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Summary

Background—Pretreatment identification of pathological extranodal extension (ENE) would 

guide therapy de-escalation strategies for in human papillomavirus (HPV)-associated 

oropharyngeal carcinoma but is diagnostically challenging. ECOG-ACRIN Cancer Research 

Group E3311 was a multicentre trial wherein patients with HPV-associated oropharyngeal 

carcinoma were treated surgically and assigned to a pathological risk-based adjuvant strategy 

of observation, radiation, or concurrent chemoradiation. Despite protocol exclusion of patients 

with overt radiographic ENE, more than 30% had pathological ENE and required postoperative 

chemoradiation. We aimed to evaluate a CT-based deep learning algorithm for prediction of 

ENE in E3311, a diagnostically challenging cohort wherein algorithm use would be impactful in 

guiding decision-making.

Methods—For this retrospective evaluation of deep learning algorithm performance, we obtained 

pretreatment CTs and corresponding surgical pathology reports from the multicentre, randomised 

de-escalation trial E3311. All enrolled patients on E3311 required pretreatment and diagnostic 

head and neck imaging; patients with radiographically overt ENE were excluded per study 

protocol. The lymph node with largest short-axis diameter and up to two additional nodes 

were segmented on each scan and annotated for ENE per pathology reports. Deep learning 

algorithm performance for ENE prediction was compared with four board-certified head and neck 

radiologists. The primary endpoint was the area under the curve (AUC) of the receiver operating 

characteristic.

Findings—From 178 collected scans, 313 nodes were annotated: 71 (23%) with ENE in 

general, 39 (13%) with ENE larger than 1 mm ENE. The deep learning algorithm AUC for 

ENE classification was 0·86 (95% CI 0·82–0·90), outperforming all readers (p<0·0001 for each). 

Among radiologists, there was high variability in specificity (43–86%) and sensitivity (45–96%) 

with poor inter-reader agreement (κ 0·32). Matching the algorithm specificity to that of the reader 
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with highest AUC (R2, false positive rate 22%) yielded improved sensitivity to 75% (+ 13%). 

Setting the algorithm false positive rate to 30% yielded 90% sensitivity. The algorithm showed 

improved performance compared with radiologists for ENE larger than 1 mm (p<0·0001) and in 

nodes with short-axis diameter 1 cm or larger.

Interpretation—The deep learning algorithm outperformed experts in predicting pathological 

ENE on a challenging cohort of patients with HPV-associated oropharyngeal carcinoma from 

a randomised clinical trial. Deep learning algorithms should be evaluated prospectively as a 

treatment selection tool.

Funding—ECOG-ACRIN Cancer Research Group and the National Cancer Institute of the US 

National Institutes of Health.

Introduction

Head and neck cancer incidence is rising, driven by an increase in human papillomavirus 

(HPV)-associated oropharyngeal carcinoma with approximately 15 000 incidents annually 

in the USA.1,2 Standard treatment frameworks for HPV-associated oropharyngeal carcinoma 

include upfront surgical or non-operative (ie, chemoradiation) approaches, both of which 

can be associated with substantial morbidity. HPV-associated oropharyngeal carcinoma is 

associated with favourable prognosis compared with tobacco and alcohol-associated head 

and neck cancers,3,4 and therefore the long-term treatment sequelae in survivors can be 

more apparent and detrimental.5 The high morbidity of treatment has led to investigations of 

therapy de-escalation strategies to maintain favourable oncological outcomes while reducing 

toxicity,6,7 including the use of upfront transoral robotic surgery.8–11

The ECOG-ACRIN Cancer Research Group E3311 (NCT01898494) was a multicentre 

phase 2 trial studying primary transoral robotic surgery for HPV-associated oropharyngeal 

carcinoma followed by risk-adapted post-operative therapy dependent on pathological risk 

factors. Protocol details have been published previously.9 Patients in the intermediate 

pathological risk group were randomly assigned to de-escalated versus standard dose post-

operative radiotherapy (at 50 Gy or 60 Gy), which was the experimental focus of the trial. 

Patients were deemed high-risk, and not eligible for radiation alone, if surgical pathology 

showed more than four malignant lymph nodes, positive margin, or more than 1 mm of 

extranodal extension (ENE).9

ENE, when malignant cells infiltrate beyond the lymph node into surrounding tissue, 

is both a poor prognostic factor for oropharyngeal carcinoma and an indication for 

therapy intensification with postoperative chemoradiation (ie, trimodality therapy),12 which 

increases toxicity and health-care costs.13–15 ENE is only definitively diagnosed on 

pathology, and attempts to identify or predict ENE via human interpretation of pretreatment 

imaging have generally shown poor results.16–21 Accordingly, there are high rates of 

incidental ENE following surgery for oropharyngeal carcinoma.21,22 For example, although 

the E3311 protocol specifically excluded patients with radiographically overt ENE, 31% 

of patients were allocated to the high-risk, trimodality arm, with 77% of these due to an 

ENE greater than 1 mm.9 Additionally, patients receiving trimodality therapy had poorer 

toxicity and quality of life outcomes. Therefore, tools are needed to better predict ENE in 

Kann et al. Page 3

Lancet Digit Health. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01898494


the pretreatment setting to help select the ideal treatment de-escalation or intensification 

trials for patients and avoid unnecessary trimodality therapy.

Deep learning algorithms within the field of artificial intelligence synthesise large amounts 

of data and make predictions based on learned features of a training dataset.23 Deep learning 

has transformed the field of computer vision and is now used in several US Food and 

Drug Administration-approved imaging applications.24–26 In previous work, some of the 

present authors developed, externally validated, and benchmarked a CT-based deep learning 

algorithm for identifying ENE in patients with head and neck cancers,27,28 finding that 

it outperformed head and neck radiologists.28 In this study, we rigorously evaluated the 

algorithm as an ENE screening tool for transoral surgery in the E3311 cohort, a difficult 

litmus test in a prospectively accrued patient population already screened for readily 

identifiable ENE, where pretreatment identification of ENE would be particularly impactful 

to management decisions.

Methods

Study design

This retrospective evaluation of deep learning algorithm performance used data from 

the multicentre, randomised de-escalation trial E3311. This study was reviewed by the 

institutional review boards at the participating institutions and granted exemption and waiver 

of informed consent. The study was done with support of ECOG-ACRIN in providing 

de-identified imaging and pathology data. The report follows the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines.29

Participants

All enrolled patients on E3311 required pretreatment and diagnostic head and neck 

imaging; patients with radiographically overt ENE were excluded per study protocol. 

E3311 was held in the USA across 58 participating medical centres. All surgical 

specimens underwent centralised pathology review and ENE extent in millimeters was 

recorded. We retrospectively included all intent-to-treat E3311 patients with readily 

available pretreatment, diagnostic quality CT with intravenous contrast enhancement, 

and corresponding lymph node dissection pathology report with annotated ENE status 

and extent of ENE in millimeters. E3311 allowed pretreatment CT or MRI, and those 

without iodinated, intravenous contrast-enhanced CT were excluded. Generally, surgical 

pathology reports included ENE diagnosis at the nodal level by including description of the 

nodal station and including diameter information. Corresponding lymph node radiographic 

annotations were made in accordance with the previous study protocol27 and assigned a level 

of certainty (appendix p 2). Only nodes with a high degree of certainty were included in 

the study dataset. Given the known association between lymph node size and ENE,30 we 

included the node with longest short-axis diameter on each scan along with 1–2 additional 

smaller nodes at random that had certain ENE correlations (appendix p 2).
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Procedures

We used DualNet, a three-dimensional (3D) convolutional neural network algorithm 

developed and validated in previous studies28 for all analyses. DualNet is a visual geometry 

group-inspired architecture that receives and merges two 3D representations of lymph 

node regions of interest: one that retains original volume information, and one that is 

rescaled to be size invariant. Algorithm architecture and hyperparameters were all identical 

to those implemented in previous work.27 Before doing the present validation study, 

several modifications to image acquisition and preprocessing workflows were made a priori 

(appendix pp 2–3). Given the fundamental knowledge that increasing training data improves 

neural network performance, we retrained our initial model for this study, which was 

developed from a single institution,27 with two additional datasets that had been previously 

used as external validators.28 Therefore, a total of three data sources were made use of for 

model training and tuning (appendix p 6). The model was then locked for testing on the 

E3311 dataset (figure 1).

Four board-certified, fellowship-trained neuroradiologists who specialise in head and neck 

cancer (median experience 11 years in practice post-residency, range 4–17 years) from 

three National Cancer Institute-designated Comprehensive Cancer Centers were recruited 

as expert ENE readers (labelled as R1–4). No readers were involved in the development 

of the algorithm. Each reader independently reviewed all study CT scans, one at a time, 

via the open-source software, 3D Slicer (version 4). The CT scan was viewable in the 

axial, sagittal, and coronal planes, with overlaid lymph node segmentations, which could be 

hidden at the reader’s discretion. Reviews were done in isolation and readers were masked 

to the segmentation labels. Readers were instructed to use best judgement in measuring 

ENE likelihood for the segmented nodes and were additionally provided with an educational 

tool to assist with ENE diagnosis containing visual descriptions of CT features previously 

found to be associated with ENE (appendix p 21).31 Readers documented likelihood of 

malignant involvement and ENE on a 4-point forced-Likert scale (1 meaning very unlikely, 

2 meaning somewhat unlikely, 3 meaning somewhat likely, and 4 meaning very likely) for 

each segmented lymph node and for the scan overall.

Statistical analysis

Statistical analyses were done in Python (version 3.8.5) using the scikit-learn package 

(version 0.24), unless otherwise specified. The primary endpoint of the study was the 

area under the curve (AUC) of the receiver operating characteristic for ENE prediction, 

which measures discriminatory performance and reflects a combination of sensitivity and 

specificity. From previous work,28 we anticipated a minimum of 155 lymph nodes would be 

needed to detect a type I error of 5% with 80% power for the expected AUC improvement 

of 0·85 (+ 15%) over the expected benchmark of 0·70 for expert controls (appendix p 13). 

95% CIs were calculated, and algorithm AUC was compared with that of each reader via 

the Delong method,32 with a p value of less than 0·05 indicating statistical significance. 

For primary analyses, reader Likert scores were dichotomised (1–2 vs 3–4) to mimic a real-

world decision to indicate negative or positive ENE prediction. Secondary endpoints were 

sensitivity (1 – false negative rate), specificity (1 – false positive rate), positive predictive 

value, negative predictive value, and raw accuracy. Deep learning algorithm secondary 
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endpoints were calculated using four probability thresholds: a threshold that optimised 

Youden index (sensitivity + specificity – 1) on internal validation and thresholds that yielded 

false positive rates at clinically meaningful values: 10%, 20%, and 30%. Performance 

metrics were evaluated for ENE overall and ENE more than 1 mm and in the subgroup 

of lymph nodes with short-axis diameter of 10 mm or more, which we believe would be 

the most relevant for real-world use as this threshold is used clinically to denote lymph 

nodes at risk of metastasis. Calibration was assessed via reliability diagrams and expected 

calibration error.33 Post-hoc calibration using temperature scaling33,34 was then done on the 

internal validation set to improve uncertainty estimation without affecting discriminatory 

performance (appendix p 4).

We did analyses to identify the deep learning algorithm’s resilience to adversarial attacks 

and enhance interpretability and trust. Given the reliance of the algorithm on segmented 

lymph nodes and known interoperator variability in segmentation tasks,35 we analysed 

the algorithm test-time tolerance to the injection of random segmentation perimeter 

perturbations, from 1 mm to 10 mm in the axial planes. A custom script was created to 

mimic potential human variations in node segmentation (appendix p 5) and AUC, range, and 

standard deviation were also analysed. Additionally, scanner noise on the order of around 

5 Hounsfield units (HUs) has been recently implicated as adversarial images that could 

mislead neural networks,36 so we did sensitivity analyses by injecting random Gaussian 

noise to images at test time. We did ten iterations of each type of sensitivity analysis. 

For interpretability analysis, we implemented gradient-weighted class activation maps, 

highlighting image regions most important for algorithm prediction.37 Finally, we did an 

analysis of failures and compared lymph-node characteristics between correct and incorrect 

ENE predictions using the algorithm probability threshold that maximised the Youden index.

Role of the funding source

ECOG-ACRIN supported data collection for this work. The funders of the study had no role 

in study design, data analysis, data interpretation, or writing of the report.

Results

Of 360 eligible and treated patients in E3311, we obtained complete data meeting our 

inclusion criteria for 178 (49%; appendix p 24). The remaining patients had either CT 

or pathology data that could not be retrieved from the participating institution. Included 

scans were from 46 participating institutions and various scanner models (appendix p 7). 

From these, 313 lymph-node segmentations were manually generated and annotated for 

malignancy and ENE. There were 105 (34%) benign lymph nodes, 137 (44%) malignant 

lymph nodes without ENE, and 71 (23%) malignant lymph nodes with ENE. Of nodes with 

ENE, 20 (28%) were 1 mm or smaller, 39 (55%) were larger than 1 mm, and 12 (17%) were 

unspecified per the obtained pathology report. For further analysis, we labelled unspecified 

ENE as more than 1 mm in size, as these ENE could not be excluded in these cases. We 

also did sensitivity analyses excluding patients with unspecified ENE. Median short-axis 

diameter was 7 mm (range 4–14) for benign lymph nodes, 20 mm (6–37) for malignant 
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lymph nodes without ENE, and 24 mm (12–42) for lymph nodes with ENE, and 204 (65%) 

of the 313 nodes had a short-axis diameter of 10 mm or more (appendix p 9).

Deep learning algorithm performance for ENE identification was superior to each of the 

four readers (algorithm 0·857, 95% CI 0·82–0·90; R1 0·66, 0·60–0·73; R2 0·71, 0·64–0·77; 

R3 0·70, 0·66–0·73; R4 0·63, 0·56–0·69; p<(1 × 10−5) for each; figure 2; table). For an 

ENE of more than 1 mm, the algorithm yielded superior performance compared with the 

readers (0·859, 0·82–0·90; p<0·0001 for R1–4). For the subgroup of nodes with a short-axis 

diameter of 10 mm or more (n=204), the algorithm also had improved performance (AUC 

0·74, 0·67–0·81), compared with readers, with reader performance particularly low in this 

subgroup (AUC range 0·55–0·62, mean 0·58, p<0·006, figure 2; appendix pp 15–16). Inter-

reader agreement for ENE was modest overall (Fleiss-κ 0·32) and low for nodes with a 

short-axis diameter of 10 mm or more (Fleiss-κ 0·16). Initial algorithm calibration was 

adequate, with probabilities tending to underestimate the likelihood of ENE.

Deep learning algorithm sensitivity at the optimised Youden index threshold was 0·89 

and specificity was 0·72. Sensitivity dropped to 0·72 when setting a threshold to allow 

no more than 20% false positive rate. There was considerable variation between reader 

sensitivities (range 0·45–0·96) and specificities (0·43–0·86), with the highest performing 

reader (R2) having a sensitivity of 0·63 and specificity of 0·78. Except for R3, specificity 

was higher than sensitivity, and no reader had both sensitivity and specificity greater than 

70%. Matching the algorithm specificity to that of the reader with highest AUC (R2, 

false positive rate 22%) yielded improved sensitivity to 75% (+13%). Positive predictive 

value was uniformly lower than negative predictive value for all readers and the algorithm, 

probably owing to the lower prevalence of ENE, and the F1 score was higher for the 

algorithm than the readers (appendix p 14). Following post-hoc calibration with temperature 

scaling, calibration on the test set improved (expected calibration error 0·426 vs 0·246; 

figure 3), without an effect on the AUC (appendix p 4).

Using algorithm prediction on the largest lymph node as a surrogate for patient-level 

ENE yielded improved performance compared to all readers’ predictions of patient-level 

ENE based on their scan-level review (algorithm AUC 0·68 vs R1–4 AUC range 0·54–

0·62; appendix p 16). Augmenting uncertain reader predictions with algorithm prediction 

resulted in overall improved discriminatory performance, with substantial improvements in 

sensitivity and inter-rater agreement (appendix p 17).

Studies of random peripheral segmentation variance for lymph nodes between 1 mm 

and 10 mm did not affect algorithm performance (mean AUC 0·860, range 0·856–0·867; 

appendix pp 19–20). Studies of adversarial images with Gaussian noise of −5 HU to 5 HU 

minimally degraded performance (0·853, 0·851–0·854). Gradient-weighted class activation 

map visualisations highlighted the importance of peripheral nodal regions in classifying 

ENE (appendix p 21).

Confusion matrices yielded eight (11%) of 71 false negative predictions and 68 (28%) of 

242 false positive predictions for the algorithm with a threshold balanced for the optimal 

Youden index (figure 4; appendix p 17). Of false negatives, only one (13%) had an ENE 
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of more than 1 mm (3 mm in extent). Of false positives, none had a calibrated probability 

of more than 85%, and only 12 (18%) had a predicted probability of greater than 70%. 

Lymph node mean short-axis diameter was higher for false positive predictions compared 

with the overall lymph node mean short-axis diameter (24 mm vs 17 mm, p<0·001), but 

lymph node mean short-axis diameter was not sigificantly different between false negative 

predictions and the overall cohort (21 mm vs 17 mm, p=0·16). Regarding readers, both false 

positive predictions and false negative predictions were more likely in larger nodes (p<0·001 

for each, R1–4), with the sole exception being false negative predictions for R3 (p=0·97). 

Scanner parameters, such as pixel spacing, slice thickness, and scanner manufacturer were 

not significantly associated with the algorithm or reader failure (appendix p 19).

Discussion

This study shows that imaging-based deep learning can improve the identification of 

ENE, including those larger than 1 mm, for HPV-associated oropharyngeal carcinoma in 

the pretreatment setting and is positioned for use as a screening tool to help treatment 

decision-making and selecting the optimal de-escalation strategy. Deep learning algorithm 

performance generalises to a diagnostically challenging set of HPV-associated cases 

where pretreatment knowledge of ENE would be clinically impactful. Furthermore, the 

algorithm performs this task with higher discriminatory performance, and particularly 

improved sensitivity, compared with experienced head and neck radiologists from tertiary 

comprehensive cancer centres. The improved sensitivity of the algorithm would translate 

to fewer missed diagnoses of incidental ENE and less subsequent trimodality therapy. In 

addition to the substantial performance gains compared with experts, the algorithm also 

has the benefit of producing standardised predictions, an adjustable threshold to fit the end 

user’s preferences, and calibrated probabilities that align with real-world ENE likelihoods 

and could enhance clinical usability.

Deep learning algorithm results on this prescreened, diagnostically challenging cohort show 

stable performance, with an AUC of 0·86, comparable to our previous work.28 The study 

shows that an algorithm trained largely on HPV-negative head and neck cancers generalises 

well to the HPV-associated setting. We hypothesise that this generalisability is because ENE 

is a morphological, local phenomenon, with the algorithm detecting subtle imaging signals 

in the node periphery that are universally indicative of ENE across molecular subtypes. 

Given that this cohort was prescreened for overt ENE or matted nodes, we expect it to 

perform even better in unscreened populations.

To our knowledge, there has been only one other deep learning classifier developed for 

pathological ENE detection, in a study of 51 patients with oral carcinoma, which did 

not have external validation, limiting direct comparison to our study.18 By contrast, there 

have been numerous studies of radiological diagnosis of ENE using a combination of 

radiologist clinical judgment and traditional imaging criteria.16,17,38–40 These studies show 

a wide range of sensitivities and specificities for ENE, with high inter-reader variability, 

and AUCs generally less than 0·70, consistent with the performance of the experienced 

head and neck radiologists in this study. Notably, we found extreme inter-reader variability 

in this dataset, and wide-ranging in sensitivities (46% to 96%) and specificities (43% 

Kann et al. Page 8

Lancet Digit Health. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to 86%), despite optional use of an educational guideline intended to help standardise 

predictions. We hypothesise that uncertainty in ENE prediction led to overestimation or 

underestimation depending on the readers’ individual tendencies that might derive from 

personal or institutional experiences,45,46 and this was reflected in our post-study survey 

results (appendix p 23). For example, R3 reported a tendency to overestimate ENE, which 

reflected their high sensitivity and low specificity. Specific ENE detection training and 

improved guidelines might improve interobserver variability and accuracy in the future, 

though current strategies do not appear sufficient. However, the algorithm is agnostic to 

these biases, which might be a strength of an algorithm-based detection strategy.

In positioning the algorithm for clinical use, an acceptable tradeoff between sensitivity 

and specificity of ENE identification is important to consider, while understanding that 

the ideal threshold is specific to the clinical user. Allowing a false positive ENE rate of 

30% yielded 90% sensitivity, meaning that applying this algorithm at protocol screening 

could have substantially reduced allocation to the E3311 high-risk arm, which required 

trimodality therapy. In practice, however, clinicians might prefer a false positive rate of 

no more than 10% to 20%, which compromises sensitivity. Findings from several trials, 

including E3311,9 DART,43 and ORATOR,11,44 suggest that, in current frameworks, patients 

with ENE might be better served with non-operative definitive therapy. Conversely, patients 

without ENE are currently the most suitable candidates for surgically based treatment 

de-escalation, with reduced trimodality therapy and reduced long-term sequelae, as shown in 

E3311.9 The relevance of ENE could depend on its extent and, reassuringly, the algorithm 

performed comparably in discriminating ENE by size (ie, >1 mm or ≤1 mm). The algorithm 

operating point can be adapted to various scenarios, though will always require expert 

input to optimise its value in clinical context. Notably, aside from ENE, there are other 

important considerations in determining suitability for operative management, such as 

primary tumour location, extent and number of positive nodes, and patient preferences that 

must be accounted for in decision-making. Beyond selection for de-escalation strategies, 

more accurate ENE prediction via the algorithm could also be helpful in selecting patients 

appropriate for treatment escalation, including addition of chemotherapy to radiation in 

earlier stage patients, and clinical trials of systemic therapy intensification. Given the 

limitations of radiological ENE detection, this study suggests that algorithm-enhanced 

ENE prediction could contribute to decision-making in newly diagnosed patients with HPV-

associated oropharyngeal carcinoma.

Deep learning medical applications are still nascent, and there are barriers to clinical 

translation.45,46 To address some of these barriers, we did test-time experiments to ensure 

that the network would be robust to adversarial images and generalise to various clinical 

scenarios, including variations in lymph-node segmentations and scanner parameters. To 

test for every possible scenario is not feasible and so, for this algorithm, as with any other 

deep learning application, we would recommend a run-in period of local testing at an 

institution to identify possible dataset or performance drift.47 The algorithm (and readers) 

performed worse on larger lymph nodes, and we are actively investigating ways to improve 

performance in this subgroup.
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There are several other limitations to this study. Due to logistical and archiving issues, 

we could not procure the entire E3311 dataset for analysis, instead receiving a random 

sample of roughly half of the trial population. Additionally, validating the algorithm 

requires node-level annotations for ENE, which increase the manual resource needs for 

independent testing. We annotated at least the largest lymph node on each scan to ensure 

the algorithm analysed the node at highest risk of ENE but recognise that there might be 

exceptions to this, so other nodes with clear pathological ENE correlations were annotated 

as well. There is also the possibility that some node labels were misidentified and that 

pathological confirmation could be subject to interobserver variability, though the granular 

reporting and centralised pathological review of E3311 probably minimised these risks. 

Patient-level ENE prediction would promote translation to clinical use without reliance on 

manual segmentation, and work is ongoing to develop autosegmentation tools to facilitate 

this,48,49 although there are inherent benefits of a node-based model. Above all, node-level 

prediction greatly denoises the imaging framework space and allows the algorithm to focus 

on the region where ENE is present. ENE is generally a subtle, localised radiographical 

phenomenon, and therefore, a node-by-node approach to detection is more scientifically 

plausible than scan-level prediction in the absence of datasets much larger than are currently 

available. Additionally, our study shows that the algorithm is robust to variations in 

node segmentation, so performance would not be expected to decline due to interuser 

segmentation variability. Incorporation of imaging methods such as MRI and PET might 

improve the identification of ENE, both from a radiologist and algorithmic perspective, 

however studies thus far have been inconclusive.50–53

With intensifying interest in de-escalation paradigms for HPV-associated oropharyngeal 

carcinoma, tools are needed to optimise patient selection, including improved pretreatment 

ENE identification.54 We show the utility of CT-based deep learning to predict pathological 

ENE in a diagnostically challenging cohort of patients from a prospective, randomised 

de-escalation trial for HPV-associated oropharyngeal carcinoma. The algorithm shows high 

sensitivity and specificity for ENE identification, and substantially outperforms expert 

head and neck radiologists on direct comparison. Algorithm predictions could be provided 

to radiologists during the scan review or addended to a radiology report and given to 

oncology providers during the decision-making process. The deep learning algorithm should 

be prospectively tested in a randomised trial to determine its effect on treatment decision-

making, quality of life, and disease control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched PubMed for articles published from Jan 1, 1990, until April 5, 2022, 

for diagnostic performance for extranodal extension (ENE) for head and neck cancers, 

using the terms: ((extranodal extension) OR (extracapsular extension)) AND ((computed 

tomography) OR (magnetic resonance imaging)) AND ((deep learning) or (machine 

learning) or (radiologist)) AND ((head and neck cancer) OR (oropharynx)). Reviews 

were excluded, yielding 12 articles, ten of which pertained to head and neck 

cancer lymph nodes. Eight articles qualified the diagnostic accuracy of radiologists 

in identifying ENE and universally showed subpar performance or high inter-reader 

variability using various radiographical criteria. Our group previously published the 

first internal and externally validated CT-based, deep learning algorithm for ENE 

identification, showing superior performance when compared directly with two human 

experts. One other deep learning algorithm for ENE identification in patients with 

oral cancer has been since published, trained on a small, single-institution dataset 

without external validation. We found no articles investigating deep learning for ENE 

identification in the setting of human papillomavirus (HPV)-associated oropharyngeal 

carcinoma.

Added value of this study

This is the first study evaluating deep learning as a screening tool for the pretreatment 

identification of ENE in HPV-associated oropharyngeal carcinoma and does so in the 

context of a multinational, randomised treatment deescalation trial. This study was done 

on a large cohort of patients who were, per protocol, excluded if overt radiographic ENE 

was suspected. This population thus represents a difficult litmus test for the algorithm 

in a cohort of patients where pretreatment ENE identification would be consequential. 

Additionally, the cohort had centralised pathology review for ENE, which included extent 

of ENE. The algorithm is directly benchmarked by four expert radiologists and shows 

that deep learning has a clear superiority in identifying ENE compared with the current 

standard.

Implications of all the available evidence

This study shows that deep learning can predict ENE in a prospectively accrued cohort 

of patients with HPV-associated oropharyngeal carcinoma in the pretreatment setting 

with high accuracy, outperforming diagnostic experts. Given the increasing interest in 

therapeutic de-escalation strategies for HPV-associated oropharyngeal carcinoma, the 

algorithm could be used to screen for ENE and help to select patients for operative versus 

non-operative management, thereby improving treatment personalisation and minimising 

the use of trimodality therapy.
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Figure 1: E3311 validation and benchmarking study framework
(A) The previously developed deep learning algorithm was retrained on a combined, multi-

institutional dataset from three sources to predict probability of nodal metastasis and ENE 

on a node-by-node basis. (B) The model was locked and tested on a curated dataset of 313 

lymph nodes from 178 patients enrolled on the E3311 de-escalation trial for patient withs 

human papillomavirus-associated oropharyngeal carcinoma, a trial that specifically excluded 

radiographic matted nodes or overt clinical ENE. Four expert head and neck radiologists 

from National Comprehensive Cancer Network comprehensive cancer centers, and with 

access to a validated educational guideline for radiographic ENE criteria, individually 

reviewed the lymph nodes, and made a prediction of node positivity or ENE on a forced 

Likert scale. ENE classification performance was compared between the deep learning 

algorithm and the radiologists, with a primary endpoint of area under the receiver operating 

characteristic curve. 3D=three dimensional. AUC=area under curve. ECOG-ACRIN=Eastern 

Cooperative Oncology Group and the American College of Radiology Imaging Network. 

ENE=extranodal extension. ROC=receiver operating characteristic.
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Figure 2: Predictive performance of DLA and radiologists for ENE prediction in E3311
(A) Overall, (B) for ENE larger than 1 mm in extent (n=178 patients, 313 lymph nodes), 

and (C) in nodes with a short-axis diameter of 10 mm or more (n=204 lymph nodes). 

ROC curves are displayed with corresponding area under the curve (AUC). Comparative 

AUC with confidence intervals are shown (D) with the addition of performance in the 

subgroup of nodes with SAD ≥10 mm. p<0·001 for each comparison between DLA and 

R1–4. AUC=area under curve. DLA=deep learning algorithm. ENE=extranodal extension. 

R1–4=radiologists 1–4. ROC=receiver operating characteristic. SAD=short-axis diameter.
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Figure 3: Calibration curves for DLA ENE classifier for E3311
Plots are binned in intervals of 10%, with predicted probability in the x axis, compared with 

the actual rate of ENE within that prediction interval on the y axis. Raw probabilities after 

testing on E3311 indicate mild underestimation of actual ENE rates. To develop a calibrated 

model whose probabilities would indicate real-world certainty, we did temperature scaling 

on the raw model outputs using the internal validation set from the combined Yale–Sinai–

TCIA dataset. We then applied this mapping to the output probabilities for the E3311 dataset 

to yield a calibrated model, which maps very well to actual ENE rates, with improved 

expected calibration error. DLA=deep learning algorithm. ECE=expected calibration error. 

ENE=extranodal extension. TCIA=The Cancer Imaging Archive.
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Figure 4: Analysis of successes and failures of ENE classification by DLA and radiologists by 
comparison with representative cases
For the DLA, calibrated probabilities are shown. For the radiologists, predictions are shown 

via the forced Likert scale. Images are shown at varying soft tissue window widths and 

levels. The ground truth pathological ENE status is shown in bold font. Green font is 

used to denote a correct prediction. There was variable concordance between the DLA and 

radiologists, as well as radiologists among themselves. DLA=deep learning algorithm.

ENE=extranodal extension. R1–4=radiologists 1–4. +ENE=positive ENE.
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