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Abstract

Natural images containing affective scenes are used extensively to investigate the neural 

mechanisms of visual emotion processing. Functional fMRI studies have shown that these images 

activate a large-scale distributed brain network that encompasses areas in visual, temporal, and 

frontal cortices. The underlying spatial and temporal dynamics, however, remain to be better 

characterized. We recorded simultaneous EEG-fMRI data while participants passively viewed 

affective images from the International Affective Picture System (IAPS). Applying multivariate 

pattern analysis to decode EEG data, and representational similarity analysis to fuse EEG data 

with simultaneously recorded fMRI data, we found that: (1) ~80 ms after picture onset, perceptual 

processing of complex visual scenes began in early visual cortex, proceeding to ventral visual 

cortex at ~100 ms, (2) between ~200 and ~300 ms (pleasant pictures: ~200 ms; unpleasant 

pictures: ~260 ms), affect-specific neural representations began to form, supported mainly by 

areas in occipital and temporal cortices, and (3) affect-specific neural representations were stable, 

lasting up to ~2 s, and exhibited temporally generalizable activity patterns. These results suggest 

that affective scene representations in the brain are formed temporally in a valence-dependent 

manner and may be sustained by recurrent neural interactions among distributed brain areas.
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INTRODUCTION

The visual system detects and evaluates threats and opportunities in complex visual 

environments to facilitate the organism’s survival. In humans, to investigate the underlying 

neural mechanisms, we record fMRI and/or EEG data from observers viewing depictions 

of naturalistic scenes varying in affective content. A large body of previous fMRI work 

has shown that viewing emotionally engaging pictures, compared to neutral ones, heightens 

blood flow in limbic, frontoparietal, and higher-order visual structures (Lang et al., 1998; 

Phan et al., 2002; Liu et al., 2012; Bradley et al., 2015). Applying MVPA and functional 

connectivity techniques to fMRI data, we further reported that affective content can be 

decoded from voxel patterns across the entire visual hierarchy, including early retinotopic 

visual cortex, and that the anterior emotion-modulating structures such as the amygdala and 

the prefrontal cortex are the likely sources of these affective signals via the mechanism of 

reentry (Bo et al., 2021).

Temporal dynamics of affective scene processing remains to be better elucidated. The 

event-related potential (ERP), an index of average neural mass activity with millisecond 

temporal resolution, has been the main method for characterizing the temporal aspects of 

affective scene perception (Cuthbert et al., 2000; Keil et al., 2002; Hajcak et al., 2009). 

Univariate ERPs are sensitive to local neural processes but do not reflect the contributions 

of multiple neural processes taking place in distributed brain regions underlying affective 

scene perception. The advent of the multivariate decoding approach has begun to expand 

the potential of the ERPs (Bae and Luck 2019; Sutterer et al., 2021). By going beyond 

univariate evaluations of condition differences, these multivariate pattern analyses (MVPA) 

take into account voltage topographies reflecting distributed neural activities and help 

uncover the discriminability of experimental conditions not possible with the univariate ERP 

method. The MVPA method can even be applied to single-trial EEG data. By going beyond 

mean voltages, the decoding algorithms can examine differences in single-trial EEG activity 

patterns across all sensors, which further complements the ERP method (Grootswagers et 

al., 2017; Contini et al., 2017). Conceptually, the presence of decodable information in 

neural patterns has been taken to index differences in neural representations (Norman et 

al., 2006). Thus, in the context of EEG/ERP data, the time course of decoder performance 

may inform on how neural representations linked to a given condition or stimulus form and 

evolve over time (Cauchoix et al 2014; Wolff et al., 2015; Dima et al., 2018).

The first question we considered was how long it takes for the affect-specific neural 

representations of affective scenes to form. For non-affective images containing objects such 

as faces, houses or scenes, past work has shown that the neural responses become decodable 

as early as ~100 ms after stimulus onset (Cichy et al., 2014; Cauchoix et al., 2014). This 

latency reflects the onset time for the detection and categorization of stereotypical visual 
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features associated with different objects in early visual cortex (Nakamura et al 1997; Di 

Russo et al. 2002). For complex scenes varying in affective content, however, although 

mapped onto rich category-specific visual features in a multivariate fashion (Kragel et 

al., 2019), there are no stereotypical visual features that unambiguously separate different 

affective categories (e.g., unpleasant scenes vs neutral scenes). Accordingly, univariate ERP 

studies have reported robust voltage differences between emotional and neutral content at 

relatively late times, e.g., ~170-280 ms at the level of the early posterior negativity (Schupp 

et al., 2006; Foti et al., 2009) and ~300 ms at the level of the late positive potential (LPP) 

(Cuthbert et al., 2000, Lang and Bradley, 2010; Liu et al., 2012; Sabatinelli et al., 2013). 

We sought to further examine these issues by applying multimodal neuroimaging and the 

MVPA methodology. It is expected that perceptual processing of affective scenes would 

begin ~100 ms following picture onset whereas affect-specific neural representations would 

emerge between ~150 ms and ~300 ms.

A related question is whether there are systematic timing differences in the formation of 

neural representations of affective scenes differing in emotional content. Specifically, it 

has been debated to what extent pleasant versus unpleasant contents emerge over different 

temporal intervals (e.g., Oya et al., 2002). The negativity bias idea suggests that aversive 

information receives prioritized processing in the brain and predicts that scenes containing 

unpleasant elements evoke faster and stronger responses compared to scenes containing 

pleasant or neutral elements. The ERP results to date have been equivocal (Carretié et al., 

2001; Huang and Luo, 2006; Franken et al., 2008). An alternative idea is that the timing 

of emotional representation formation depends on the specific content of the images (e.g., 

erotic within the pleasant category vs mutilated bodies within the unpleasant category) 

rather than on the broader semantic categories such as unpleasant scenes and pleasant 

scenes (Weinberg and Hajcak, 2010). We sought to test these ideas by applying the MVPA 

approach to decode subcategories of images usng EEG data. It is expected that the timing of 

representation formation is content-specific.

How do neural representations of affective scenes, once formed, evolve over time? For non-

affective images, the neural responses are found to be transient, with the processing locus 

evolving dynamically from one brain structure to another (Carlson et al., 2013; Cichy et al., 

2014; Kaiser et al., 2016). For affective images, in contrast, the enhanced LPP, a major ERP 

index of affective processing, is persistent, lasting up to several seconds, and supported by 

distributed brain regions including the visual cortex as well as frontal structures, suggesting 

sustained neural representations. To test whether neural representations of affective scenes 

are dynamic or sustained, we applied a MVPA method called the generalization across time 

(GAT) (King and Dehaene, 2014), in which the MVPA classifier is trained on data at one 

time point and tested on data from all time points. The resulting temporal generalization 

matrix, when plotted on the plane spanned by the training time and the testing time, can be 

used to visualize the temporal stability of neural representations. For a dynamically evolving 

neural representation, high decoding accuracy will be concentrated along the diagonal in 

the plane, namely, the classifier trained at one time point can only be used to decode data 

from the same time point but not data from other time points. For a stable or sustained 

neural representation, on the other hand, high decoding accuracy extends away from the 

diagonal line, indicating that the classifier trained at one time point can be used to decode 
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data from other time points. It is expected that the neural representations of affective scenes 

are sustained rather than dynamic with the visual cortex playing an important role in the 

sustained representation.

We recorded simultaneous EEG-fMRI data from participants viewing affective images from 

the International Affective Picture System (IAPS) (Lang et al., 1997). MVPA was applied 

to EEG data to assess the formation of affect-specific representations of affective scene 

in the brain and their stability. EEG and fMRI data were integrated to assess the role 

of visual cortex in the large-scale recurrent network interactions underlying the sustained 

representation of affective scenes. Fusing EEG and fMRI data via representation similarity 

analysis (RSA) (Kriegeskorte et al., 2008), we further tested the timing of perceptual 

processing of affective scenes in areas along the visual hierarchy and compare that with 

the formation time of affect-specific representations.

Materials and Methods

Participants

Healthy volunteers (n=26) with normal or corrected-to-normal vision signed informed 

consent and participated in the experiment. Two participants withdraw before recording. 

Four additional participants were excluded for excessive movements inside the scanner. EEG 

and fMRI data from these four participants were not considered. Data from the remaining 20 

subjects were analyzed and reported here (10 women; mean age: 20.4±3.1).

These data have been published before (Bo et al., 2021) to address a different set of 

questions. In particular, in Bo et al., 2021, we asked the question of whether affective 

signals can be found in visual cortex. Analyzing fMRI, an affirmative answer was found 

when it was shown that pleasant, unpleasant, and neutral pictures evoked highly decodable 

neural representations in the entire retinotopic visual hierarchy. Using the late positive 

potential (LPP) and effective functional connectivity as indices of neutral reentry we further 

argued that these affective representations are likely the results of feedback from anterior 

emotion-modulating structures such as the amygdala and the prefrontal cortex. In the present 

study we address the temporal dynamics of affective scene processing where the focus was 

placed on EEG decoding.

Procedure

The stimuli.—The stimuli included 20 pleasant, 20 neutral and 20 unpleasant pictures 

from the International Affective Picture System (IAPS; Lang et al., 1997): Pleasant: 4311, 

4599, 4610, 4624, 4626, 4641, 4658, 4680, 4694, 4695, 2057, 2332, 2345, 8186, 8250, 

2655, 4597, 4668, 4693, 8030; Neutral: 2398, 2032, 2036, 2037, 2102, 2191, 2305, 2374, 

2377, 2411, 2499, 2635, 2347, 5600, 5700, 5781, 5814, 5900, 8034, 2387; Unpleasant: 

1114, 1120, 1205, 1220, 1271, 1300, 1302, 1931, 3030, 3051, 3150, 6230, 6550, 9008, 

9181, 9253, 9420, 9571, 3000, 3069. The pleasant pictures included sports scenes, romance, 

and erotic couples and had average arousal and valence ratings of 5.8±0.9 and 7.0±0.5 

respectively. The unpleasant pictures included threat/attack scenes and bodily mutilations 

and had average arousal and valence ratings of 6.2±0.8 and 2.8±0.8 respectively. The 
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neutral pictures were images containing landscapes, adventures, and neutral humans and 

had average arousal and valence ratings of 4.2±1.0 and 6.3±1.0 respectively. The arousal 

ratings for pleasant and unpleasant pictures are not significantly different (p=0.2) but both 

are significantly higher than that of the neutral pictures (p<0.001). Valence differences 

between unpleasant vs neutral (p<0.001) and between pleasant vs neutral (p=0.005) are 

both significant. Based on specific content, the 60 pictures can be further divided into 

6 subcategories: disgust/mutilation body, attack/threat scene, erotic couple, happy people, 

neutral people, and adventure/nature scene. These subcategories provided an opportunity to 

examine the content-specificity of temporal processing of affective images.

Two considerations went into the selection of the 60 pictures as stimuli in this study. First, 

these pictures are well characterized, and have been used in a body of research at the 

UF Center for the Study of Emotion and Attention as well as in previous work from our 

laboratories. The categories were not solely designated on the basis of normative ratings of 

valence and arousal, but also taken into account of the pictures’ ability to engage emotional 

responses, as assessed by autonomic, EEG, and BOLD measures (Liu et al., 2012; Deweese 

et al., 2016; Thigpen et al., 2018; Tebbe et al., 2021). Second, we have used the same 

picture set previously in a number of studies where EEG LPPs and response times were 

recorded across several samples of participants (see, e.g., Thigpen et al., 2018), enabling 

us to benchmark the EEG data from inside the scanner against data recorded in an EEG 

lab outside the scanner, and to consider the impact of these pictures on modulating overt 

response time behavior, when interpreting the results of the present study.

The paradigm.—The experimental paradigm was illustrated in Figure 1A. There were 

five sessions. Each session contains 60 trials corresponding to the presentation of 60 

different pictures. The order of picture presentation was randomized across sessions. Each 

IAPS picture was presented on a MR-compatible monitor for 3 seconds, followed by a 

variable (2800 ms or 4300 ms) interstimulus interval. The subjects viewed the pictures via 

a reflective mirror placed inside the scanner. They were instructed to maintain fixation on 

the center of the screen. After the experiment, participants rated the hedonic valence and 

emotional arousal level of 12 representative pictures (4 pictures for each broad category), 

which are not part of the 60-picture set, based on the paper and pencil version of the 

self-assessment manikin (Bradley and Lang, 1994; Bo et al., 2021).

Data acquisition

EEG data acquisition.—EEG data were recorded simultaneously with fMRI using a 32 

channel MR-compatible EEG system (Brain Products GmbH). Thirty-one sintered Ag/AgCl 

electrodes were placed on the scalp according to the 10-20 system with the FCz electrode 

serving as the reference. An additional electrode was placed on subject’s upper back to 

monitor electrocardiogram (ECG); the ECG data was used during data preprocessing to 

assist in the removal of the cardioballistic artifacts. EEG signal was recorded with an online 

0.1-250Hz band-pass filter and digitized to 16-bit at a sampling rate of 5 kHz. To ensure 

the successful removal of the gradient artifacts in subsequent analyses, the EEG recording 

system was synchronized with the scanner’s internal clock throughout recording.
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fMRI data acquisition.—Functional MRI data were collected on a 3T Philips Achieva 

scanner (Philips Medical Systems). The recording parameters are as follows: echo time 

(TE), 30 ms; repetition time (TR), 1.98 s; flip angle, 80°; slice number, 36; field of view, 

224 mm; voxel size, 3.5*3.5*3.5 mm; matrix size, 64*64. Slices were acquired in ascending 

order and oriented parallel to the plane connecting the anterior and posterior commissure. 

T1-weighted high-resolution structural images were also obtained.

Data preprocessing

EEG data preprocessing.—The EEG data was first preprocessed using Brain Vision 

Analyzer 2.0 (Brain Products GmbH, Germany) to remove gradient and cardioballistic 

artifacts. To remove gradient artifacts, an artifact template was created by segmenting 

and averaging the data according to the onset of each volume and subtracted from the 

raw EEG data (Allen et al., 2000). To remove cardioballistic artifacts, ECG signal was 

low-pass-filtered, and the R peaks were detected as heart-beat events (Allen et al., 1998). 

A delayed average artifact template over 21 consecutive heart-beat events was constructed 

using a sliding-window approach and subtracted from the original signal. After gradient 

and cardioballistic artifacts were removed, the EEG data were lowpass filtered with the 

cutoff set at 50 Hz, downsampled to 250 Hz, re-referenced to the average reference, and 

exported to EEGLAB (Delorme and Makeig, 2004) for further analysis. The second-order 

blind identification (SOBI) procedure (Belouchrani et al., 1993) was performed to further 

correct for eye blinking, residual cardioballistic artifacts, and movement-related artifacts. 

The artifact-corrected data were then lowpass filtered at 30Hz and epoched from −300ms 

to 2000ms with 0ms denoting picture onset. The prestimulus baseline was defined to be 

−300ms to 0ms.

fMRI data preprocessing.—The fMRI data were preprocessed using SPM (http://

www.fil.ion.ucl.ac.uk/spm/). The first five volumes from each session were discarded to 

eliminate transient activity. Slice timing was corrected using interpolation to account for 

differences in slice acquisition time. The images were then corrected for head movements 

by spatially realigning them to the sixth image of each session, normalized and registered to 

the Montreal Neurological Institute (MNI) template, and resampled to a spatial resolution of 

3mm by 3mm by 3mm. The transformed images were smoothed by a Gaussian filter with a 

full width at half maximum of 8 mm. The low frequency temporal drifts were removed from 

the functional images by applying a high-pass filter with a cutoff frequency of 1/128 Hz.

MVPA analysis: EEG data

EEG decoding.—MVPA analysis was done using support vector machine (SVM) 

implemented in Matlab 2014 LIBSVM toolbox (Chang and Lin, 2011). To reduce noise and 

increase decoding robustness, 5 consecutive EEG data points (no overlap) were averaged, 

resulting in a smoothed EEG time series with a temporal resolution of 20 ms (50 Hz). 

Unpleasant vs neutral scenes and pleasant vs neutral scenes were decoded within each 

subject at each time point to form a decoding accuracy time series. Each trial of the EEG 

data (100 trials for each emotion category) was treated as a sample for the classifier. The 

31 EEG channels provided 31 features for the SVM classifier. A ten-fold cross validation 

approach was applied. The weight vector or weight map from the classifier was transformed 
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according to Haufe et al. (2014) and its absolute value is visualized as a topographical 

map to assess the importance of each channel in terms of its contribution to the decoding 

performance between affective and neutral pictures.

Temporal generalization.—The stability of the neural representations evoked by 

affective scenes was tested using a generalization across time (GAT) method (King and 

Dehaene, 2014). In this method, the classifier was not only tested on the data from the 

same time point at which it was trained, it was also tested on data from all other sample 

points, yielding a two-dimensional temporal generalization matrix. The decoding accuracy 

at a point on this plane (tx, ty) reflects the decoding performance at time tx of the classifier 

trained at time ty.

Statistical significance testing of EEG decoding and temporal generalization.
—Whether the decoding accuracy was above chance was evaluated by the Wilcoxon sign-

rank test. Specifically, the decoding accuracy at each time point was tested against 50% 

(chance level). The resulting p value was corrected for multiple comparisons by controlling 

for the false discovery rate (FDR, p<0.05) across the time course. A further requirement 

to reduce possible false positives is that the significance cluster contains at least five 

consecutive such sample points.

The decoding accuracy was expected to be at chance level prior to and immediately after 

picture onset. The time at which decoding accuracy rose above chance level was taken to 

be the time when the affect-specific neural representations of affective scenes formed. The 

statistical significance of the difference between the onset times of above-chance-decoding 

for different decoding accuracy time series was evaluated by a bootstrap resample procedure. 

Each resample consisted of randomly picking 20 sample decoding accuracy time series 

from 20 subjects with replacement and above-chance decoding onset was determined for 

this resample. The procedure was repeated 1000 times and the onset times from all the 

resamples formed a distribution. The significant difference between two such distributions 

was assessed by the two-sample Kolmogorov-Smirnov test.

To test the statistical significance of temporal generalization, we conducted Wilcox sign-

rank test at each pixel in the temporal generalization map the decoding accuracy against 

50% (chance level). The corresponding p value is corrected for multiple comparisons 

according to FDR p<0.05. Cluster size is a further control (>10 points).

MVPA analysis: fMRI data

The picture-evoked BOLD activation was estimated on a trial-by-trial basis using the 

beta series method (Mumford et al., 2012). In this method, the trial of interest was 

represented by a regressor, and all the other trials were represented by another regressor. 

Six motion regressors were included to account for any movement-related artifacts during 

scanning. Repeating the process for all the trials we obtained the BOLD response to each 

picture presentation in all brain voxels. The single-trial voxel patterns evoked by pleasant, 

unpleasant, and neutral pictures were decoded between pleasant and neutral as well as 

between unpleasant and neutral using a ten-fold validation procedure within the retinotopic 

visual cortex defined according to a recently published probabilistic visual retinotopic atlas 
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(Wang et al., 2015). Here the retinotopic visual cortex consisted of V1v, V1d, V2v, V2d, 

V3v, V3d, V3a, V3b, hV4, hMT, VO1, VO2, PHC1, PHC2, LO1, LO2, and IPS. For some 

analyses, the voxels in all these regions were combined to form a single ROI called visual 

cortex, whereas for other analyses, these regions were divided into early, ventral, and dorsal 

visual cortex (see below).

Fusing EEG and fMRI data via RSA

Decoding between affective scenes vs neutral scenes, as described above, yields information 

on the formation and dynamics of affect-specific neural representations. For comparison 

purposes, we also obtained the onset time of perceptual or sensory processing of affective 

images in visual cortex, which is expected to precede the formation of affect-specific 

representations, by fusing EEG and fMRI data via representation similarity analysis (RSA) 

(Kriegeskorte et al., 2008). RSA is a multivariate method that assesses the representational 

similarity (e.g., using cross correlation) evoked by a set of stimuli and expresses the result 

as a representational dissimilarity matrix (1- cross correlation matrix) (RDM). Correlating 

the fMRI-based RDMs from different ROIs and the EEG-based RDMs from different time 

points, one can obtain the spatiotemporal profile of information processing in the brain.

In the current study, for each trial, 31 channels of EEG data at a given time point provided a 

31-dimensional feature vector, which was correlated with the 31-dimenstional feature vector 

from another trial at the same time point. For all 300 trials (60 trials per session x 5 sessions) 

a 300 × 300 representational dissimilarity matrix (RDM) was constructed at each time point. 

For fMRI data, following the previous work (Bo et al., 2021), we divided the visual cortex 

into three ROIs: early (V1v, V1d, V2v, V2d, V3v, V3d), ventral (VO1, VO2, PHC1, PHC2), 

and dorsal (IPS0-5) visual cortex. For each ROI, the fMRI feature vector was extracted from 

each trial and correlated with the fMRI feature vector from another trial, yielding a 300 × 

300 RDM for the ROI. To fuse EEG and fMRI, a correlation between the EEG-based RDM 

at each time point and the fMRI-based RDM from a ROI was computed, and the result was 

the representational similarity time course for the ROI. This procedure was carried out at 

single subject level first and then averaged across subjects.

We note that in our study, since EEG and fMRI were simultaneously recorded, there 

is trial-to-trial correspondence between EEG and fMRI, which makes single trial RSA 

analysis possible. Single trial level RDMs, by containing more variability, may enhance the 

sensitivity of the RSA fusion analysis. In most previous RSA studies fusing MEG/EEG 

and fMRI (e.g., Cichy et al., 2014; Muukkonen et al., 2020), the single trial-based RSA 

analysis is not possible, because MEG/EEG and fMRI were recorded separately and there 

was no trial-to-trial correspondence between the two types of recordings. In those situations, 

the only available option was to average trials from the same exemplar or experimental 

condition and construct RDM matrices whose dimension equals the number of exemplars or 

experimental conditions.

To assess the onset time of significant similarity between EEG RDM and fMRI RDM, we 

first computed the mean and standard deviation of the similarity measure during the baseline 

period (−300 ms to 0 ms). Along the representational similarity time course, similarity 

measures that are five standard deviations above the baseline mean were considered 
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statistically significant (p<0.003). To further control for multiple comparisons, clusters 

containing fewer than five consecutive such time points were discarded. For a given ROI, 

the first time point that meets the above significance criteria was considered the onset 

time for perceptual or sensory processing for that ROI. To statistically compare the onset 

times from different ROIs, we conducted a bootstrap resample procedure. Each resample 

consisted of randomly picking 20 sample RDM similarity time series from the 20 subjects 

with replacement and the onset time was determined for the resample. The procedure was 

repeated 1000 times and the onset times from all the resamples formed a distribution. 

The significant difference between distributions was then assessed by the two-sample 

Kolmogorov-Smirnov test.

RESULTS

Affect-specific neural representations: Formation onset time

We decoded multivariate EEG patterns evoked by pleasant, unpleasant, and neutral affective 

scenes and obtained the decoding accuracy time courses for pleasant-vs-neutral and 

unpleasant-vs-neutral. As shown in Figure 2A, for pleasant vs neutral, above-chance level 

decoding began ~200 ms after stimulus onset, whereas for unpleasant vs neutral, the onset 

time of above-chance decoding was ~260 ms. Using a bootstrap procedure, the distributions 

of the onset times were obtained and shown in Figure 2B, where the difference between the 

two distributions was evident, with pleasant-specific representations forming significantly 

earlier than that of unpleasant-specific representations (ks value = 0.87, effect size = 1.49, 

two-sample Kolmogorov-Smirnov test). To examine the contribution of different electrodes 

to the decoding performance, Figure 2C shows the classifier weight maps at the indicated 

times. These weight maps suggested that neural activities that contributed to classifier 

performance was mainly located in occipital-temporal channels, in agreement with prior 

studies using fMRI where enhanced and/or decodable BOLD activities evoked by affective 

scenes was observed in visual cortex and temporal structures (Sabatinelli et al., 2006; 

Sabatinelli et al., 2013; Bo et al., 2021).

Given that above-chance decoding started ~200 post picture onset, it is unlikely that the 

decoding results were driven by low-level visual features, which would have entailed earlier 

above-chance decoding time (e.g., ~100 ms). To firm up this notion, we further tested if 

there are systematic low level visual feature differences across emotion categories. Low level 

visual features were extracted by GIST using a method from a previous publication (Khosla 

et al., 2012). We hypothesized that if GIST features depend on category labels, we should 

be able to decode between different categories based on these features. A SVM classification 

analysis was applied to image-based GIST features, and the decoding accuracy is at chance 

level: pleasant vs neutral is 49% (p=0.9, random permutation test) and unpleasant vs neutral 

is 52.5% (P=0.8, random permutation test). These results suggest that the decoding results in 

Figure 2 are not likely to be driven by low-level visual features.

Dividing the scenes into 6 subcategories: erotic couple, happy people, mutilation body/

disgust, attack, nature scene/adventure, and neutral people, we further decoded multivariate 

EEG patterns evoked by these subcategories of images. Against neutral people, the onset 

times of above-chance decoding for erotic couple, attack, and mutilation body/disgust were 
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~180 ms, ~280 ms, and ~300 ms, respectively, with happy people not significantly decoded 

from neutral people. The onset times were significantly different between erotic couple and 

attack with erotic couple being earlier (ks value = 0.81, effect size = 2.1), and between 

erotic couple and mutilation body/disgust with erotic couple being earlier (ks value=0.92, 

effect size = 2.3). The onset times between attack and mutilated body/disgust were only 

weakly different with attack being earlier (ks value = 0.35, effect size = 0.34). Against 

natural scenes, the onset times of above-chance level decoding for erotic couple, attack, and 

mutilation body/disgust were ~240 ms, ~300 ms, and ~300 ms, respectively, with happy 

people not significantly decoded from natural scenes. The onset times were significantly 

different between erotic couple and attack with erotic couple being earlier (ks value = 

0.7, effect size = 1.3) and between erotic and mutilation body/disgust with erotic couple 

being earlier (ks value = 0.87, effect size = 1.33); the onset timings were not significantly 

different between attack and mutilation body/disgust (ks value = 0.25, effect size = 0.25). 

Combining these data, for subcategories of affective scenes, the formation time of affect-

specific neural representations appear to follow the temporal sequence: erotic couple → 
attack → mutilation body/disgust.

Affective pictures are characterized along two dimensions: valence and arousal. We tested 

to what extent these factors influenced the decoding results. Erotic (arousal: 6.30, valence: 

6.87) and Disgust/Mutilation (arousal: 6.00, valence: 2.18) pictures have similar arousal 

(p=0.76) but significantly different valence (p<0.001). As shown in Figure 3A, the decoding 

accuracy between these two subcategories rose above chance level ~200ms after picture 

onset, suggesting that the patterns evoked by affective scenes to a large extent reflect 

valence. In contrast, natural scenes/adventure (arousal: 5.4, valence: 7.0) and neutral people 

(arousal: 3.5, valence: 5.5) have significantly different arousal ratings (p=0.05), but the two 

subcategories cannot be decoded, as shown in Figure 3B, suggesting that arousal is not a 

very strong factor driving decodability.

Affect-specific neural representations: Temporal stability

How do affect-specific neural representations, once formed, evolve over time? A serial 

processing model, in which neural processing progresses from one brain region to the 

next, would predict that the representations will evolve dynamically, resulting in a temporal 

generalization matrix as schematically shown in Figure 4A Left. In contrast, a recurrent 

processing model, in which the representations are undergirded by the recurrent interactions 

among different brain regions, would predict sustained neural representations, resulting in 

a temporal generalization matrix as schematically shown in Figure 4A Right. We applied 

a temporal generalization method called the generalization across time (GAT) to test these 

possibilities. A classifier was trained on data recorded at time ty and tested on data at time tx. 

The decoding accuracy is then displayed as a color-coded two-dimensional function (called 

the temporal generalization matrix) on the plane spanned by tx and ty. As can be seen in 

Figure 4B, a stable neural representation emerged ~200 ms after picture onset and remained 

stable as late as 2000 ms post stimulus onset, with the peak decoding accuracy occurring 

within the time interval 300 ms-800 ms. Although the decoding accuracy decreased after 

the peak time, it remained significantly above chance, as shown by the large area within 

the black contour. These results demonstrate that the affect-specific neural representations 
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of affective scenes, whether pleasant or unpleasant, are stable and sustained over extended 

periods of time, suggesting that affective scene processing could be supported by recurrent 

interactions in the engaged neural circuits. Repeating the same temporal generalization 

analysis for emotional subcategories, as shown in Figure 5, we observed similar stable 

neural representations for each emotion subcategory.

Visual cortical contributions to sustained affective representations

Weight maps in Figure 2 suggest that occipital and temporal structures are the main neural 

substrate underlying affect-specific neural representations, which is in line with previous 

studies showing patterns of visual cortex activity encoding rich, category-specific emotion 

representations (Kragel et al., 2019; Bo et al., 2021). Whether these structures participate in 

the recurrent interactions that give rise to sustained neural representations of affective scenes 

was the question we considered next. Previous work, based on temporal generalization, has 

shown that cognitive operations such as attention, working memory, and decision-making 

are characterized by sustained neural representations, in which sensory cortex is an essential 

node in the recurrent network (Büchel and Friston, 1997; Gazzaley et al., 2004; Wimmer 

et al., 2015). We tested whether the same holds true in affective scene processing. It is 

reasonable to expect that if this is indeed the case, then the more stable and sustained 

the neural interactions (measured by the EEG temporal generalization), the more distinct 

the neural representations in visual cortex (measured by the fMRI decoding accuracy in 

visual cortex). Figure 6A shows above-chance fMRI decoding accuracy for pleasant vs 

neutral (p<0.001) and unpleasant vs neutral (p<0.001) in visual cortex. We quantified the 

strength of the temporal generalization matrix by averaging the decoding accuracy inside 

the black contour (see Figure 4B) and correlated this strength with the fMRI decoding 

accuracy in visual cortex. As shown in Figure 6B, for unpleasant vs neutral decoding, 

there was a significant correlation between fMRI decoding accuracy in visual cortex and 

the strength of temporal generalization (R=0.66, p=0.0008), whereas for pleasant vs neutral 

decoding, the correlation is not as strong but is still marginally significant (R=0.32, p=0.07). 

Dividing subjects into high and low decoding accuracy group based on their fMRI decoding 

accuracies in the visual cortex, the corresponding temporal generalization for each group 

is shown in Figure 6C, where it is again intuitively clear that temporal generalization is 

stronger in subjects with higher decoding accuracy in the visual cortex. Statistically, the 

strength of temporal generalization for unpleasant vs neutral was significantly larger in the 

high decoding accuracy group (p=0.01) than the low accuracy group; the same was also 

observed for pleasant vs neutral but the statistical effect is again weaker (p=0.065). We 

note that the method used here to quantify the strength of temporal generalization may be 

influenced by the level of decoding accuracy. In the Supplementary Materials we explored a 

different method of quantifying the strength of temporal generalization and obtained similar 

results (Figure S5).

Onset time of perceptual processing of affective scenes

Past work has found that perceptual processing of simple visual objects begins ~100 ms after 

image onset in visual cortex (Cichy et al., 2016). This time is earlier than the onset time 

of affect-specific neural representations (~200 ms). Since the present study used complex 

visual scenes rather than simple visual objects as stimuli, it would be helpful to obtain 
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information on the onset time of perceptual processing of these complex images, providing 

a reference for comparison. We fused simultaneous EEG-fMRI data using representational 

similarity analysis (RSA) (Cichy et al., 2016; Cichy and Teng, 2017) and computed the 

time at which visual processing of IAPS images began in visual cortex. Visual cortex was 

subdivided into early, ventral, and dorsal parts (see Methods). Their anatomical locations 

are shown in Figure 7A. We found that shared variance between EEG recorded on the 

scalp and fMRI recorded from early visual cortex (EVC), ventral visual cortex (VVC), and 

dorsal visual cortex (DVC) began to exceed statistical significance level at ~80 ms, ~100 ms, 

and ~360 ms post picture onset, respectively, and remained significant until ~1800 ms; see 

Figure 7B. These onset times are significantly different from one another according to the 

KS test applied to bootstrap generated onset time distributions: EVC<VVC (ks value = 0.21, 

effect size = 0.37), VVC<DVC (ks value = 0.75, effect size = 1.38), and EVC<DVC (ks test 

= 0.79, effect size =1.79); see Figure 7C.

An additional analysis was conducted to test the influence of low-level visual features on the 

RSA results (Groen et al 2018; Grootswagers et al., 2020). Specifically, we computed partial 

correlation between EEG RDM and fMRI RDM while controlling for the effect of low-level 

feature RDM. Low level features were extracted by GIST using a method from a previous 

publication (Khosla et al., 2012). 300 x 300 GIST RDM was constructed in a similar way 

as EEG and fMRI RDMs. If GIST is an important factor driving the similarity between 

EEG RDM and fMRI RDM, it will have a significant contribution to EEG RDM-fMRI 

RDM correlation, and controlling for this contribution would reduce EEG RDM-fMRI RDM 

correlation. As can be seen, the results in Figure 7D and 7E, where the partial correlation 

results are shown, are almost the same as Figure 7B and 7C, suggesting that low-level 

features are not an important factor driving the RSA result.

Furthermore, we sought to examine if affect features are a factor driving the RSA result. 

A 300x300 emotion-category RDM was constructed. Specifically, if two trials belong to 

the same emotion category, the corresponding element in RDM is coded as ‘0,’ otherwise 

it is coded as ‘1.’ Figure 7F showed that this categorical RDM becomes correlated with 

EEG RDM ~ 240ms post picture onset, which agrees with the onset time of affect-specific 

representations from EEG decoding, suggesting that the EEG patterns beyond ~240 ms 

manifested the emotional content of affective scenes.

DISCUSSION

We investigated the temporal dynamics of affective scene processing and reported four 

main observations. First, EEG patterns evoked by both pleasant and unpleasant scenes were 

distinct from those evoked by neutral scenes, with above-chance decoding occurring ~200 

ms post image onset. The formation of pleasant-specific neural representations led that of 

unpleasant-specific neural representations by about 60 ms (~200 ms vs ~260 ms); the peak 

decoding accuracies were about the same (59% vs 58%). Second, dividing affective scenes 

into six subcategories, the onset of above-chance decoding between affective and neutral 

scenes followed the sequence: erotic couple (~210 ms)→attack (~ 290 ms)→mutilation 

body/disgust (~300 ms), suggesting that the speed at which neural representations form 

depends on specific picture content. Third, for both pleasant and unpleasant scenes, 
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the neural representations were sustained rather than transient, and the stability of the 

representations was associated with the fMRI decoding accuracy in the visual cortex, 

suggesting, albeit indirectly, a role of visual cortex in the recurrent neural network that 

supports the affective representations. Fourth, applying RSA to fuse EEG and fMRI, 

perceptual processing of complex visual scenes was found to start in early visual cortex 

~80 ms post image onset, preceding to ventral visual cortex at ~100 ms.

Formation of affect-specific neural representations

The question of how long it takes for affect-specific neural representations to form 

has been considered in the past. An intracranial electroencephalography study reported 

enhancement of gamma oscillations for emotional pictures compared to neutral pictures in 

occipital-temporal lobe in the time period of 200 ms −1000 ms (Boucher et al., 2015). 

In our data, the ~200 ms onset of above-chance decoding and ~500 ms occurrence of 

peak decoding accuracy, with the main contribution to decoding performance coming from 

occipital and temporal electrodes, are consistent with the previous report. Compared to 

nonaffective images such as faces, houses and scenes, where decodable differences in 

neural representations in visual cortex started to emerge ~100 ms post stimulus onset 

with peak decoding accuracy occurring at ~150 ms (Cichy et al., 2016; Cauchoix et al., 

2014), the formation times of these affect-specific representations appear to be quite late. 

From a theoretical point of view, this delay may be explained by the reentry hypothesis 

which holds that anterior emotion regions such as the amygdala and the prefrontal cortex, 

upon receiving sensory input, send feedback signals to visual cortex to enhance sensory 

processing and facilitate motivated attention (Lang and Bradley, 2010). In a recent fMRI 

study (Bo et al., 2021), we found that scenes expressing different affect can be decoded from 

multivoxel patterns in the retinotopic visual cortex and the decoding accuracy is correlated 

with the effective connectivity from anterior regions to visual cortex, in agreement with the 

hypothesis. What has not been established is how long it takes for the reentry signals to 

reach visual cortex. To provide a reference time for addressing this question. we fused EEG 

and fMRI data via RSA and found that sensory processing of complex visual scenes such as 

those contained IAPS pictures began ~100 ms post picture onset. This gave us an estimate of 

the reentry time which is on the order of ~100 ms or shorter. We caution that these estimates 

are somewhat speculative as our inferences are made rather indirectly.

Univariate ERP analysis, presented in the Supplementary Materials, was also carried to 

provide additional insights. Four groups of electrodes centered on Oz, Cz, Pz, and Fz were 

chosen as ROIs. ERPs evoked by affective pictures and neutral pictures were contrasted 

at each ROI. At Cz, the difference ERP waves between pleasant vs neutral showed clear 

activation starting at ~172 ms, whereas for unpleasant vs neutral, the activation started at 

~200 ms, both in general agreement with the timing information obtained from MVPA 

analysis.

The foregoing indicates that pleasant scenes evoked earlier affect-specific representations 

than unpleasant scenes. This positivity bias appears to be at variance with the negativity bias 

idea, which holds that negative events elicit more rapid and stronger responses compared to 

pleasant events (Rozin and Royzman 2001; Vaish et al., 2008). While the idea has received 
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support in behavioral data, e.g., subjects tend to locate unpleasant faces among pleasant 

distractors in shorter time than the reverse (Öhman et al., 2001), the neurophysiological 

support is mixed. Some studies using affective picture viewing paradigms reported shorter 

ERP latency and larger ERP amplitude for unpleasant pictures compared to pleasant ones 

in central P2 and late positive potential (LPP) (Carretié et al., 2001; Huang and Luo, 2006), 

but other ERP studies found that positive scene processing can be as strong and as fast 

as negative scene processing when examining early posterior negativity (EPN) in occipital 

channels (Schupp et al., 2006; Franken et al., 2008; Weinberg and Hajcak 2010). One 

possible explanation for the discrepancy might be the choice of stimuli. The inclusion of 

exciting and sports images, which have high valence but average arousal, as stimuli in the 

pleasant category weakens the pleasant ERP effects when compared against threatening 

scenes included in the unpleasant category which have both low valence and high arousal 

(Weinberg and Hajcak 2010). In the present work, by including images such as erotica and 

affiliative happy scenes in the pleasant category, which have comparable arousal ratings as 

images included in the unpleasant category, we were able to mitigate the possible issues 

associated with stimulus selection. Other explanations needed to be sought.

Subdividing the images into 6 subcategories: erotic couples, happy people, mutilation 

body/disgust, attack scene, neutral scene, and neutral people, and decoding the emotion 

subcategories against the neutral subcategories, we found the following temporal sequence 

of formation of neural representations: erotic couple (pleasant)→attack (unpleasant)

→mutilation body/disgust (unpleasant), with happy people failing to be decoded from 

neutral images. This finding can be seen as providing neural support to previous 

electrodermal findings showing that erotic scenes evoked largest responses within IAPS 

pictures, which was followed by mutilation and threat scenes (Sarlo et al., 2005), suggesting 

the temporal dynamic of emotion processing depends on specific scene content. It also 

supports a behavioral study that found a fast discrimination of erotic pictures compared to 

other categories, assessed using choice and simple response time experiments, using the 

same pictures as used here (Thigpen et al., 2018). In a neural study of nude body processing 

(Alho et al. 2015), the authors reported an early 100 ms-200 ms nude-body sensitive 

response in primary visual cortex, which was maintained in a later period (200-300 ms). 

Their consistent occipitotemporal activation is comparable with our weight map analysis 

which implicates the occipitotemporal cortex as the main neural substrate sustaining the 

affective representations.

The faster discrimination between erotic scenes vs neutral people compared to erotic scenes 

vs natural scenes is worth discussing. One possibility is that the neutral people category 

has lower arousal ratings (3.458) compared to natural scenes (5.42) and arousal influences 

decodability. In addition, comparing discrimination performance and ERPs for pictures with 

no people versus pictures with people, Ihssen and Keil (2013) found no evidence that 

affective subcategories with people were better discriminated against subcategories with 

objects than subcategories with people. Instead, a face/portrait category was most rapidly 

discriminated when using a go/no-go format for responding. Despite the similarities, the 

exact mechanisms underlying our decoding findings, remain to be better understood.
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Temporal evolution of neural representations of affective scenes

Once the affect-specific neural representations form, how do these representations evolve 

over time? If emotion processing is sequential, namely, if it progresses from one brain region 

to the next as time passes, we would expect dynamically evolving neural patterns. On the 

other hand, if the emotional state is stable over time undergirded by recurrent processing 

in distributed brain networks, we would expect a sustained neural pattern. A technique for 

testing these possibilities is the temporal generalization method (King and Dehaene, 2014). 

In this method, a classifier trained on data at one time is applied to decode data from all 

other times, resulting in a 2D plot of decoding accuracy called the temporal generalization 

matrix. Past studies decoding between non-emotional images such as neutral faces vs objects 

have found a transient temporal generalization pattern (Carlson et al., 2013; Cichy et al., 

2014; Kaiser et al., 2016), supporting a sequential processing model for object recognition 

(Carlson et al., 2013). The temporal generalization results from our data revealed that the 

neural representations of affective scenes are stable over a wide time window (~ 200 ms 

to 2000 ms). Such stable representations may be maintained by sustained motivational 

attention, triggered by affective content (Schupp et al., 2004; Hajcak et al., 2009), which 

could in turn be supported by recurrent interactions between sensory cortex and anterior 

emotion structures (Keil et al., 2009; Sabatinelli et al., 2009; Lang and Bradley 2010). In 

addition, the time window in which sustain representations were found is broadly consistent 

with previous ERP studies where elevated LPP lasted multiple seconds, extending even 

beyond the offset of the stimuli (Foti and Hajcak, 2008; Hajcak et al., 2009).

Role of visual cortex in sustained neural representations of affective scenes

The visual cortex, in addition to its role in processing perceptual information, is also 

expected to play an active role in sustaining affective representations, because the purpose 

of sustained motivational attention is to enhance vigilance towards threats or opportunities in 

the visual environment (Lang and Bradley, 2010). The sensory cortex’s role in sustained 

neural computations has been shown in other cognitive paradigms, including decision-

making (Mostert et al., 2015), where stable neural representations are shown to be supported 

by the reciprocal interactions between prefrontal decision structures and sensory cortex. In 

face perception and imagery, neural representations are also found to be stable and sustained 

by communications between high and low order visual cortices (Dijkstra et al., 2018). In our 

data, two lines of evidence appear to support a sustained role of visual cortex in emotion 

representation. First, over an extended time period, the weight maps obtained from EEG 

classifiers were comprised of channels located mainly in occipital-temporal areas. Second, 

if the emotion-specific neural representations in the visual cortex stem from the recurrent 

processing within distributed networks, then the stronger and longer these interactions, the 

stronger and more distinct the affective representations in visual cortex. This is supported by 

the finding that the strength of temporal generalization is correlated with the fMRI decoding 

accuracy in visual cortex.

Temporal dynamic of sensory processing in visual pathway

The temporal dynamics of sensory processing of complex visual scenes can be revealed by 

fusing EEG-fMRI using RSA. The results showed that visual processing of IAPS images 
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started ~80 ms post picture onset in early visual cortex (EVC) and proceeded to ventral 

visual cortex (VVC) at ~100 ms. It is instructive to compare this timing information with 

a previous ERP study where it is found that during the recognition of natural scenes, the 

low-level features are best explained by the ERP component occurring ~90 ms post picture 

onset while high-level features are best represented by the ERP component occurring ~170 

ms after picture onset (Greene and Hansen, 2021). Compared with the ~100 ms start time 

of perceptual processing in visual cortex, the ~200 ms formation onset of affect-specific 

neural representations likely includes the time it took for the reentry signals to travel from 

emotion processing structures such as the amygdala or the prefrontal cortex to the visual 

cortex (see below), which then give rise to the affect-specific representations seen in the 

occipital-temporal channels. The dorsal visual cortex (DVC), a brain region important for 

action and movement preparation (Wandell et al., 2011), is activated at ~360 ms, which 

is relatively late and may reflect the processing of action predispositions resulting from 

affective perceptions. This sequence of temporal activity is consistent with that established 

previously using the fast-fMRI method where early visual cortex activation preceded ventral 

visual cortex activation which preceded dorsal visual cortex activation (Sabatinelli et al., 

2014).

It is worth noting the RSA similarity time courses in all three visual ROIs stayed highly 

activated for a relatively long time period, which may be taken as further evidence, 

along with the temporal generalization analysis, to support sustained neural representations 

of affective scenes. From a methodological point of view, the RSA differs from the 

decoding analysis in that decoding analysis captures affect-specific distinction between 

neural representations, whereas the RSA fusing of EEG-fMRI is sensitive to evoked pattern 

similarity shared by EEG and fMRI imaging modalities, with early effects likely driven by 

sensory perceptual processing and late effects by both sensory and affective processing.

Beyond the visual cortex

The visual cortex is not the only brain region activated by affective scenes. In the 

Supplementary Materials, we performed a whole-brain decoding analysis of fMRI data 

(Figure S1), and found above-chance decoding in many areas in prefrontal, limbic, as 

well as occipital-temporal cortices. Interestingly, the strongest decoding was found in the 

occipital-temporal areas, lending support to our focus on the visual cortex. Shedding light on 

the timing of these activations, a previous EEG source localization study reported that affect-

related activation began to appear in visual cortex, prefrontal cortex and limbic systems 

~200 ms after stimulus onset (Costa et al., 2014), complementing our fMRI analysis and 

the fMRI analysis by others (Saarimäki et al., 2016). Fusing EEG and fMRI with RSA, 

we further tested the temporal dynamics in several emotion-modulating structures, including 

amygdala, dACC, anterior insula, and fusiform cortex. As shown in Figure S3, visual input 

reached the amygdala ~100 ms post picture onset, which is comparable with the activation 

time of early visual cortex. A similar activation time has been reported in a previous 

intracranial electrophysiological study (Méndez-Bértolo et al., 2016). Early activation was 

also found in dACC. Despite these early arrivals of visual input, it takes longer for affect-

specific signals to arise, however. Recording from single neurons, Wang et al. showed that it 

takes ~250 ms for the emotional judgement signal of faces to emerge in the amygdala (Wang 
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et al., 2014). It is intriguing to note that the ~100 ms difference between the arrival of visual 

input and the emergence of affect-specific activity is similar to our suggested reentry time of 

~100 ms.

Limitations

This study is not without limitations. First, the suggestion that sustained affective 

representations are supported by recurrent neural interactions is speculative and based 

on indirect evidence, as we have already acknowledged above. Second, we used cross 

correlation to construct RDMs. A previous study has shown that a decoding-based analysis 

leads to more reliable RDMs (Guggenmos et al. 2018). Unfortunately, this method is not 

applicable to our data, because we do not have enough repetitions for each picture (five 

times) to permit a reliable decoding accuracy for every pair of pictures. Third, the inclusion 

of adventure scenes, which contain humans (small in size relative to the overall image), 

while providing a more relevant, interesting group of scenes to help avoid that any decoding 

effects be solely due to the homogenous, low-interest neutral people in the neutral category 

of images, could complicate the animate-inanimate comparison.

Summary

We recorded simultaneous EEG-fMRI data from participants viewing affective pictures. 

Applying multivariate analyses including SVM and RSA, we found that perceptual 

processing of affective pictures began ~100 ms in visual cortex, whereas affect-specific 

representations began to form ~200 ms post image onset. The neural representations of 

affective scenes are sustained rather than dynamic and the visual cortex might be an 

important node in the recurrent network that supports these sustained representations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by NIH grants R01 MH112558 and R01 MH125615. The authors declare no competing 
interests.

REFERENCE

Allen PJ, Josephs O, & Turner R (2000). A method for removing imaging artifact from continuous 
EEG recorded during functional MRI. Neuroimage, 12(2), 230–239. [PubMed: 10913328] 

Allen PJ, Polizzi G, Krakow K, Fish DR, & Lemieux L (1998). Identification of EEG events in the MR 
scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage, 8(3), 229–239. 
[PubMed: 9758737] 

Alho J, Salminen N, Sams M, Hietanen JK, & Nummenmaa L (2015). Facilitated early cortical 
processing of nude human bodies. Biological Psychology, 109, 103–110. [PubMed: 25960070] 

Bae GY, & Luck SJ (2019). Decoding motion direction using the topography of sustained ERPs and 
alpha oscillations. NeuroImage, 184, 242–255. [PubMed: 30223063] 

Belouchrani A, Abed-Meraim K, Cardoso JF, & Moulines E (1993, May). Second-order blind 
separation of temporally correlated sources. In Proc. Int. Conf. Digital Signal Processing (pp. 
346–351). Citeseer.

Bo et al. Page 17

Neuroimage. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bo K, Yin S, Liu Y, Hu Z, Meyyappan S, Kim S, … & Ding M (2021). Decoding Neural 
Representations of Affective Scenes in Retinotopic Visual Cortex. Cerebral Cortex, 31(6), 3047–
3063. [PubMed: 33594428] 

Bradley MM, & Lang PJ (1994). Measuring emotion: the self-assessment manikin and the semantic 
differential. Journal of behavior therapy and experimental psychiatry, 25(1), 49–59. [PubMed: 
7962581] 

Bradley MM, Costa VD, Ferrari V, Codispoti M, Fitzsimmons JR, & Lang PJ (2015). Imaging 
distributed and massed repetitions of natural scenes: Spontaneous retrieval and maintenance. Human 
Brain Mapping, 36(4), 1381–1392. [PubMed: 25504854] 

Boucher O, D'Hondt F, Tremblay J, Lepore F, Lassonde M, Vannasing P, … & Nguyen DK (2015). 
Spatiotemporal dynamics of affective picture processing revealed by intracranial high-gamma 
modulations. Human brain mapping, 36(1), 16–28. [PubMed: 25142122] 

Büchel C, & Friston KJ (1997). Modulation of connectivity in visual pathways by attention: cortical 
interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex (New York, 
NY: 1991), 7(8), 768–778.

Carretié L, Mercado F, Tapia M, & Hinojosa JA (2001). Emotion, attention, and the ‘negativity bias’, 
studied through event-related potentials. International journal of psychophysiology, 41(1), 75–85. 
[PubMed: 11239699] 

Carlson Tovar, Alink A, D.A., Kriegeskorte N, 2013. Representational dynamics of object vision: the 
first 1000 ms. J. Vis 13 (10).

Cauchoix M, Barragan-Jason G, Serre T, & Barbeau EJ (2014). The neural dynamics of face detection 
in the wild revealed by MVPA. Journal of Neuroscience, 34(3), 846–854. [PubMed: 24431443] 

Chang CC, & Lin CJ (2011). LIBSVM: a library for support vector machines. ACM transactions on 
intelligent systems and technology (TIST), 2(3), 1–27.

Cichy RM, Pantazis D, & Oliva A (2014). Resolving human object recognition in space and time. 
Nature neuroscience, 17(3), 455. [PubMed: 24464044] 

Cichy RM, & Teng S (2017). Resolving the neural dynamics of visual and auditory scene processing in 
the human brain: a methodological approach. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 372(1714), 20160108.

Contini EW, Wardle SG, & Carlson TA (2017). Decoding the time-course of object recognition in 
the human brain: From visual features to categorical decisions. Neuropsychologia, 105, 165–176. 
[PubMed: 28215698] 

Costa T, Cauda F, Crini M, Tatu MK, Celeghin A, de Gelder B, & Tamietto M (2014). Temporal and 
spatial neural dynamics in the perception of basic emotions from complex scenes. Social cognitive 
and affective neuroscience, 9(11), 1690–1703. [PubMed: 24214921] 

Cuthbert BN, Schupp HT, Bradley MM, Birbaumer N, & Lang PJ (2000). Brain potentials in affective 
picture processing: covariation with autonomic arousal and affective report. Biological psychology, 
52(2), 95–111. [PubMed: 10699350] 

Delorme A, & Makeig S (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 
9–21. [PubMed: 15102499] 

Deweese MM, Müller M, Keil A (2016) Extent and time-course of competition in visual cortex 
between emotionally arousing distractors and a concurrent task. Eur J Neurosci 43:961–970. 
[PubMed: 26790572] 

Di Russo F, Martínez A, Sereno MI, Pitzalis S, & Hillyard SA (2002). Cortical sources of the early 
components of the visual evoked potential. Human brain mapping, 15(2), 95–111. [PubMed: 
11835601] 

Dijkstra N, Mostert P, de Lange FP, Bosch S, & van Gerven MA (2018). Differential temporal 
dynamics during visual imagery and perception. Elife, 7, e33904. [PubMed: 29807570] 

Dima DC, Perry G, Messaritaki E, Zhang J, & Singh KD (2018). Spatiotemporal dynamics in human 
visual cortex rapidly encode the emotional content of faces. Human brain mapping, 39(10), 3993–
4006. [PubMed: 29885055] 

Bo et al. Page 18

Neuroimage. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Franken IH, Muris P, Nijs I, & van Strien JW (2008). Processing of pleasant information can be as fast 
and strong as unpleasant information: Implications for the negativity bias. Netherlands Journal of 
Psychology, 64(4), 168–176.

Foti D, & Hajcak G (2008). Deconstructing reappraisal: descriptions preceding arousing pictures 
modulate the subsequent neural response. Journal of cognitive neuroscience, 20(6), 977–988. 
[PubMed: 18211235] 

Foti D, Hajcak G, & Dien J (2009). Differentiating neural responses to emotional pictures: Evidence 
from temporal-spatial PCA. Psychophysiology, 46(3), 521–530. [PubMed: 19496228] 

Gazzaley A, Rissman J, & D’esposito M (2004). Functional connectivity during working memory 
maintenance. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 580–599.

Greene MR, & Hansen BC (2020). Disentangling the independent contributions of visual and 
conceptual features to the spatiotemporal dynamics of scene categorization. Journal of 
Neuroscience, 40(27), 5283–5299. [PubMed: 32467356] 

Grootswagers T, Wardle SG, & Carlson TA (2017). Decoding dynamic brain patterns from evoked 
responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. 
Journal of cognitive neuroscience, 29(4), 677–697. [PubMed: 27779910] 

Guggenmos M, Sterzer P, & Cichy RM (2018). Multivariate pattern analysis for MEG: A comparison 
of dissimilarity measures. NeuroImage, 173, 434–447. [PubMed: 29499313] 

Haufe S, Meinecke F, Görgen K, Dähne S, Haynes J-D, Blankertz B, et al. (2014). On the 
interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 
96–110. [PubMed: 24239590] 

Hajcak G, Dunning JP, & Foti D (2009). Motivated and controlled attention to emotion: time-course of 
the late positive potential. Clinical neurophysiology, 120(3), 505–510. [PubMed: 19157974] 

Hajcak G, MacNamara A, & Olvet DM (2010). Event-related potentials, emotion, and emotion 
regulation: an integrative review. Developmental neuropsychology, 35(2), 129–155. [PubMed: 
20390599] 

Huang YX, & Luo YJ (2006). Temporal course of emotional negativity bias: an ERP study. 
Neuroscience letters, 398(1-2), 91–96. [PubMed: 16446031] 

Ihssen N, & Keil A (2013). Accelerative and decelerative effects of hedonic valence and emotional 
arousal during visual scene processing. The Quarterly Journal of Experimental Psychology, 66(7), 
1276–1301. [PubMed: 23134534] 

Junghöfer M, Weike AI, Stockburger J, & Hamm AO (2004). The facilitated processing of threatening 
faces: an ERP analysis. Emotion, 4(2), 189. [PubMed: 15222855] 

Kaiser D, Azzalini DC, & Peelen MV (2016). Shape-independent object category responses revealed 
by MEG and fMRI decoding. Journal of neurophysiology, 115(4), 2246–2250. [PubMed: 
26740535] 

Keil A, Bradley MM, Hauk O, Rockstroh B, Elbert T, & Lang PJ (2002). Large-scale neural correlates 
of affective picture processing. Psychophysiology, 39(5), 641–649. [PubMed: 12236331] 

Keil A, Sabatinelli D, Ding M, Lang PJ, Ihssen N, & Heim S (2009). Re-entrant projections modulate 
visual cortex in affective perception: Evidence from Granger causality analysis. Human brain 
mapping, 30(2), 532–540. [PubMed: 18095279] 

King JR, Gramfort A, Schurger A, Naccache L, & Dehaene S (2014). Two distinct dynamic modes 
subtend the detection of unexpected sounds. PloS one, 9(1).

King JR, & Dehaene S (2014). Characterizing the dynamics of mental representations: the temporal 
generalization method. Trends in cognitive sciences, 18(4), 203–210. [PubMed: 24593982] 

Khosla A, Xiao J, Torralba A, & Oliva A (2012). Memorability of image regions. Advances in neural 
information processing systems, 25.

Kragel PA, Reddan MC, LaBar KS, & Wager TD (2019). Emotion schemas are embedded in the 
human visual system. Science advances, 5(7), eaaw4358. [PubMed: 31355334] 

Kriegeskorte N, Mur M, & Bandettini PA (2008). Representational similarity analysis-connecting the 
branches of systems neuroscience. Frontiers in systems neuroscience, 2, 4. [PubMed: 19104670] 

Lang PJ, Bradley MM, & Cuthbert BN (1997). International affective picture system (IAPS): 
Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 
39–58.

Bo et al. Page 19

Neuroimage. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lang PJ, Bradley MM, Fitzsimmons JR, Cuthbert BN, Scott JD, Moulder B, & Nangia V (1998). 
Emotional arousal and activation of the visual cortex: an fMRI analysis. Psychophysiology, 35(2), 
199–210. [PubMed: 9529946] 

Lang PJ, & Bradley MM (2010). Emotion and the motivational brain. Biological psychology, 84(3), 
437–450. [PubMed: 19879918] 

Liu Y, Huang H, McGinnis-Deweese M, Keil A, & Ding M (2012). Neural substrate of the late positive 
potential in emotional processing. Journal of Neuroscience, 32(42), 14563–14572. [PubMed: 
23077042] 

Mendez-Bertolo C, Moratti S, Toledano R, Lopez-Sosa F, Martinez-Alvarez R, Mah YH, … & Strange 
BA (2016). A fast pathway for fear in human amygdala. Nature neuroscience, 19(8), 1041–1049. 
[PubMed: 27294508] 

Mostert P, Kok P, & De Lange FP (2015). Dissociating sensory from decision processes in human 
perceptual decision making. Scientific reports, 5, 18253. [PubMed: 26666393] 

Mumford JA, Turner BO, Ashby FG, & Poldrack RA (2012). Deconvolving BOLD activation in event-
related designs for multivoxel pattern classification analyses. Neuroimage, 59(3), 2636–2643. 
[PubMed: 21924359] 

Muukkonen I, Ölander K, Numminen J, & Salmela VR (2020). Spatio-temporal dynamics of face 
perception. NeuroImage, 209, 116531. [PubMed: 31931156] 

Nakamura A, Kakigi R, Hoshiyama M, Koyama S, Kitamura Y, & Shimojo M (1997). Visual evoked 
cortical magnetic fields to pattern reversal stimulation. Cognitive Brain Research, 6(1), 9–22. 
[PubMed: 9395846] 

Norman KA, Polyn SM, Detre GJ, & Haxby JV (2006). Beyond mind-reading: multi-voxel pattern 
analysis of fMRI data. Trends in cognitive sciences, 10(9), 424–430. [PubMed: 16899397] 

Oya H, Kawasaki H, Howard MA 3rd, & Adolphs R (2002). Electrophysiological responses in the 
human amygdala discriminate emotion categories of complex visual stimuli. J Neurosci, 22(21), 
9502–9512. [PubMed: 12417674] 

Öhman A, Lundqvist D, & Esteves F (2001). The face in the crowd revisited: A threat advantage 
with schematic stimuli. Journal of Personality and Social Psychology, 80, 381–396. [PubMed: 
11300573] 

Phan KL, Wager T, Taylor SF, & Liberzon I (2002). Functional neuroanatomy of emotion: a meta-
analysis of emotion activation studies in PET and fMRI. Neuroimage, 16(2), 331–348. [PubMed: 
12030820] 

Rozin P, & Royzman EB (2001). Negativity bias, negativity dominance, and contagion. Personality 
and social psychology review, 5(4), 296–320.

Saarimäki H, Gotsopoulos A, Jääskeläinen IP, Lampinen J, Vuilleumier P, Hari R, … & Nummenmaa 
L (2016). Discrete neural signatures of basic emotions. Cerebral cortex, 26(6), 2563–2573. 
[PubMed: 25924952] 

Sabatinelli D, Lang PJ, Keil A, & Bradley MM (2006). Emotional perception: correlation of functional 
MRI and event-related potentials. Cerebral cortex, 17(5), 1085–1091. [PubMed: 16769742] 

Sabatinelli D, Lang PJ, Bradley MM, Costa VD, & Keil A (2009). The timing of emotional 
discrimination in human amygdala and ventral visual cortex. Journal of Neuroscience, 29(47), 
14864–14868. [PubMed: 19940182] 

Sabatinelli D, Keil A, Frank DW, & Lang PJ (2013). Emotional perception: correspondence of 
early and late event-related potentials with cortical and subcortical functional MRI. Biological 
psychology, 92(3), 513–519. [PubMed: 22560889] 

Sabatinelli D, Frank DW, Wanger TJ, Dhamala M, Adhikari BM, & Li X (2014). The timing and 
directional connectivity of human frontoparietal and ventral visual attention networks in emotional 
scene perception. Neuroscience, 277, 229–238. [PubMed: 25018086] 

Sutterer DW, Coia AJ, Sun V, Shevell SK, & Awh E (2021). Decoding chromaticity and luminance 
from patterns of EEG activity. Psychophysiology, 58(4), e13779. [PubMed: 33550667] 

Sarlo M, Palomba D, Buodo G, Minghetti R, & Stegagno L (2005). Blood pressure changes highlight 
gender differences in emotional reactivity to arousing pictures. Biological psychology, 70(3), 188–
196. [PubMed: 16242536] 

Bo et al. Page 20

Neuroimage. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schupp H, Cuthbert B, Bradley M, Hillman C, Hamm A, & Lang P (2004). Brain processes in 
emotional perception: Motivated attention. Cognition and emotion, 18(5), 593–611.

Schupp HT, Flaisch T, Stockburger J, & Junghöfer M (2006). Emotion and attention: event-related 
brain potential studies. Progress in brain research, 156, 31–51. [PubMed: 17015073] 

Stokes MG, Wolff MJ, & Spaak E (2015). Decoding rich spatial information with high temporal 
resolution. Trends in cognitive sciences, 19(11), 636–638. [PubMed: 26440122] 

Tebbe A-L, Friedl WM, Alpers GW, Keil A (2021) Effects of affective content and motivational 
context on neural gain functions during naturalistic scene perception. European Journal of 
Neuroscience.

Thigpen NN, Keil A, Freund AM (2018) Responding to emotional scenes: effects of response outcome 
and picture repetition on reaction times and the late positive potential. Cognition and Emotion 
32:24–36. [PubMed: 27922339] 

Vaish A, Grossmann T, & Woodward A (2008). Not all emotions are created equal: the negativity bias 
in social-emotional development. Psychological bulletin, 134(3), 383. [PubMed: 18444702] 

Wang L, Mruczek RE, Arcaro MJ, & Kastner S (2015). Probabilistic maps of visual topography in 
human cortex. Cerebral cortex, 25(10), 3911–3931. [PubMed: 25452571] 

Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, & Rutishauser U (2014). Neurons in 
the human amygdala selective for perceived emotion. Proceedings of the National Academy of 
Sciences, 111(30), E3110–E3119.

Wandell BA, & Winawer J (2011). Imaging retinotopic maps in the human brain. Vision research, 
51(7), 718–737. [PubMed: 20692278] 

Weinberg A, & Hajcak G (2010). Beyond good and evil: the time-course of neural activity elicited by 
specific picture content. Emotion, 10(6), 767. [PubMed: 21058848] 

Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, & De La Rocha J (2015). Sensory integration 
dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nature 
communications, 6(1), 1–13.

Wolff MJ, Ding J, Myers NE, & Stokes MG (2015). Revealing hidden states in visual working memory 
using electroencephalography. Frontiers in systems neuroscience, 9, 123. [PubMed: 26388748] 

Bo et al. Page 21

Neuroimage. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights:

• Temporal dynamics of affective scene processing was investigated with 

MVPA.

• Perceptual processing of affective scenes began in visual cortex ~100 ms.

• Affect-specific neural representations emerged between ~200 ms to ~300 ms.

• Affect-specific neural representations were sustained.

• Sustained representations may be supported by recurrent neural interactions.
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Figure 1. 
Experimental paradigm and data analysis pipeline. A) Affective picture viewing paradigm. 

Each recording session lasts seven minutes. 60 IAPS pictures including 20 pleasant, 20 

unpleasant and 20 neutral pictures were presented in each session in random order. Each 

picture was presented at the center of screen for 3 seconds and followed by a fixation period 

(2.8 or 4.3 seconds). Participants were required to fixate the red cross at the center of the 

screen throughout the session while simultaneous EEG-fMRI was recorded. B) Analysis 

pipeline illustrating the methods used at different stages of the analysis (see text for more 

details).
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Figure 2. 
Decoding EEG data between affective and neutral scenes across time. A) Decoding accuracy 

time courses. B) Bootstrap distributions of above-chance decoding onset times. Subjects 

are randomly selected with replacement and onset time was computed for each bootstrap 

resample (a total of 1000 resamples were considered). C) Weight maps showing the 

contribution of different channels to decoding performance at different times.
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Figure 3. 
Further decoding analysis testing the influence of valence vs arousal. A) EEG decoding 

between Erotic (normative valence: 6.87, arousal: 6.30) vs Disgust/Mutilation pictures 

(normative valence: 2.81, arousal: 6.00). Red horizontal bar indicates period of above chance 

decoding (FDR p<0.05). B) EEG decoding between Neutral people (normative valence: 

5.5, arousal: 3.5) vs Natural scenes/adventure (normative valence: 7.0, arousal: 5.4). Above 

chance level decoding is not found.
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Figure 4. 
Temporal generalization analysis. Classifier trained at each time point was tested on all 

other time points in the time series. The decoding accuracy at a point on this plane 

reflects the performance at time tx of the classifier trained at time ty. A) Schematic 

temporal generalizations of dynamic or transient (Left) vs sustained or stable (Right) neural 

representations. B) Temporal generalization for decoding between pleasant vs neutral (Left) 

and between unpleasant vs neutral (Right). Wilcox sign-rank test applied at each pixel in 

the temporal generalization map to test the significance of decoding accuracy against 50% 

(chance level). The corresponding p value is corrected for multiple comparisons according 

to FDR p<0.05. Cluster size is further controlled (>10 points). Back contours enclose pixels 

with above chance decoding accuracy.
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Figure 5. 
Temporal generalization analysis for subcategories of affective scenes. A) Decoding emotion 

subcategories against neutral people. B) Decoding emotion subcategories against natural 

scenes. See Figure 4 for explanation of notations.
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Figure 6. 
Visual cortical contribution to stable representations of affect. A) fMRI decoding accuracy 

in visual cortex. P<0.05 threshold indicated by the dashed line. B) Correlation between 

strength of EEG temporal generalization and fMRI decoding accuracy in visual cortex. C) 
Subjects are divided into two groups according to their fMRI decoding accuracy in visual 

cortex. Temporal generalization for unpleasant vs neutral (Upper) and pleasant vs neutral 

(Lower) was shown for each group (high accuracy group on the Left vs low accuracy group 

on the Right). Black contours outline the statistically significant pixels (p<0.05, FDR).
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Figure 7. 
Representational similarity analysis (RSA). A) Regions of interest (ROIs): early visual 

cortex (EVC), ventral visual cortex (VVC), and dorsal visual cortex (DVC). B) Similarity 

between EEG RDM and fMRI RDM across time for the three ROIs. Similarity larger than 

five baseline standard deviations for more than 5 consecutive time points are marked as 

statistically significant. C) Onset time of significant similarity for each ROI in B. * Small 

effect size. *** Large effect size. D) Partial correlation between EEG RDM and fMRI RDM 

with GIST RDM being set as control variable. E) Onset time of significant similarity for 

each ROI in D. F) Time course of similarity between EEG RDM and emotion category 

RDM.
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