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Abstract

Among the scope of targeted protein degradation (TPD), Proteolysis Targeting Chimeras 

(PROTACs), leveraging the ubiquitin-proteasome system, have been extensively studied. However, 

they are limited to degrading soluble and membrane proteins, excluding the aggregated and 

extracellular proteins and dysfunctional organelles. As an alternative protein degradation pathway, 

lysosomes serve as a feasible tool to access these untouched proteins/organelles by proteosomes. 

Here, we focus on reviewing the emerging lysosome mediated TPD, such as AUTAC, ATTEC, 

AUTOTAC, LYTAC, and MoDE-A. Intracellular targets, such as soluble and aggregated proteins 

and organelles, can be degraded via the autophagy-lysosome pathway. Extracellular targets, such 

as membrane proteins, and secreted extracellular proteins can be degraded via the endosome-

lysosome pathway. In addition, we summarize the mechanism and regulation of autophagy, 

available methods/assays monitoring the autophagy process, and the recently developed chemical 

probes for autophagy pathways.
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INTRODUCTION

Protein homeostasis is a coordinated and complex web of building blocks that maintains 

the cellular concentrations, folding, interactions, and localization of proteins essential 

for cellular functions. One vital role protein homeostasis plays is the clearance of 

unwanted misfolded proteins or proteins that fail to fold due to mutations.1 It has been 

demonstrated that the Ubiquitin-proteosome system (UPS) and lysosomal system are 

the two principal and complementary approaches for protein degradation.2,3 The UPS 

pathway degrades intracellular, soluble, and short-lived proteins.4,5 On the other hand, 

the lysosomal system can degrade many fully folded, long-lived, aggregated proteins, 

extracellular proteins, nucleic acids, lipids, damaged organelles and infectious organisms 

such as bacteria and viruses.6 In the past decade, proteolysis-targeting chimeras (PROTACs), 

leveraging the proteasome pathway, have made a significant progress since they emerged 

in 2001.7–9 Recently, several PROTACs have entered clinical trials, which demonstrated 

their potential in medicinal chemistry and chemical biology.10 However, the UPS related 

small molecule-based PROTACs approach has some limitations since it can only degrade 

intracellular, soluble, and short-lived proteins, limiting their applications in many diseases 

caused by extracellular proteins and protein aggregates, such as in Huntington’s and 

Alzheimer’s disease. Therefore, lysosomal degradation of biomolecules can greatly enrich 

the toolbox of targeted protein degradation (TPD) and expand their applications in human 

diseases. Lysosomes are ubiquitous acidic organelles that can degrade proteins, nucleic 

acids and other biomaterials. One of their cellular functions is to degrade and recycle 

the intracellular and extracellular materials using acidic hydrolases.11,12 There are two 

major lysosomal-based degradation pathways: the degradation of cytoplasmic proteins and 

damaged organelles by lysosome through autophagy called autophagy-lysosomal pathway 

and the degradation of extracellular proteins by lysosome through endocytosis called 

endosome-lysosomal pathway.

Autophagy-lysosomal pathway

Autophagy is a conserved catabolic process for the turnover and recycling of cytoplasmic 

components, such as proteins and organelles, which are then trafficked into lysosomes.13–15 

Autophagy has a crucial role in maintaining cells’ homeostasis and energy balance. 

Any disruption in the autophagy process causes various diseases such as cancers, 

neurodegenerative disorders (NDDs), immune disorders, and metabolic diseases.16 

Autophagy has multifaceted roles in cancers, depending on the tumor genotypes and 

therapeutic agents. On one hand, it controls tumor growth by removing cancer-causing 

cells and organelles. On the other hand, it protects tumor cells from therapy-induced 

death and helps to promote tumor growth.17,18 Additionally, the autophagic removal of 

aggregated proteins and organelles from the heart is beneficial since autophagic death of 

unwanted cardiac cells may lead to heart failure.19 Autophagy can also be used as a defense 

mechanism against intracellular pathogens.20

Autophagy is divided into three types, namely microautophagy,21,22 chaperon-mediated 

autophagy (CMA)23,24, and macroautophagy25. Microautophagy is the direct engulfment of 

cytoplasmic components by lysosomes, whereas chaperone-mediated autophagy degrades 
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specific proteins containing a KFERQ-like motif recognized by the molecular chaperon 

HSPA8/HSC70, which directs the protein to the lysosomal surface protein LAMP2A for 

lysosomal engulfment. Macroautophagy (hereafter autophagy) involves the formation of 

a double-membrane vesicle called an autophagosome. The targeted, degraded material is 

trapped inside the autophagosome, which is later delivered into the lysosome through 

membrane fusion between the autophagosome and lysosome.26 The mechanism of the 

autophagic process is highly regulated by autophagy-related proteins. More than 40 

autophagy-related genes and their encoding proteins have been identified in yeast, and most 

of them are also present in mammals, which indicates that autophagy is an evolutionarily 

conserved process.27

Mechanism and regulation of autophagy

The regulation of autophagy is a complex mechanism involving several autophagy-related 

(Atg) proteins. The autophagy mechanism consists of two ubiquitin-like conjugation 

systems resulting in the modified complexes of autophagy regulators LC3-II and Atg12-

Atg5-Atg16L, respectively.28 The autophagy machinery can be divided into three stages: a) 

induction of autophagy b) nucleation, elongation, and maturation of autophagosome; and c) 

fusion with lysosome and degradation (Figure 1).

Autophagy occurs at a low level under basal conditions and is triggered by cellular stress 

such as nutrient starvation, oxidative stress, and mTORC1 inhibition.29–31 The initiation 

of autophagosome formation occurs after the activation of ULK1/2 (unc-51 like kinase) 

proteins which can form ULK1/2 complexes with other proteins such as Atg13, Atg101, and 

FIP200.32 Autophagy nucleation is facilitated by forming the class lll phosphatidylinositol 

3-kinase (PI3K) complex containing VPS34, VPS15, Beclin 1, and Atg14L.33,34 The PI3K 

complex also helps to phosphorylate phosphatidylinositol (PI) to phosphatidylinositol-3-

phosphate (PI3P). PI3P is needed for the correct localization of Atg proteins Atg18 

(WIPI1/2) and Atg2, which help to recruit Atg9 protein to the autophagosome during 

its nucleation step.27,35 Atg9 vesicles are the source of autophagosome membranes in 

nucleation step by coalescence with the ULK1 complex.36 The elongation or maturation step 

involves two ubiquitin-like conjugated systems, LC3-II (Atg 8 in yeast) and Atg12-Atg5-

Atg16L.37 ATG4B cleaves proLC3 isoforms to form LC3-I, where the glycine residue will 

be the C-terminus.38 LC3-I is activated by Atg 7 (E1-like) and conjugated with Atg 3 

(E2-like), followed by covalent binding to phosphatidylethanolamine (PE). This results in 

the lipidated LC3 (i.e., LC-3-I-PE or LC3-II). LC3-II is covalently bound to the membrane 

of the autophagosome.

GABARAP is another Atg 8 homologue in mammals, which is less explored than LC3.37 

Atg4B also plays a role to cleave LC3-II to LC3-I referred as delipidation or deconjugation, 

which helps to recycle LC3.39,40 Similarly, Atg12 is activated and conjugated by Atg7 

(E1-like) and Atg10 (E2-like) proteins, respectively, followed by association with Atg5 and 

Atg16L, resulting in an E3-like complex Atg12-Atg5-Atg16L. The Atg12-Atg5-Atg16L 

complex, which helps the PE-conjugation, dissociates after autophagosome formation.38,41 

Atg conjugation systems are not essential for the autophagosome formation, although they 

facilitate and normally occur during autophagosome formation. Most importantly, Atg3 
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from the conjugation system is required for the opening and efficient degradation of the 

autophagosomal inner membrane after fusing with lysosomes.42 LC3-II acts as a binding 

platform for autophagy receptors (for example, p62, NBR1).43 The receptor proteins help 

traffic the double-membrane autophagosome to the lysosome. With the help of Rab-SNARE 

proteins, the fusion of lysosome and autophagosome results in autolysosomes44,45 which 

release their inner components as well as inner membrane into the lysosome hydrolase for 

their degradation.26,27,35,46,47

Selectivity in autophagy

Although autophagy was considered non-selective initially, recent studies have revealed 

that certain types of macroautophagy are selective.48 Most studied selective autophagy is 

controlled by the cargo receptor proteins, which can recognize cargos and bind to the 

LC3 proteins located on the isolation membrane/phagophore.49 Selective autophagy of cell 

organelles has been classified based on the type of organelles that act as cargos, such 

as mitochondria (mitophagy), protein aggregates (aggrephagy), pathogens (xenophagy), 

ribosomes (ribophagy), lysosome (lysophagy), liposome (lipophagy), endoplasmic reticulum 

(ER-phagy or reticulophagy), and ferritin (ferritinophagy).50–57 The general mechanistic 

pathway for selective autophagy in mammals are regulated by autophagy receptors such as 

p62, NBR1, NDP52, TAX1BP1, OPTN58,59 and CCT2.60 During the selective autophagy 

processes, autophagy receptors undergo post-translational and structural modifications, 

such as ubiquitylation, phosphorylation, acetylation, and oligomerization.43 In the ubiquitin-

dependent cargo selection, misfolded proteins are tagged with a polyubiquitin chain which 

is recognized and bound to receptors through their ubiquitin-binding domain (UBD) and 

ultimately delivered into the autophagosome. In contrast, the ubiquitin-independent pathway 

involves the recognition of the specific cargos such as proteins, lipids, or sugar-based signals 

by the specialized autophagy receptors.61,62 For example, Dowdle et al. discovered that the 

selective autophagy of ferritin (i.e., ferritinophagy) is mediated by the ubiquitin-independent 

receptor NCOA4.57,63

p62/SQSTM1 as a receptor protein for selective autophagy

p62/SQSTM1 is a specific autophagy receptor protein found in the metazoans.64 p62 plays 

a crucial role in the selective autophagic degradation of ubiquitinated protein aggregates 

and contains several conserved domains to bind various substrates.65,66 The p62 domains 

facilitate the degradation of ubiquitinated cargo by binding to the UBD, undergo self-

oligomerization through the PB1 domain, and then delivering the protein aggregates to 

the autophagosome by interacting with the autophagosome membrane protein LC3 via LC3 

interacting region (LIR) (Figure 2).67–70

Some proteolytic systems are based on recognizing N-terminal residues (N-recognins) as 

essential components for their degradation (N-degrons), which is called the N-end rule 

pathway.71,72 Cha-Molstad et al. studied the mechanism of the p62 binding with ER-residing 

proteins BiP for the autophagy of misfolded cytosolic proteins tagged with ubiquitin (Figure 

3), which is evident that p62 is a critical molecule in the crosstalk between UPS and 

autophagy.73 In this study, they observed that p62 follows the N-end rule pathway to the 

autophagosome biogenesis.66
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The ZZ domain of p62 also plays a role in inducing autophagy by selectively modulating 

the N-recognin site and binding to N-terminal degrons, including N-terminal arginine 

(Nt-R) (Figure 3). The binding of the arginylated substrates (Nt-R) to the ZZ domain of 

p62 facilitates disulfide bond-linked p62 self-aggregation and its interaction with LC3, 

which ultimately leads to the delivery of p62 and its cargo into the autophagosome.66,67 

Cha-Molstad et al. developed two small molecule ligands (XIE62–1004 and XIE2008) 

binding to the ZZ domain of p62, which were also able to induce autophagy through p62 

self-aggregation and LC3 interaction (Figure 4).74

Autophagy assays

Autophagy has been extensively studied in the biomedical field. However, one of the 

significant challenges in the field is the limited number of methods to accurately measure 

autophagic activity in cells. Historically, an increase in the number of autophagosomes 

measured by electron microscopy has been one of the methods to measure autophagy, 

but autophagy is a highly dynamic process involving several steps.75 Measuring only the 

increase in the number of autophagosomes can be misleading since it can either mean the 

induction of autophagy by starvation or other stress factors or the reduction of lysosomal 

degradation of the autophagosomes due to lysosomal dysfunction. Measuring the autophagic 

flux has become a suitable alternative for autophagic activity in cells.76 Autophagy flux 

refers to the amount of degradation of cytoplasmic materials per unit time. In the last few 

years, many assays have been developed which can measure autophagic flux with excellent 

reliability. These assays are based on cellular expressions of specific proteins involved in 

autophagy, such as microtubule associated protein LC3 and autophagy receptor protein 

p62.76–78

1) Monitoring autophagy flux using LC3—The following three LC3-based methods 

have been widely used to measure the autophagic flux.

(i) LC3 turnover assay:  LC3, a mammalian homologue of yeast Atg8, has been used as a 

marker of autophagosome formation. As discussed before, ATG4 processes LC3 to become 

LC3-I which is subsequently conjugated to phosphatidylethanolamine (PE) to become LC3-

II. LC3-II is found in autophagosomes and can indicate the formation of the same. LC3 

turnover has been used to measure autophagic flux. Western blot has been used to visualize 

both LC3-I and LC3-II. The experiments are done in the presence and absence of lysosome 

inhibitors, and the comparison of LC3-II amounts in samples is semi-quantitatively used 

to determine the autophagic flux. When flux is high, the difference in LC-II between 

the samples will be high and vice-versa.25 Commonly used lysosomal inhibitors are 

lysosomal protease inhibitors, such as E64d and pepstatin A, and bafilomycin A1, and 

lysosomotropic reagents, such as chloroquine.79 The main advantage of this method is that 

it measures endogenous autophagic flux without transfection. However, the method has 

many drawbacks. Firstly, lysosomal inhibition can interfere with mTOR activity, resulting 

in further acceleration of autophagic activity. Secondly, care must be taken in selecting the 

type and concentration of the lysosomal inhibitor. For example, 100 nM of bafilomycin 

A1 blocks the fusion of autophagosomes with lysosomes affecting the measurement of 

autophagic flux.80

Paudel et al. Page 5

Biochemistry. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(ii) RFP-GFP-LC3 (tfLC3) reporter assay: In 2007, Kimura et al. reported an autophagy 

probe that analyzed the dynamics of autophagosomes using fluorescence.81 Prior to 

discovering an autophagy probe, scientists used GFP-LC3 as a marker probe to demonstrate 

the formation of autophagosomes. However, it was evident that autophagosome formation 

did not correlate directly to autophagy flux.82 The new probe was a novel marker protein, 

mRFP-GFP-LC3 tandem-tagged fluorescent protein (tfLC3), which emits both green and red 

fluorescence so that autophagosomes appear yellow. Once it is trafficked to autolysosome, 

the GFP loses fluorescence quickly due to low pH, but RFP maintains its fluorescence. The 

appearance of yellow or red fluorescence indicates the presence of more autophagosomes 

or autolysosomes. The tfLC3 probe offers many advantages over the earlier systems. For 

example, it can measure autophagic flux without using lysosomal inhibitors, and it can be 

used for selective substrates. The disadvantage to using the probe is that the system depends 

on transfection, and there is high background due to RFP accumulation in lysosomes.

(iii) GFP-LC3-RFP(LC3ΔG) reporter assay: In 2018, Kaizuk et al. developed GFP-

LC3-RFP(LC3ΔG), a second-generation tandem-tagged fluorescent assay single molecular 

probe.83 In this probe, the GFP-LC3 is conjugated to the N-terminal of RFP-LC3ΔG 

(ΔG means the RFP-LC3 lacks the C-terminal glycine). In cells, the probe is hydrolyzed 

by ATG4 family proteases generating equimolar amounts of GFP-LC3 and RFP-LC3ΔG. 

GFP-LC3 is conjugated to PE, localizes in autophagosome, and is subsequently degraded. 

Whereas the RFP-LC3ΔG is not degraded due to the lack of the C-terminal glycine. As a 

result, the RFP-LC3ΔG acts as an internal control and stays in the cytosol. The GFP/RFP 

signal ratio inversely correlates to autophagic activity. The authors applied this probe to 

measure autophagic flux in cells, in addition to mice and zebrafish. The probe was also 

used to do a high throughput screening of 1054 approved drugs to find novel autophagy 

inducers and inhibitors. Another advantage of this probe is that it can measure the basal 

autophagic activity among different tissues since the basal autophagic activity is generally 

too low to be measured by other probes. A significant limitation of this probe is that during 

transfection, a substantial proportion of clones express GFP-LC3ΔG. Thus, the authors 

recommend isolating clones expressing GFP-LC3-RFP-LC3ΔG after transfection.

(2) Monitoring autophagy flux using p62—p62, also called sequestosome 1 in 

humans, binds directly to LC3 and polyubiquitinated substrates. It becomes incorporated 

into the autophagosome and is itself degraded into autolysosome, thus acts as a marker 

of autophagic flux.76,78 The subcellular localization and level of endogenous p62 can be 

measured by western blotting and immunostaining.78 p62 is a multifunctional scaffold 

protein so it is important to validate autophagy measurement of p62 level with other 

available assays.

Luciferase assay-based method is also developed for the measurement of both LC3 and 

p62 quantification. Farakas et al84 have developed the luciferase assay-based method for 

LC3 measurement in autophagic flux which was later extended to p62 measurement by 

Min et al.77 In this method, the ratio of luciferase activity with p62 and its UBA domain 

deletion mutant has been used to determine the autophagic flux. Similarly, Bresciani et 

al.85 have developed TR-FRET assays for LC3B and p62. These assays can be used as 
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high-throughput screening tools to identify the autophagy regulators. In this method, they 

have used Tb labeled LC3-II donor and D2 labelled LC3-II acceptor antibodies or Tb 

labelled donor p62 and Alexa-647 labeled acceptor p62 antibodies. Autophagy up-regulator 

induces the close proximity of LC3-II antibodies resulting in the signal for accumulation of 

the autophagosome vesicle.85

There are some other assay methods monitoring the autophagy markers such as ULK1, 

PtdIns3K, Atg9, Atg12-Atg5, Atg14, Atg16L1, WIPI family, BECN1, and STX17 (SNARE 

protein). Autophagic components other than LC3-family can be monitored to define specific 

steps of the process.76

Chemical probes for autophagy pathways:

Since tumor cells can activate autophagy to compensate for the energy shortage during 

cellular stress, several autophagy inhibitors targeting the Atg-related proteins have been 

developed to control this tumor growth mechanism by autophagy.86,87 There are some 

studies on the repurposed drugs for autophagy regulation, such as chloroquine and 

hydroxychloroquine (clinically approved anti-malarial drugs) as autophagy inhibitors.88 

Some of the recently discovered chemical probes for autophagy are listed below (Table 

1).

Endosome-lysosomal Pathway

Endocytosis is a cellular process of internalization of various components such as 

transmembrane proteins, receptors, receptor ligands, extracellular proteins and other 

biomolecules by the invagination of the plasma membranes and the formation of vesicles 

and vacuoles. Several steps are involved in the formation of endosomes and are classified as 

early endosomes, recycling endosomes, and late endosomes.109,110 The detail mechanisms 

of the endosome formation have been described in some other reviews.109,111 Briefly, 

endocytosis starts with the invagination of cargo proteins by the plasma membranes 

mediated by cytosolic proteins and multi-subunit complexes such as Rab proteins to 

form early endosome.110 Early endosomes serve as major sorting stations to send back 

the recycling materials into recycle endosomes or degradation materials to lysosomes by 

converting into late endosomes. The fusion of late endosomes with lysosomes allows the 

degradation of the enclosed components by the lysosomal hydrolases.109,110 Since, the 

UPS and autophagy based targeted degradation are only capable for degrading intercellular 

proteins, whereas the endosome-lysosomal pathway, described later in this review, has been 

applied for the degradation of extracellular proteins.112–115

Progress in the lysosome-based targeted protein degradation

Targeted protein degradation has been widely explored through PROTACs as therapeutics or 

chemical probes. However, this technology still has some limitations. Some other emerging 

technologies based on autophagy mechanisms such as autophagy-targeting chimera 

(AUTAC), autophagosome-tethering compounds (ATTEC), lysosome targeting chimera 

(LYTAC), and AUTOphagy-TArgeting Chimera (AUTOTAC) are under development. These 

recently acquired chemical biology platforms may overcome the PROTACs limitations. 
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In this contribution, we summarize current lysosome-based degraders for different target 

proteins (Figure 5, Table 2).

AUTACs

The Arimoto group developed autophagy-targeting chimera (AUTAC) molecules to remove 

targeted cytosolic proteins or mitochondria in xenophagy.76,116–118 The S-guanylation 

of group A Streptococcus (GAS) bacteria by 8-nitro-cGMP promotes the K63-linked 

polyubiquitination, which ultimately signals the selective transportation to autophagosome 

followed by degradation.119 The Arimoto group took advantage of GAS bacteria’s selective 

process to develop a chimeric molecule capable of targeted protein degradation. AUTAC 

molecule contains a p-fluorobenzylguanylation tag (FBnG unit) and a target-specific binder 

linked to polyethylene glycol (PEG). Arimoto et al. developed AUTAC1 containing a 

methionine aminopeptidase 2 (MetAP2) protein binder fumagillin that successfully degraded 

the MetAP2 at 1 μM. Similarly, AUTAC2 was designed to degrade FK506-binding protein 

(FKBP12), whose non-covalent synthetic ligand of FKBP (SLF) has been used to degrade 

with 10 μM concentration through the AUTAC system. AUTAC3 was also designed to 

target nuclear protein Brd4 with its binder JQ1, but degradation was not as effective as 

cytosolic proteins MetAP2 and FKBP12. Most importantly, AUTAC4 was designed for 

selective degradation of mitochondria. AUTAC4 contains a phenylindole moiety that binds 

to mitochondrial translocator proteins (TSPO) located on the outer mitochondrial membrane 

(OMM) and can selectively remove the dysfunctional mitochondria. In summary, one end of 

AUTAC molecule can selectively bind to the protein of interest (POIs), and the other end, 

which contains S-guanine moiety, helps to induce K63 polyubiquitination. The autophagy 

receptors such as p62 recognize K63 polyubiquitinated protein cargoes and traffic them to 

the autophagosomes for subsequent degradation. The major limitation for AUTAC is that the 

mechanism K63 polyubiquitination induced by S-guanylation is still unknown.

ATTECs

Lu and coworkers developed a new approach for targeted protein degradation called 

autophagosome-tethering compounds (ATTEC).120–123 ATTECs are bifunctional chimeric 

compounds that tether the POI to a specific protein degradation machinery (PDM) 

component, such as LC3. These compounds are found to be allele selective for a specific 

protein. They also designed a small molecule microarray screening for compounds that 

interact with LC3 and disease-causing protein mutant Huntington (HTT) with an expanded 

polyglutamine (PolyQ) stretch that is found in Huntington’s disease.122 From the microarray 

screening, the group identified four allele selective compounds (10O5, 8F20 or Ispinesib, 

AN1, and AN2) that can interact only with mHTT but not with wild-type (WT) HTT. These 

compounds also reduced some other polyQ expansion proteins such as ATXN3. Once the 

ATTEC molecule tether expanded polyQ proteins to autophagosome through LC3 domain, it 

is directed for subsequent degradation.

Recently, Lu group has applied their ATTEC strategy to degrade non-protein biomolecules, 

such as lipid droplets (LDs), and developed a new class of molecules called LD-ATTEC.123 

Since lipid droplets are composed of lipids, PROTACs and AUTACs cannot target 

or degrade the LDs. LD-ATTECs were designed as bifunctional molecules that link 
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the selective LD detecting probe (i.e., Sudan dyes) and LC3-binding molecules. These 

molecules constitute a ternary complex between triacylglycerol and LC3, which induces 

the proximity of LDs and autophagosomes in cells leading to autophagic degradation. 

During this mechanism, only the LDs induced by oleic acid in fibroblasts and endogenous 

LDs in differentiated adipocytes were degraded, leaving other lipid-containing membranes 

unaffected. Also, the global autophagy was not influenced by this selective LD degradation. 

The successful degradation of stored fats in the cell with LD-ATTEC opens a novel 

approach against the diseases caused by the accumulation of lipid droplets, such as obesity, 

cardiovascular diseases, or fatty liver disease. Although ATTEC technology is potentially 

effective in many cell types, the binding site in LC3 is not yet known.

Pei and coworkers have demonstrated an LC3 targeting autophagy chimeric molecule that 

can successfully degrade the BRD4 protein through the autophagy pathway. They have 

used a reversible BET bromodomain inhibitor JQ1 as a warhead for BRD4 and GW5074 

for LC3 and linker to get the potent AUTAC molecule that downregulates the level of 

BRD4.124 Recently, Sheng group have applied the ATTEC principle to develop the first 

generation of autophagic degrader of nicotinamide phosphoribosyl transferase (NAMPT). 

The NAMPT ATTEC were synthesized by connecting NAMPT inhibitor and LC3 binding 

warhead Ispinesib through a flexible linker.125 Mechanistic studies confirmed that the 

NAMPT degradation occurs via autophagy-lysosomal pathway.

AUTOTACs

Ji et al. developed another autophagy based chemical tools called AUTOphagy-TArgeting 

Chimera (AUTOTAC).126 It is a bifunctional molecule which contains an autophagy 

targeting ligand (ATL) or p62 binding ligand and a target binding ligand (TBL). Autophagy 

targeting ligands bind to the ZZ domain of the autophagy cargo receptor p62, which 

can activate them for self-oligomerization for the autophagosome biogenesis through 

LC3 interactions. p62 binding ligands follows the N-end rule pathways. PHTPP-1304, 

Vinclozolin M2 and Fumagillin have been used as target binding ligands (TBLs) for 

estrogen receptor beta (ERβ), androgen receptors (AR) and methionine aminopeptidase-2 

(MetAP2), respectively. The resulting AUTOTACs were able to degrade the respective target 

proteins in nanomolar range, which was not possible with ATL or TBL alone. AUTOTAC is 

applicable for the autophagic clearance of a wide range of intracellular target proteins. It can 

target not only monomeric proteins but also aggregated oligomeric proteins with sustained 

efficacy. Another feature of AUTOTAC is that unlike PROTACs, its potency is not critically 

dependent on the linker length, rendering straightforward AUTOTAC design.

LYTACs and MoDE-As

The Bertozzi group developed lysosomal targeting chimeras (LYTACs) for the degradation 

of the extracellular secreted proteins and plasma membrane-associated proteins.112,113 

LYTACs consist of a target binding moiety (small molecule or antibody) linked to a 

glycan (polypeptide) ligand that can bind to the lysosome targeting receptor such as 

the cation-independent mannose-6-phosphate receptor (CI-M6PR) or asialoglycoprotein 

receptor (ASGPR) for liver-specific lysosomal degradation. LYTAC contains a glycan tag to 

help recognize the extracellular and membrane bound protein of interest (i.e., EGFR, CD71, 
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PD-L1) for lysosomal degradation. They used neutravidin (NA), a fluorescently labeled 

protein that is stable under endosome and lysosome condition, to measure its uptake when 

combined with the LYTAC molecule. In parallel, the Tang group also developed a trivalent-

N-acetylgalactosamine (tri-GalNAc) to target LYTACs to ASGPR on hepatocytes.115 

They conjugated the ASGPR ligand (tri-GalNAc) to biotin and antibodies generating 

a new class of degraders, which were able to internalize and degrade neutravidin and 

EGFR. Capitalizing a similar concept, the Spiegel group developed MoDE-As (molecular 

degraders of extracellular proteins through the asialoglycoprotein receptor (ASGPR)), a 

small molecule version of ASGPR targeted LYTACs.114 MoDE-As molecules were able to 

recruit and induce the degradation α-DNP antibody and cytokine MIF protein.

The degradation of ASGPR was dependent on ASGPR internalization through the 

clathrin-mediated endocytosis-lysosomal system. The capability of lysosomes to maintain 

homeostasis stability was not affected in cells treated with LYTACs, suggesting that this 

modality may be safe at the cellular level. The success of LYTAC degraders results from 

endogenous kinetics of protein trafficking and turnover for the targeted protein. However, 

LYTACs cannot be applied to intracellular targets due to the nature of the degraders. 

As small molecules, MoDE-As might achieve deeper tissue penetration compared with 

antibody-based LYTACs.

Tissue Selectivity of Lysosome-Mediated Targeted Protein Degradation

For different lysosome-mediated TPD technologies, different key partner proteins in 

the lysosomal pathway are involved. Based the quantitative proteomics study in human 

tissues128, we examined the tissue distribution levels of p62 (gene: SQSTM1), LC3 (genes: 

MAP1LC3A and MAP1LC3B), ASGPR (genes: ASGR1 and ASGR2), and CI-M6PR (gene: 

IGF2R) based on their tissue specificity (TS) scores (Figure 6). It is interesting to note that 

p62 and ASGPR are highly enriched in skeletal muscle and liver, respectively. In brain, 

while LC3 is enriched, CI-M6PR is deficient compared to other tissues. Future work can 

take advantage of the differential expression of the lysosome pathway related proteins to 

achieve tissue selectivity.

Conclusion and Future Perspectives

The regulatory cycle of proteins has a crucial role in the fate of a living cell. Unwanted 

proteins need to be recycled through degradation into their constituent amino acids. 

Targeted protein degradation is one of the recently developed therapeutic approaches 

which is used to degrade disease-causing proteins. PROTACs are the most studied TPD 

technologies based on the UPS pathway, but these technologies are limited only to 

soluble and membrane proteins. There are some PROTAC molecules reported for the 

degradation of protein aggregates, for examples; tau,129 huntingtin,130 and α-synuclein 

proteins.131 Ubiquitination-dependent PROTAC cannot be applied to degrade insoluble 

and complex protein aggregates and defective cell organelles such as mitochondria. 

Therefore, advancements lysosomal-based degradation are inevitable. When studying 

autophagy-mediated lysosomal degradation, multiple assays are available. However, it is 

highly recommended not to use any single assay to measure autophagy and to validate the 

results using various assays depending on the experimental design.
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Some newly explored TPD approaches such as AUTAC, ATTEC, AUTOTAC, and LYTAC 

are based on the lysosomal pathways. These novel approaches can selectively recognize and 

traffic the proteins/organelles to lysosomes for degradation. The lysosome-based degradation 

of the target proteins can overcome the limitations of proteasome-mediated degradation. 

However, complete understanding and broad application of these approaches are still in its 

infancy. AUTAC and ATTEC are used to degrade intracellular proteins or biomolecules, but 

their mechanism is not completely understood. The critical unanswered questions with these 

techniques are how S-guanylation of AUTAC induces K63 -polyubiquitination. ATTEC 

molecules are more selective for the targets, but their binding mechanism to LC3 is still 

unknown. The Kim group discovered that AUTOTAC can activate the autophagy cargo 

receptor (i.e., p62), which is self-polymerized, sequestered, and delivered into phagophore 

for autophagic degradation.126 To further improve our understanding of these Autophagy 

Lysosome System (ALS) mediated degraders, assays commonly used in PROTAC studies 

should be adopted, such as proteomics profiling to evaluate the degradation specificity, 

target engagement in cells, protein degradation kinetics and in vivo PKPD modeling.126 

Comparing PROTACs with the ALS mediated degraders, we observed that the ALS 

mediated degraders tend to have μM or sub-μM potencies, while PROTACs can usually 

achieve single digit nM or sub-nM potencies. This may be due to the difference of 

degradation kinetics between the UPS and the ALS. To differentiate from PROTACs, 

the development of ALS-based degraders should primarily focus on targets that cannot 

be degraded by PROTACs, such as misfolded proteins or aggregates and dysfunctional 

organelles. Similarly, LYTACs and MoDE-As are primarily designed for extracellular 

protein degradation. These modalities need to find their niche applications that can 

differentiate from neutralizing antibodies, which are proven clinical modalities. Nonetheless, 

the lysosomal-based degradation approach will greatly expand the TPD toolkit, not only 

as chemical biology tools but also as therapeutic modalities. Lysosomal-based degradation 

techniques might not be able to degrade nuclear proteins efficiently, as the lysosomal 

system mostly operate in the cytoplasm. Moreover, the degradation efficiency of these 

methods may vary among different cell and tissue types (Figure 6), which could be taken 

advantage of to achieve tissue selectivity. In summary, as an alternative platform, lysosome-

mediated targeted protein degradation will further expand the TPD field and provide exciting 

opportunities for therapeutic development.
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Figure 1: 
Schematic representation of autophagy.
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Figure 2: 
Schematic representation of p62 structure and functional domains.
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Figure 3: 
A model illustrating the role of the N-end rule pathway in N-terminal arginylation of 

ER-residing proteins for the regulation of autophagy through p62 binding.73,74
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Figure 4: 
Structures of XIE62–1004 and XIE2008.
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Figure 5: 
Graphical illustrations of lysosomal-based degradation technologies.
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Figure 6: 
Tissue distribution of lysosome pathway related proteins. Protein abundance was measured 

using quantitative proteomics.128 Tissue selectivity (TS) scores were calculated and plotted. 

TS score >2.5 is considered highly enriched in certain tissues. SQSTM1: sequestosome 

1 or p62; MAP1LC3A: microtubule associated protein 1 light chain 3 α; MAP1LC3B: 

microtubule associated protein 1 light chain 3 β; ASGR1: asialoglycoprotein receptor 1; 

ASGR2: asialoglycoprotein receptor 2; IGF2R: insulin like growth factor 2 receptor or 

CI-M6PR. The TS score for ASGR2 is unavailable.
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Table 1:

Some of the recently discovered chemical probes for the autophagy pathways.
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Table 2:

Summary of recently discovered lysosome-based degraders.
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