. 53:1–10.
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