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its common comorbidities
Sha Hua1,†, Bomin Lv2,†, Zeping Qiu1,† , Zhuojin Li1, Zhiyan Wang1, Yanjia Chen1, Yanxin Han1,

Katherine L Tucker3 , Hao Wu2,* & Wei Jin1,**

Abstract

This study aimed to identify microbial signatures that contribute
to the shared etiologies between chronic heart failure (CHF), type
2 diabetes, and chronic kidney disease. The serum levels of 151
microbial metabolites were measured in 260 individuals from the
Risk Evaluation and Management of heart failure cohort, and it
was found that those metabolites varied by an order of 105 fold.
Out of 96 metabolites associated with the three cardiometabolic
diseases, most were validated in two geographically independent
cohorts. In all three cohorts, 16 metabolites including imidazole
propionate (ImP) consistently showed significant differences. Nota-
bly, baseline ImP levels were three times higher in the Chinese
compared with the Swedish cohorts and increased by 1.1–1.6 fold
with each additional CHF comorbidity in the Chinese population.
Cellular experiments further supported a causal link between ImP
and distinct CHF relevant phenotypes. Additionally, key microbial
metabolite-based risk scores were superior in CHF prognosis than
the traditional Framingham or Get with the Guidelines-Heart
Failure risk scores. Interactive visualization of these specific
metabolite-disease links is available on our omics data server
(https://omicsdata.org/Apps/REM-HF/).
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Introduction

As the most energy- and oxygen-consuming organ per tissue mass,

the heart is sensitive to shifts in myocardial metabolism and

energetics, such as accumulation of toxic lipid intermediates and

fuel shifts from free fatty acids (FFAs) to anaerobic glycolysis

(Doenst et al, 2013; Bertero & Maack, 2018; Lopaschuk et al, 2021).

As such, chronic heart failure (CHF) resulting from metabolic inflex-

ibility is often accompanied by multi-morbidities, especially type 2

diabetes (T2D) and chronic kidney disease (CKD), both of which

have contributed to a 2–3 fold increase in the incidence of CHF

(Nichols et al, 2004; Echouffo-Tcheugui et al, 2022). In total, 13.7

million adults in China (Hao et al, 2019) and 64.3million worldwide

(Bragazzi et al, 2021) have been diagnosed with CHF, among which

16% were estimated to be accompanied by both T2D and CKD

(Lawson et al, 2021). One recent epidemiological study revealed

that CHF patients co-occuring with both diseases had the worst mor-

tality and rehospitalization (Lawson et al, 2021), imposing ever-

increasing social and health burdens. However, the metabolic inter-

connectivities and shared components among these three chronic

diseases remain poorly understood, despite the fact that some classi-

cal clinical biomarkers reflecting insulin resistance (Ingelsson

et al, 2005), hyperglycemia (Matsushita et al, 2010), and dyslipi-

demia (Tuunanen et al, 2006) have been implicated in the pathogen-

esis and development of CHF. Understanding the molecular

signatures and metabolic remodeling of CHF and its associated

comorbidities are, thus, fundamental to reveal the underlying patho-

physiological factors and heterogenicities inherent to those cardio-

metabolic diseases and to develop new therapeutic targets

(Seferovic et al, 2022) and systems biology approaches (Voors et al,

2016).

Recent advances in metabolomics profiling provide us with an

opportunity to address this. An in-depth molecular profiling of a

large prospective cohort has been reported recently, and 420 metab-

olites were found to be shared by at least two noncommunicable

diseases, including CHF, T2D, and/or CKD (Pietzner et al, 2021).

Notably, a substantial proportion of the metabolites associated with

the gut microbiota, such as imidazole propionate (ImP), a micro-

bially produced metabolite that could directly lead to insulin resis-

tance via the mTORC1-p38γ signaling pathway (Koh et al, 2018). In
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agreement, the intestinal overgrowth of pathogenic bacteria has

been observed in each of these three chronic diseases (Pasini

et al, 2016; Yang et al, 2018; Tang et al, 2019), and microbial signa-

tures could even be detected in atherosclerotic lesions in individuals

with chronic heart disease (Ott et al, 2006). It is reasonable to specu-

late that the gut microbiome and their metabolites may mediate

some of the shared etiologies among CHF and its associated comor-

bidities, which has led to increased efforts in identifying the micro-

bial metabolites responsible for these cardiometabolic diseases

(Brown & Hazen, 2018; Canfora et al, 2019).

Here, we performed a targeted quantification of 151 microbially

associated metabolites in 260 individuals from the Risk Evaluation

and Management of Heart Failure (REM-HF) cohort, with defined

combinations of diabetes, cardiac, and renal status. We aimed to

investigate: (i) if previously identified microbial metabolites associ-

ated with T2D, CHF, and/or CKD based on untargeted metabolic

profiling could be validated using absolute quantification in an inde-

pendent Chinese CHF cohort with rising burdens from different

cardiometabolic comorbidities; (ii) which clinical variables mediate

the associations between those microbial metabolites and diseases;

and (iii) if the circulating levels of specific microbial metabolites

contributed to disease severity and prognosis.

Results

Clinical characteristics

Characterization of prediabetes or intermediate hyperglycaemia pre-

sents a unique opportunity for studying the role of gut microbiota in

the progression to clinical T2D. We and others have demonstrated the

potential contribution of gut microbiota in this transition (Zhou

et al, 2019; Wu et al, 2020). To further explore the molecular signa-

tures that may link CHF and T2D development, we screened 260 indi-

viduals with varying glucose metabolism from the REM-HF cohort

and conducted a targeted metabolomics analysis. The individuals

could be classified into six subgroups, including individuals with nor-

mal glucose tolerance (NGT), which served as the control group, NGT

concomitant with CHF (NGT+CHF), prediabetes with CHF (Prediabe-

tes+ CHF), prediabetes with both CHF and CKD (Prediabetes+CHF+
KD), T2D with CHF (T2D+CHF), and T2D with both CHF and CKD

(T2D+CHF+CKD) (Fig EV1). A general description of the clinical

variables is summarized in Table 1. Individuals with prediabetes and

diabetes were, in general, older and tended to suffer from cardiac and

renal dysfunctions, but no differences in body mass index (BMI) or

blood pressures were observed. Serum albumin, a biomarker for pro-

tein nutritional status, was reduced in most CHF patients, while blood

urea nitrogen (BUN) was increased in parallel with poorer kidney

function, as reflected in differences in eGFR across groups.

Absolute quantification of the microbially associated metabolites

The targeted metabolomics profiling of all collected serum samples

from this cohort was carried out on a Waters ACQUITY ultraperfor-

mance liquid chromatography platform coupled with a Waters

XEVO TQ-S mass spectrometry (UPLC-MS/MS) system (Xie

et al, 2021). A total of 199 metabolites were quantified, of which

151 (75.9%) were identified as being microbially associated,

including host-bacteria cometabolites (see Materials and Methods

for definition), while 48 metabolites were potentially host-specific

(Table EV1). Consistent with others (Zhou et al, 2019), most known

metabolites belong to amino acids and lipids metabolism (Fig EV2)

but varied by an order of 105 fold on average. A revisit of the meta-

bolic profiles of the European Prospective Investigation into Cancer

(EPIC)-Norfolk (Pietzner et al, 2021) and the Boston Puerto Rican

Health Study (BPRHS) cohorts (Murthy et al, 2020) revealed that

230 and 176 microbial metabolites could be defined according to the

same standards, respectively, which served as the validation data-

sets. Out of the 151 microbial metabolites quantified in this study,

115 (76.2%) and 86 (57.0%) overlap with these two geographically

independent cohorts, respectively (Fig EV3A and B).

Associations with CHF and associated comorbidities

Compared with the NGT controls, the circulating levels of 94 micro-

bial metabolites were significantly altered in at least one disease set-

ting, after adjusting for age and sex differences (adjusted P value <

0.1). Additionally, two metabolites, myristic acid (C14:0) and 2/

alpha-aminobutyric acid, showed altered concentrations based only

on the raw P values, but with supporting evidence from the valida-

tion cohorts (Table EV2). In total, we identified 258 metabolite-

disease links from 96 microbially associated metabolites, among

which 23 such links from 19 metabolites were potentially con-

founded by medications based on a state-of-the-art drug-

deconfounding pipline (Forslund et al, 2021; Fig 1; Table EV2). For

instance, associations between threonic acid and CHF and/or related

comorbidities tend to be affected by diuretics, consistent with previ-

ous findings (Forslund et al, 2021).

Forty-seven microbial metabolites were reported to be consistently

correlated with the incidence of T2D, CHF, or CKD in two EPIC-

Norfolk subcohorts, based on the reported raw P values (age and sex-

adjusted; Pietzner et al, 2021), with 72.3% (34/47) aligning with our

findings (Fig EV3C). Of note, 75% (39/52) of metabolites that associ-

ated with the cardiometabolic stress index defined in the BPRHS

cohort (Murthy et al, 2020) were also observed with altered circulat-

ing levels here (Fig EV3D), consolidating the suggestion that shared

pathophysiologies exist among these three common cardiometabolic

diseases. We additionally identified 49 new metabolite-disease links,

with 27 and 22 associated with increased and decreased disease risks,

respectively (Fig EV3E and F; Table EV3). Of these, the abundances of

eight metabolites, including hydrocinnamic acid, were consistently

reduced in all three cohorts, and that of another eight with reduced

concentrations including glyceric acid were validated in the EPIC-

Norfolk cohort only, implying that those metabolites may play protec-

tive roles against CHF and/or related comorbidities. In aggreement,

glyceric acid supplementation was shown recently in a clinical trial to

be able to alleviate metabolic disorders by boosting mitochondrial

metabolism (Hirvonen et al, 2021).

Hierarchical clustering analyses showed that all 96 altered

microbial metabolites in our study could be classified into two dis-

tinct clusters (Fig 1): metabolites exhibiting increased or decreased

cardiometabolic stress (group 2/3 versus group 1 defined in the

BPRHS cohort, see Materials and Methods) and hazard ratios for

incidence of CHF, T2D, or CKD (calculated in the EPIC-Norfolk

cohort). Notably, the observed shifts toward these three cardiome-

tabolic diseases in all three cohorts were generally consistent.
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Moreover, in the REM-HF cohort, we found that after an average of

2.3 years of follow-up, 21 and 12 metabolites were observed with

increased and decreased hazard ratios for 113 cardiovascular deaths

or CHF rehospitalization events after adjusting for age, sex, and

BMI, respectively. In total, the serum levels of 18 metabolites

(Table EV4) were found significantly altered in all three diseases

and robustly associated with CHF multimorbidity and mortality/

rehospitalization.

Table 1. Characteristics of the REM-HF cohort.

NGT
(N= 23)

NGT+ CHF
(N= 48)

Prediabetes+
CHF (N= 83)

T2D+ CHF
(N= 56)

Prediabetes+
CHF+ CKD
(N= 34)

T2D+ CHF+
CKD
(N= 16)

Age (years) 53.61� 2.91 60.23� 2.27 61.83� 1.38* 62.38� 1.47* 72.06� 2.16# 72.50� 2.68#

Sex (female %) 47.83 38.78 18.07+ 19.64* 41.18 43.75

BMI (kg/m2) 23.92� 0.82 23.53� 0.53 25.28� 0.47 25.29� 0.53 23.25� 0.67 24.85� 0.95

SBP (mmHg) 127.83� 3.46 127.19� 3.07 132.88� 2.40 130.79� 3.62 130.65� 4.71 132.12� 5.81

DBP (mmHg) 75.13� 2.41 71.54� 1.91 77.72� 1.75 77.02� 1.97 74.38� 3.16 78.25� 2.57

Albumin (g/l) 40.26� 0.65 37.60� 0.65* 36.83� 0.57+ 37.36� 0.58+ 34.50� 0.93# 36.69� 1.33*

hsCRP (mg/l) 2.90� 1.38 4.18� 1.38 11.71� 3.09 15.24� 3.86+ 23.99� 10.77# 6.05� 1.65*

Lymphocyte (×109/l) 1.89� 0.09 2.40� 0.80 1.72� 0.07 1.22� 0.07* 1.65� 0.08# 1.44� 0.15+

White blood cells (×109/l) 5.95� 0.33 7.17� 0.87 7.02� 0.24* 7.55� 0.32+ 6.26� 0.40 7.18� 0.57

Lipid metabolism (mmol/l)

FFA 0.45� 0.04 0.44� 0.03 0.54� 0.02* 0.59� 0.03+ 0.63� 0.04+ 0.77� 0.08+

HDLc 1.24� 0.07 1.17� 0.04 1.06� 0.03* 1.10� 0.04 1.02� 0.05* 1.05� 0.09

LDLc 2.89� 0.19 2.54� 0.12 2.52� 0.09 2.47� 012 2.37� 0.18* 1.78� 0.14#

TG 1.41� 0.11 1.42� 0.08 1.33� 0.07 1.55� 0.15 1.10� 0.06* 1.26� 0.10

TC 4.59� 0.24 4.19� 0.14 4.03� 012* 4.07� 0.16 3.72� 0.22+ 3.17� 0.20#

Glucose metabolism (mmol/l)

Fasting glucose 5.03� 0.10 4.75� 0.07* 5.49� 0.08+ 7.61� 0.41# 5.76� 0.14# 7.34� 0.66#

2 h Glucose 6.02� 0.16 6.19� 0.13 8.89� 0.13# 12.95� 0.47# 8.50� 0.24# 13.82� 1.04#

Fasting insulin (pmol/l) 7.44� 0.64 7.71� 1.03 8.97� 0.62 17.75� 4.85 8.11� 0.77 15.48� 3.37*

2 h Insulin (pmol/l) 28.47� 4.06 40.42� 5.02 76.10� 6.69# 84.56� 14.37# 66.32� 10.23+ 102.35� 26.19#

HbA1c (%) 5.39� 0.04 5.35� 0.04 6.12� 0.07# 7.23� 0.19# 5.90� 0.08# 7.00� 0.29#

HOMA-IR 1.68� 0.16 1.67� 0.24 2.24� 0.16 5.96� 1.42+ 2.11� 0.22 5.90� 2.20+

QUICKI 0.16� 0.003 0.16� 0.003 0.15� 0.002 0.14� 0.003+ 0.15� 0.003 0.14� 0.004+

Adipose-IR 3.25� 0.35 3.11� 0.34 4.92� 0.38* 8.65� 2.22+ 5.02� 0.60 12.36� 3.43+

TyG index 8.57� 0.08 8.51� 0.06 8.57� 0.05 8.94� 0.08+ 8.47� 0.07 8.81� 0.11

Heart function

LVEF (%) 65.78� 1.36 44.81� 1.89# 42.55� 1.35# 41.16� 1.711# 46.62� 2.30# 44.12� 3.62#

NT-proBNP (μg/l) 0.31� 0.14 2.52� 0.46# 2.88� 0.45# 2.93� 0.62# 7.74� 1.68# 5.18� 1.50#

Myoglobin (ng/ml) 21.87� 2.51 35.07� 2.74# 36.52� 2.65# 116.61� 70.56+ 83.21� 14.94# 54.94� 6.65#

TnI (μg/l) 0.59� 0.55 0.10� 0.04* 0.55� 0.37+ 1.63� 0.98+ 3.30� 2.87# 0.24� 0.17+

Kidney function

BUN (mmol/l) 5.19� 0.30 5.97� 0.26 6.56� 0.20+ 6.75� 0.29# 11.56� 1.09+ 10.51� 0.88#

Creatinine (μmol/l) 69.43� 2.95 79.45� 2.49* 84.95� 1.76# 80.09� 2.42+ 160.12� 25.79# 128.06� 7.86#

CystatinC (mg/l) 0.93� 0.03 1.17� 0.04# 1.23� 0.03# 1.14� 0.03# 1.98� 0.20# 1.72� 0.12#

eGFR (ml/min/1.72m2) 96.31� 2.70 86.97� 2.53+ 82.36� 1.60# 85.23� 2.73+ 42.02� 2.58# 46.42� 2.72#

Uric acid (μmol/l) 316.91� 13.92 400.45� 15.60# 412.23� 13.61# 399.73� 16.39+ 498.74� 32.60# 487.62� 34.15#

Values reported as mean� SE. For continuous variables, the Wilcox rank-sum test was used. For categorical variables, the chi-squared test was used. *P< 0.05,
+P< 0.01, #P< 0.001 versus the NGT group. Adipose-IR, adipose insulin resistance; BUN, blood urea nitrogen; DBP, diastolic blood pressure; eGFR, estimated glo-
merular filtration rate; FFA, free fatty acid; HbA1C, glycated hemoglobin; HDLc, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of
insulin resistance; hsCRP, high-sensitivity c-reactive protein; LDLc, low-density lipoprotein cholesterol; LVEF, left ventricular ejection fraction; NT-proBNP, N-
terminal pro-B-type natriuretic peptide; QUICKI, quantitative insulin sensitivity check index; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; TnI,
troponin I; TyG index, triglyceride-glucose index.

� 2023 The Authors EMBO Molecular Medicine 15: e16928 | 2023 3 of 14

Sha Hua et al EMBO Molecular Medicine



Metabolites from amino acid metabolism

We observed reduced circulating levels of 15 out of 19 commonly

detected amino acids (missing for cysteine), including three

branched-chain amino acids (BCAAs), and a marginal significance

for phenylalanine (raw P= 0.03; adjusted P= 0.14), in different dis-

ease groups compared with NGT controls. No significant differences

were observed for glutamate, proline, or arginine, while increased

tyrosine levels were potentially due to phenylalanine metabolism,

given their significant correlation and metabolic connections (Pear-

son correlation coefficient R= 0.43, P= 8.6e-13). Conversely, all

seven metabolites derived from BCAAs (such as 2/alpha-

hydroxyisobutyric acid) and seven out of 12 from phenylalanine

metabolism detected in this study showed increased circulation.

Indoleacetic acid (IAA) and kynurenine, which result from trypto-

phan metabolism, were also found to have higher concentrations

and have been previously linked to obesity and diabetes (Laurans

et al, 2018). In addition, individuals with CHF and related comorbid-

ities showed dysregulation of the cysteine-glutathione pathway and

oxidative stress, as reflected by decreased levels of methionine and

two closely related intermediates from the cysteine biosynthesis

pathway, namely 2/alpha-aminobutyric acid and homoserine, and

increased levels of dimethylglycine and 2/alpha-hydroxybutyric

acid. Methylmalonic acid, an alternative biomarker for oxidative

stress, was also increased in individuals with CHF.

Metabolites from lipids metabolism

Most lipid-derived metabolites were insignificant in individuals with

CHF compared with the NGT control group but showed progressively

stonger patterns along with co-ocurring CHF morbidities. For example,

we noted that the serum levels for most long-chain fatty acids, includ-

ing the two most abundant ones, C18:1 (oleic acid) and C18:2 (linoleic

acid) that can be taken up by the heart, were increased in the CHF+
prediabetes/T2D groups but showed the most pronounced increase in

individuals with all three diseases (Fig 1). C18:1 (oleic acid) and C22:4

(adrenic acid) additionally showed higher hazard ratios for incidence

of CHF rehospitalization or cardiovascular deaths. Most medium-chain

fatty acids instead were observed to have reduced levels in different

disease groups, such as nonanoic acid (C9:0), azelaic acid (C9:0), and

suberic acid (C8:0), in line with their generally protective roles

(Labarthe et al, 2008; Nagao & Yanagita, 2010). Carnitines and three

acyl-carnitines, including acetylcarnitine, propionylcarnitine, and

2-methylbutyroylcarnitine, as well as the main ketone body 3/beta-

hydroxybutyric acid, which contribute about 15% of myocardial

carbon uptake (Murashige et al, 2020), also showed significant

increases in at least one disease group. Among short-chain fatty acids,

only acetic acid was found to be significantly increased in all disease

groups.

Cross-group comparison and disease-specific metabolites

We additionally performed cross-group comparisons to identify poten-

tial disease-specific metabolites. Our results revealed that 19, 13, and

35 metabolites were unique to CHF (NGT+CHF versus NGT), predia-

betes/T2D (Prediabetes/T2D+CHF versus NGT+CHF), and CKD

(Prediabetes/T2D+CHF+CKD versus Prediabetes/T2D+CHF),

respectively. Three metabolites, including ImP, were common among

all three diseases (Fig 2A). Notably, our results implied that metabo-

lites from the same pathway, such as those from phenylalanine metab-

olism, might have distinct roles in the pathogenesis and development

of different cardiometabolic diseases (Fig 2B). For example, phenylace-

tylglutamine, a microbially produced metabolite that had been linked

with incidence of major cardiovascular events (Nemet et al, 2020),

was confirmed here and associated with both CHF and CKD but not

T2D, mandelic acid with T2D and CKD but not CHF, p/4-

hydroxyphenylacetic acid (4-HPA) with CKD only, and homovanillic

acid instead increased with all three diseases (Fig 2B–E). In support, 4-

HPA, a known uremic toxin tightly connected with CKD (Deguchi

et al, 2002), did not affect left ventricular ejection fraction (LVEF) or

myocardial infarction, the most common cause of CHF (Zhou

et al, 2022). We further found that ImP increased 1.1–1.6 times with

the occurrence of each additional CHF comorbidity, and that its abso-

lute serum levels in Chinese were three times that in Swedish adults,

even in those with NGT (Koh et al, 2018; Fig 2F), in parallel with a

nearly threefold higher prevalence of T2D in Chinese (12.8%; Li

et al, 2020) than Swedish adults (4.4%; Norhammar et al, 2016); com-

parable baseline characteristics including male/female ratio, average

age, and BMI were found between two NGT groups (55/70, 57.6, and

25.5 in Swedish and 12/11, 53.6, and 23.9 in Chinese NGT groups,

respectively). Moreover, we observed a trend (P= 0.065) toward

higher ImP levels in individuals with reduced/moderate (HFrEF/

HFmEF) than those with preserved LVEF (HFpEF) (Fig 2G). Twenty

other metabolites showed significant changes between HFrEF/HFmEF

and HFpEF (Fig EV4), supporting that distinct pathophysiologic fea-

tures exist between those two CHF subgroups (Zordoky et al, 2015;

Murashige et al, 2020).

Validation of the metabolite-CHF links in cardiomyoblasts

Differential expression analysis of Natriuretic Peptide B gene

(NPPB), one of the key genes relevant for the pathogenesis of CHF,

▸Figure 1. Microbially associated metabolites altered in CHF and its comorbidities.

First panel: the heatmap indicating the mean serum concentrations (scaled by row) of 96 metabolites in the REM-HF cohort. P values were calculated by the Wilcoxon
rank-sum test. Symbols indicate the raw P values (-P< 0.1, *P< 0.05, +P< 0.01, #P< 0.001), and symbols with open circles indicate metabolite-disease links that were
potentially confounded by medications. Second panel: the boxplot showing the absolute serum concentrations of the corresponding metabolites with box colors for dif-
ferent pathway annotations. The central band in each box represents the median, the top, and bottom of the box the 25th and 75th percentiles, and the whiskers 1.5
times the interquartile range (n = 260; biological replicates). Third panel: the bar plot showing the fold-changes (FC) of 39 metabolites associated with the cardiometa-
bolic stress scores (group 1–3) in the BPRHS cohort. Forth panel: the bar plot showing the hazard ratio (HR) of each metabolite for the incidence of HF, T2D, or CKD iden-
tified in the EPIC-Norfolk cohort. Last panel: the bar plot showing the hazard ratios (HRs) of 33 metabolites for CHF rehospitalization or cardiovascular death in the
REM-HF cohort. The HRs were calculated with Cox proportional hazards models, adjusting for age, sex, and BMI (likelihood-ratio test P< 0.05 and Schoenfeld residuals
test P> 0.05).

Source data are available online for this figure.
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was investigated in H9c2 cardiomyoblasts (derived from rat heart

tissue) by exposing them to different metabolites. Ten metabolites

representing distinct metabolic pathways were selected, each with

two different doses, which included the mean and maximum

concentrations measured in serum samples collected from mice with

heart failure induced by transverse aortic constriction (n= 4;

Table EV5). After 12 h of exposure, five metabolites including

methylmalonic acid (biomarker of oxidative stress), succinic acid
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(involved in tricarboxylic acid cycle), ImP (from histidine metabo-

lism), 2-hydroxyisobutyric acid (from BCAAs metabolism), and 3-

hydroxybutyric acid (biomarker of lipid beta-oxidation), as

expected, induced higher levels of NPPB expression compared with

the phosphate-buffered saline (PBS) control; succinic acid and ImP

even significantly elevated NPPB expression levels in H9c2 cells

pretreated with hypoxia/reoxygenation (H/R), an important cause

of CHF (Fig 3A). In contrast, four metabolites, including phenylace-

tylglutamine, had no impact on NPPB expression, which seemed

contradictory to a recent study indicating upregulation of this gene

upon phenylacetylglutamine exposure (Romano et al, 2023). The

study by Romano et al used a dose of 100 μM, which was 1,000

times higher than the doses used in this study (0.11 and 0.16 μM).

When the dose of this metabolite was increased to the same level,

NPPB expression was indeed significantly upregulated (Fig EV5),

confirming a crucial dose effect. Glyceric acid was expected to have

a protective role against CHF but failed to suppress NPPB expression

in the H/R pretreated cells and might even cause damage to normal
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cardiomyoblasts. Additional JC-1 dye staining revealed that ImP

disrupted cardiomyoblast functions, as indicated by significantly

reduced mitochondrial membrane potential after exposure in both

cell models (JC-1 red/green ratios; Fig 3B and C).

Mediation analyses with the clinical variables

To address to what extent the altered metabolites associated with

the clinical variables and if there were any associations between

them, we performed machine-learning regression and bidirectional

mediation analyses, respectively, based on the 18 metabolites that

showed the most robust associations with those three diseases

(Fig 1; Table EV4). Our regression analyses, based on random for-

est, revealed that aconitic acids showed strongest associations with

the clinical variables, especially NT-proBNP and FFA (Fig 4A). ImP

associated more with biomarkers of CKD than that of CHF and T2D.

Our results, thus, indicated a pathogenic role of ImP not only for

T2D but also for CHF and CKD and that shared etiologies such as

those mediated by ImP do exist among those diseases. Further bidi-

rectional mediation analysis implied that the link between aconitic

acid to CKD and CHF might be mediated by NT-proBNP, whereas

the protective roles of serine and homoserine might be due to

◀ Figure 2. Metabolic distinctiveness among all three cardiometabolic diseases.

A Venn diagram showing the shared and unique metabolites associated with CHF, T2D, and CKD (Wilcoxon rank-sum test, P< 0.05; ImP with a marginal signicance
level (P= 0.055) was also included).

B The phenylalanine metabolism pathway. The color code of each metabolite shows their associations with different diseases.
C–E Boxplots showing the serum level of phenylacetylglutamine, mandelic acid and homovanillic acid in different CHF subgroups in the REM-HF cohort. NGT: n = 23;

NGT+ CHF: n = 48; Prediabetes+CHF: n = 83; T2D + CHF: n= 56; Prediabetes + CHF + CKD: n= 34; T2D+ CHF+ CKD: n = 16 (biological replicates).
F The boxplot showing the serum level of ImP in the Swedish prediabetes versus the Chinese REM-HF cohorts. For Swedish prediabetes cohort, NGT: n= 125; predia-

betes: n= 262; T2D: n = 17 (biological replicates). For Chinese REM-HF cohort: NGT: n= 23; NGT+ CHF: n= 48; Prediabetes+CHF: n = 83; T2D + CHF: n= 56; Predia-
betes+CHF + CKD: n = 34; T2D + CHF+ CKD: n= 16.

G Differences in ImP when stratified by left ventricular ejection fraction (LVEF; two-tailed Wilcoxon rank-sum tests). NGT: n= 23; HFpEF: LVEF ≥ 50, n= 66; HFmEF:
40< LVEF< 50, n= 68; HFrEF: LVEF ≤ 40, n = 103 participants.

Data information: the central band in each box represents the median, the top, and bottom of the box the 25th and 75th percentiles, and the whiskers 1.5 times the
interquartile range. Wilcoxon rank-sum test was used for all group comparisons.
Source data are available online for this figure.
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Figure 3. Cardiomyoblast-metabolite coculturing and induction of NPPB gene expression.

A The relative expression of NPPB (scaled by row) upon different metabolites exposure in H9c2 cells pretreated with or without hypoxia/reoxygenation (H/R; six
replicates per group). Symbols indicate the raw P values (-P< 0.1, *P< 0.05, +P< 0.01) calculated by the Wilcoxon rank-sum test.
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C Quantification of mitochondrial membrane potential (n = 6, biological replicates). The data are shown as mean� s.d.; Wilcoxon rank-sum test (*P< 0.05, +P< 0.01).

Source data are available online for this figure.
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reduced inflammation (Fig 4B). In agreement, it was recently dem-

onstrated that enhanced bacterial serine fermentation (in parallel

with reduced serine circulation in the host) could boost the growth

of pathogenic bacteria in the inflamed gut (Kitamoto et al, 2020).

Our results also suggest that some microbially associated metabo-

lites, including ImP, could in reverse be affected by clinical variables

such as Cystatin C (Fig 4C).

The utility in CHF rehospitalization/mortality prediction

To examine if the identified metabolites could help predict a com-

posite of CHF rehospitalization and mortality, we performed sur-

vival analyses and compared the performance of metabolites with

that of the Framingham (D’Agostino Sr. et al, 2008) and GWTG-HF

(Get With the Guidelines-Heart Failure) risk scores (Peterson
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Source data are available online for this figure.
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et al, 2010). Results indicated that the GWTG-HF risk scores, at least

in our cohort, were more useful in predicting CHF rehospitalization/

mortality than the Framingham risk scores (Fig 5A). We additionally

showed that the risk scores derived from key microbially produced

metabolites, such as ImP or a combination of all 18 metabolites,

performed better than the GWTF-HF risk score (Fig 5B). Further

time-dependent receiver operating characteristic (ROC) analysis

confirmed that the metabolite risk score was superior than the

GWTF-HF risk score for CHF prognosis, and that combinations of

both features barely improved the model performance (AUC from

0.74 to 0.75; Fig 5C).

Discussion

We measured the serum levels of 151 microbially associated metab-

olites and examined their associations with CHF, T2D, and CKD in a

Chinese heart failure cohort. Our findings indicate that many micro-

bially associated metabolites, particularly those involved in amino

acid metabolism, may contribute to the reprogramming of metabolic

interconnectivities in CHF and its related comorbidities. In addition,

cellular experiments provided evidence for causal links between

several targeted metabolites and CHF relevant phenotypes. Further

survival analyses demonstrated that a metabolite-based risk score

had better prognostic performance than existing Framingham or

GWTG-HF risk scores.

Amino acids, which can serve as metabolic or anaplerotic sub-

strates, have been increasingly recognized as cardioprotective

(Drake et al, 2012; Streng et al, 2022). Reduced circulating levels of

amino acids, which associated negatively with New York Heart

Association classes, have been reported in CHF patients (Aquilani

et al, 2017). This is consistent with our findings that the circulating

levels of most amino acids tend to decrease in CHF and its comor-

bidities, potentially due to inadequate dietary intake, reduced intes-

tinal absorption, and/or gut microbial dysfunction. In agreement,

inadequate protein intake, absorption, and negative nitrogen bal-

ance have been well documented (Aquilani et al, 2003; Arutyunov

et al, 2008) and recently associated with higher CHF mortality

(Streng et al, 2022), despite the fact that a detailed food frequency

questionnaire was not available for our cohort. Our observation of

reduced 2-aminobutyric acid, which reflects dietary protein absorp-

tion to some extent, in the NGT+ CHF subgroup, along with

reduced serum albumin and protein malnutrition, suggests that

reduced protein absorption and, consequently, increased bacterial

fermentation in the gut may enhance the circulation of microbial

metabolites downstream of amino acid metabolism. Our additional

cellular experiments supported that six out of 10 of those microbial

metabolites, including ImP, 2/alpha-hydroxyisobutyric acid, and

phenylacetylglutamine, appear to be causal to CHF relevant pheno-

types in a dose-dependent manner. Interestingly, both dietary pro-

tein and fat contents lost in the feces have been found to reflect

mucosal barrier dysfunction (Arutyunov et al, 2008). Alternatively,

we speculate that the order of T2D and CHF development may influ-

ence the reprogramming of associated metabolic signatures. It

would be interesting to investigate whether serum levels of BCAAs

increase if the onset of metabolic diseases precedes CHF and

decrease if it occurs in the opposite order, as we observed in this

study, as BCAAs have been repeatedly associated with various met-

abolic disorders, including T2D (White & Newgard, 2019).

Our findings also highlighted the importance of oxidative stress

especially for those metabolites involved in the cysteine-glutathione

pathway to the pathogenesis and development of CHF and its
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Figure 5. Performance of the metabolites in CHF prognosis.

A The Kaplan–Meier survival curve based on the Framingham and GWTG-HF risk scores. In total, 240 participants with clinical variables for Framingham and GWTG-HF
risk scores calculation were included in survival analysis (biological replicates). P values were calculated based on the log-rank test.

B The Kaplan–Meier survival curve based on each microbially associated metabolite (gray colors except for imidazole propionic acid) and a combined metabolite risk
score. In total, 244 participants who completed the follow-up study were included in survival analysis (biological replicates). P values were calculated based on the
log-rank test.

C The time-dependent receiver operating characteristic (ROC) curves for the performance of GWTG-HF scores, metabolite-based risk score, and the combination of both
scores in CHF prognosis. The AUC values were determined by bootstrap resampling with 1,000 iterations.

Source data are available online for this figure.
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comorbidities (van der Pol et al, 2019). 2-aminobutyric acid and

homoserine from cysteine biosynthesis, as well as hydrocinnamic

acid derivatives, which possess antioxidant properties, were

observed with reduced circulating levels in the disease groups, in

line with their generally protective roles against these cardiometa-

bolic disorders (Alam et al, 2016; Irino et al, 2016; Patel et al, 2020).

Increased circulation of dimethylglycine and 2/alpha-hydroxybutyric

acid potentially reflects dysregulation of glutathione homeostasis

and thus increased serum oxidative stress (McGregor et al, 2001). 2/

alpha-hydroxybutyric acid has also been suggested as an early bio-

marker of insulin resistance and glucose intolerance (Gall

et al, 2010; Cobb et al, 2016). In addition, methylmalonic acid, an

alternative biomarker for oxidative stress and mitochondrial dys-

function (Wang et al, 2020), was proven to be able to induce NPPB

gene expression in cardiomyoblasts upon exposure in this study.

The failing heart also associated with reduced FFA utilization,

which accounts for >70% myocardial carbon sources (Murashige

et al, 2020). It has been shown that, for every standard deviation

increase in serum FFA reflecting reduced heart consumption, there

was a 12% higher incidence of CHF (Djousse et al, 2013). Similarly,

we found that the serum levels of long-chain fatty acid adrenic acid

(C22:4) and short-chain fatty acid acetic acid were both increased in

most disease groups and were associated with higher hazard ratios

for incidence of CHF rehospitalization and cardiovascular deaths,

consistent with others (Lankinen et al, 2015; Delgado et al, 2017).

However, no impact on NPPB gene expression levels was observed

for either metabolites at physiological doses when exposed to cardi-

omyoblasts. In contrast, intermediates from incomplete FFA oxida-

tion, such as the main ketone body 3-hydroxybutyric acid and

different carnitines, and those involved in the tricarboxylic acid

cycle such as citric acid, isocitric acid, fumaric acid, aconitic acid

and succinic acid, might represent more promising biomarkers for

CHF development. For instance, elevated levels of citric acid and

succinic acid have been associated with high risk of CHF (Bull�o

et al, 2021). Consistently, our cellular experiments demonstrated

that both 3-hydroxybutyric acid and succinic acid induced NPPB

expression. Moreover, succinic acid could promote generation of

reactive oxygen species (Mills et al, 2016), leading to myocardial

cell deaths (Chouchani et al, 2014). However, it is essential to con-

duct further studies to determine whether increased circulation and

utilization of those lipids represent compensatory mechanisms or

true pathogenic factors for CHF and related comorbidities.

Our study has several limitations. First, the small sample size

may have limited the statistical power of our analysis. However, we

were able to assess CHF rehospitalization and mortality and validate

our results in two other cohorts. Second, although we conducted

bidirectional mediation and regression analyses, caution should be

taken in interpreting the microbially associated metabolites as bio-

markers or mediators of CHF, despite the fact that the causal roles

for CHF relevant phenotypes have been shown in vitro for several

representative metabolites. Third, some of the metabolite-disease

links identified in our study were confounded by medications as

shown. Fourth, the lack of detailed nutritional data prevented us

from determining whether the altered serum molecules were due to

diet, or the diseases, or both.

In summary, our study identified several potential microbial

metabolites and pathways that could be utilized for monitoring and

predicting CHF multimorbidity. The strengthened link between the

gut–heart axis and nutrient metabolism supported dietary modula-

tion of the gut microbiota as a promising therapy for CHF. Overall,

our findings provide a valuable resource for advancing our under-

standing of the human gut microbiota in the precise management of

CHF and its comorbidities.

Materials and Methods

Description of the study cohort

The REM-HF study is a prospective cohort study of 5,344 individuals

recruited from China between 2016 and 2019 (registered at

ClinicalTrials.gov with identifier: NCT02998788). In total, 260 indi-

viduals (29.23% female) aged 24–87 years old were selected for our

targeted metabolomics analysis according to the defined exclusion

criteria in Fig EV1. Individuals were followed up for CHF rehospita-

lization or cardiovascular deaths until August 31, 2021. A total of

244 individuals completed the follow-up study with 89 CHF rehospi-

talization and 24 cardiovascular deaths reported. All participants

gave their informed written consent. This study was approved by

the Institutional Review Board of Ruijin Hospital, Shanghai Jiao

Tong University and conformed to the principles set out in the

WMA Declaration of Helsinki and the Department of Health and

Human Services Belmont Report.

Clinical, biochemical, and echocardiographic assessments

Anthropometric features were collected from electronic medical

records. The blood samples were obtained after at least 8 h fasting

and 20min rest in supine position. Most clinical biomarkers were

measured using a chemiluminescent method (AU5800; Beckman,

Carlsbad, CA). Transthoracic echocardiography was conducted

using a commercially available system (Vivid-I, GE Healthcare, Mil-

waukee, WI). Two-dimensional pulsed-Doppler imaging was

performed from standard parasternal and apical transducer posi-

tions with 2D frame rates of 60–100 frames/s. LVEF (left ventricular

ejection fraction) was calculated using the modified Simpson’s

biplane technique (EchoPac, version 7; GE Healthcare).

Definitions of prediabetes, heart failure and chronic
kidney diseases

Prediabetes was defined as fasting blood glucose in the range of

6.1–6.9 mmol/l and/or 2-h blood glucose 8.9–12.1mmol/l and/or

HbA1c (glycated hemoglobin) 5.7–6.4%. T2D was defined as

fasting blood glucose ≥ 7.0 mmol/l and/or 2-h blood glucose

≥ 12.2 mmol/l and/or HbA1c ≥ 6.5%. Chronic heart failure was

defined as LVEF < 40% or left atrial dilation concomitant with

NT-proBNP > 400 ng/l. Chronic kidney disease was defined as

eGFR (estimated glomerular filtration rate) < 60ml/min/1.72m2

and/or the presence of albuminuria.

Definition of microbially associated metabolites

Metabolites were considered as microbially associated if they were

(i) annotated as microbially produced in the HMDB database

(Human Metabolome Database, version 5.0; Wishart et al, 2022);
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(ii) detected with four times higher for their concentrations in gut

bacteria culturing medium than in controls or in conventionally-

raised than in germ-free mice (Han et al, 2021); or (iii) significantly

associated with the gut microbiome as reported recently (Bar

et al, 2020). Altogether, 588 metabolites were defined as microbially

associated; of these, 151 metabolites could be targetedly quantified

using the Q300 platform based on a UPLC-MS/MS system.

Targeted metabolomics profiling

The blood samples were centrifuged at 1,000 g for 10min to sepa-

rate the serum within 12 h after collection, and the aliquoted serum

samples were stored at -80°C for further analysis. Absolute quantifi-

cation of the microbially associated metabolites was conducted

based on the Q300 platform (Metabo-Profile Biotechnology, Shang-

hai, China) as previously described (Xie et al, 2021). In brief, 25 μl
of serum samples in a 96-well plate was mixed with 120 μl methanol

and then vortexed vigorously for 5 min and centrifuged at 4,000 g

for 30min. In total, 30 μl of supernatant and 20 μl of freshly pre-

pared derivative reagents were added to a clean 96-well plate for

further derivatization. The samples were further diluted using 330 μl
of ice-cod 50% methanol solution and centrifuged. In total, 135 μl of
supernatant was transferred to a new 96-well plate with 10 μl inter-
nal standards in each well. Measurement was performed using a

UPLC-MS/MS system (ACQUITY UPLC-Xevo TQ-S, Waters Corp.,

Milford, MA, USA) with the following settings: BEHC18 1.7 μM Van-

Guard pre-column and analytical column; water with 0.1% formic

acid for mobile phase A and acetonitrile/IPA for mobile phase B;

flow rate at 0.4 ml/min; and capillary (Kv)= 1.5 (ESI+), 2.0 (ESI-).

The raw data files generated by UPLC-MS/MS were processed using

the MassLynx software (v4.1) to perform peak integration, calibra-

tion, and quantification for each metabolite.

Identification of metabolites associated with cardiometabolic
stress in BPRHS cohort

The cardiometabolic stress (CM) index in BPRHS cohort was calcu-

lated as previously described (Murthy et al, 2020). This index is

based on nine components associated with metabolic, inflamma-

tory, and neurohormonal states, with a score of 0, 1, or 2 assigned

to each component. The scores are then summed up to obtain a

score ranging from 0 to 11 defined as the CM index. To identify

metabolites associated with this index, we divided participants in

the BPRHS cohort into the following three groups: a low-risk group

(group1, 0≤ CM index ≤ 3, n= 212), an intermediate-risk group

(group2, 4≤ CM index ≤ 5, n= 301), and a high-risk group (group3,

6≤ CM index, n= 227). We calculated the fold-change of each

metabolite by comparing its abundance in group 2 or group 3 to

group 1, respectively.

Transverse aortic constriction (TAC) mice model

C57/BL6 mice were purchased from Model Animal Research Center

of Nanjing University and housed in the Experimental Medical

Research Center of Ruijin Hospital with a standard 12 h light–dark
cycle and free access to food and water. Minimally invasive TAC

was performed on 8-week-old male mice (n= 4). Prior to the proce-

dure, the mice were anesthetized with an intraperitoneal injection

of 2.5% pentobarbital and connected to a mechanical ventilation

device to ensure their breathing. The procedure began with a hori-

zontal skin incision, approximately 0.5–1.0 cm in length, made at

the level of the suprasternal notch. The transverse aortic arch was

then exposed, and a 5–0 silk suture was carefully looped around the

aorta and tied around a 27-gauge needle placed next to the aortic

arch. After the ligation, the needle was removed, and the skin was

closed. The mice were then allowed to recover on a warming pad

until fully awake. Blood from the mice eyeballs was collected 6

weeks after the surgery and centrifuged at 4°C, 3,000 rpm for 20

min. After centrifugation, the supernatant serum was stored at

-80°C until further metabolomics analysis. All animal experimental

protocols were approved by the Committee on the Ethics of Animal

Experiments of Ruijin Hospital.

Cell-metabolite co-culturing and quantitative real-time
PCR analysis

The H9c2 cell line was obtained from the National Collection of

Authenticated Cell Cultures in China (identifier:CSTR:19375.09.

3101RATGNR5) and routinely tested for mycoplasma contamina-

tion. Cells was cultured in Dulbecco’s Modified Eagle Medium

(DMEM) medium supplemented with 10% fetal bovine serum, 100

U/ml penicillin, and 100 μg/ml streptomycin at 37°C in a humidified

atmosphere containing 5% CO2. The cells were fed every 2 days and

subcultured when they reached 70–80% confluence to prevent any

changes in cellular phenotype. All metabolites were dissolved in

phosphate-buffered saline (PBS) for subsequent use, with the excep-

tion of adrenic acid (C22:4), which was dissolved in ethanol first

before being diluted in PBS. Three groups of H9c2 cells, each with

approximately 80% confluency, were exposed to either different

doses of each metabolite or an equal volume of PBS for a duration

of 12 h. To establish a hypoxic condition, the cells were transferred

to a glucose-free medium within an airtight Plexiglas hypoxic cham-

ber for 6 h, while being exposed to the metabolite or PBS. This was

followed by a reoxygenation period of 6 h.

Total RNA was isolated from H9c2 cells using TRIzol reagent

(Cat#9109, Takara, Japan) following the manufacturer’s

The paper explained

Problem
Whether and which circulating microbial metabolites are associated with
chronic heart failure and related comorbidities is currently unknown.

Results
An association between microbial metabolites and cardiometabolic dis-
eases was identified in a Chinese cohort study of 260 individuals with or
without incidence of chronic heart failure and related comorbidities. Com-
pared with the traditional heart failure risk score, the metabolite-based
risk score exhibited superior performance for CHF prognosis.

Impact
These results revealed several potential microbial metabolites and
pathways that could be utilized for chronic heart failure multimor-
bidity monitoring, targeted for drug design, and integrated for disease
prognosis.
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instructions. The quality and purity of the RNA were assessed using

a NanoDrop-2000 spectrophotometer. Real-time PCR was performed

on an Applied Biosystems 7500 instrument using SYBR Green PCR

Master Mix (Cat#RR036A, Takara, Japan). The relative mRNA levels

were calculated using the 2�ΔΔCt method and normalized to β-actin.
The following primers were used for PCR: rat β-actin, F 50-TTGT
GATGGACTCCGGAGAC-30 and R 50-TGATGTCACGCACGATTTCC-
30; rat BNP-encoding gene NPPB, F 50-AGACAGCTCTCAAAGGACC
A-30, and R 50-CCGGTCTATCTTCTGCCCAA-30.

Measurement of mitochondrial membrane potential

Changes in mitochondrial membrane potential were assessed by JC-

1 staining with fluorescence microscopy. In brief, H9c2 cells were

incubated with JC-1 at 37°C for 20min and then washed twice with

JC-1 staining buffer (1×). The cells were visualized on Petri dishes

using a fluorescence microscope (IX83, Olympus). The red emission

of JC-1 dye indicates potential-related aggregation in the mitochon-

dria, whereas the green fluorescence represents the monomeric form

of JC-1 that appears in the cytoplasm after depolarization of the

mitochondrial membrane. We analyzed the ratio of aggregate to

monomer using ImageJ software. The cells were treated with imid-

azole propionic acid (0.1 μM for 24 h) or subjected to 6 h of hypoxia

followed by 6 h of reoxygenation (H/R).

Statistical analyses

All statistical analyses were conducted in the R environment (ver-

sion 4.0.4). All samples were included in the analysis, with the

exception of individuals who did not complete the follow-up study.

We did not use cell randomization or blinding of investigators. The

nonparametric Wilcox rank-sum test was used to identify metabo-

lites that differed significantly between groups. For categorical vari-

ables, the Chi-squared test was used. Drug-deconfounding analysis

for the metabolite-disease links was performed using the metade-

confoundR package (v0.1.8; Forslund et al, 2021). The multivariable

Cox proportional hazards model (survival v3.2.13; Therneau, 2019)

and random forest model (randomForest v4.6.14; Liaw & Wie-

ner, 2002) with sex adjustment (ntree= 3,000, mtry= 2–30) were

utilized. Bidirectional mediation analysis (mediation v4.5.0; Tingley

et al, 2014) was performed with age and sex adjustment. Kaplan–
Meier survival analysis (survminer v0.4.9; Kassambara et al, 2021)

and time-dependent ROC curves (riskRegression v2021.10.10;

Gerds & Kattan, 2021) were conducted with bootstrap resampling

(n= 1,000). The log-rank test was applied to compare survival

curves between groups. Raw P values were adjusted by the

Benjamini–Hochberg method (Benjamini & Hochberg, 1995).

Adjusted P values < 0.1 and raw P values < 0.05 were considered

statistically significant.

Data availability

The datasets produced in this study are available in the following

databases: raw metabolomics data: OMICSDATA.org OD10001

(https://omicsdata.org/Apps/REM-HF/Download).

Expanded View for this article is available online.
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