Skip to main content
. 2023 May 26;9(6):e16716. doi: 10.1016/j.heliyon.2023.e16716

Table 5.

Performance summary for training algorithms of the ANN model (single layer and ten neurons).

Algorithm MSE R2
Levenberg-Marquardt 1.96E-06 1.00000
Bayesian Regularization 2.40E-06 1.00000
BFGS Quasi-Newton 4.14E-04 0.99300
Resilient Backpropagation 7.25E-04 0.98771
Scaled Conjugate Gradient 7.60E-04 0.98787
Conjugate Gradient with Powell/Beale Restarts 4.31E-05 0.99927
Fletcher-Powell Conjugate Gradient 5.06E-04 0.99140
Polak-Ribiére Conjugate Gradient 6.50E-03 0.88285
One Step Secant 2.80E-03 0.96091
Variable Learning Rate Gradient Descent 8.09E-04 0.98661
Gradient Descent with Momentum 1.68E-02 0.65602
Gradient Descent 1.69E-02 0.65406