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Abstract
Our incomplete knowledge of the human transcriptome impairs the detection of disease-causing variants, in 
particular if they affect transcripts only expressed under certain conditions. These transcripts are often lacking from 
reference transcript sets, such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic 
diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a 
pipeline based on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript sets, 
such as those generated by long-read RNA-sequencing, for downstream prioritization. Our pipeline predicts the 
functional consequence and likely deleteriousness scores for missense variants in the context of novel open 
reading frames predicted from any transcriptome. We demonstrate the utility of SUsPECT by uncovering potential 
mutational mechanisms of pathogenic variants in ClinVar that are not predicted to be pathogenic using the 
reference transcript annotation. In further support of SUsPECT’s utility, we identified an enrichment of immune-
related variants predicted to have a more severe molecular consequence when annotating with a newly generated 
transcriptome from stimulated immune cells instead of the reference transcriptome. Our pipeline outputs crucial 
information for further prioritization of potentially disease-causing variants for any disease and will become 
increasingly useful as more long-read RNA sequencing datasets become available.
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Background
The advent of next-generation sequencing (NGS) and 
the exponential increase in human genomes sequenced 
has caused a similarly strong increase in the number of 
genetic variants detected. The identification of novel 
genetic variants has outpaced the understanding of 
their functional impact. Since only a small fraction of 
all observed variants can be characterized clinically or 
by functional tests, there is a heavy reliance on compu-
tational methodology for prioritization. Several com-
putational methods predict the effect of genetic variant 
effects on function such as PolyPhen-2 [1], SIFT [2], and 
MutPred2 [3]. Variant annotators such as the Ensembl 
Variant Effect Predictor (VEP) [4] and ANNOVAR [5] 
predict molecular consequences and integrate reference 
data and pathogenicity scores from different resources 
including dbNSFP [6].

Short-read RNA sequencing has provided us with the 
majority of knowledge we currently have about the tran-
scriptome, but has some intrinsic limitations when it 
comes to discovery of alternative transcripts [7, 8]. Short 
read RNA sequencing is done on transcript fragments 
and the assembly into full-length transcripts is far from 
perfect, which has resulted in an incomplete reference 
transcriptome [9]. Long-read sequencing allows for the 
accurate elucidation of alternative transcripts [10] and 
long-read RNA sequencing datasets are proving that 
the human transcriptome has much more diversity than 
previously thought [11–13]. In addition, both short and 
long-read sequencing have shown that gene expression 
is highly variable in a context dependent manner, with 
divergent expression of transcripts expressed under dif-
ferent conditions (infection, stress, disease) or in differ-
ent tissues or cell-types [14–17].

Some newly discovered transcripts result in open read-
ing frames (ORFs) coding for novel proteoforms [18–20]. 
Knowledge on novel ORFs is key to predicting functional 
consequences of variants within them. There are sev-
eral computational methods available to predict ORFs 
of these novel transcripts either based on sequence fea-
tures [21–23] or homology to existing protein coding 
transcripts [24–26]. The prediction of ORFs on novel 
sequences is an essential first step for the detection of 
new proteoforms, as mainstream proteogenomics tech-
nologies for the discovery of proteoforms rely on data-
bases with peptide sequences present in the predicted 
ORFs. Transcripts derived from long-read sequencing 
can provide better predictions of (novel) proteoforms 
(Fig. 1).

Current variant annotation tools do not take full advan-
tage of the knowledge of novel transcripts because they 
work with precalculated pathogenicity scores calculated 
with respect to a fixed set of reference transcripts. This 
necessitates manual evaluation of the functional effects 

of variants on alternative proteoforms, since disruption 
of their function may have implications for clinical diag-
nosis and treatment. The pipeline presented here, SUs-
PECT (Solving Unsolved Patient Exomes/gEnomes using 
Custom Transcriptomes), is designed to leverage cell/
tissue-specific alternative splicing patterns to reannotate 
variants and provide missense variant functional effect 
scores necessary for downstream variant prioritization. 
This pipeline was designed to be generalizable to any type 
of rare disease variant set paired with a relevant (long-
read) transcriptome. For example, a researcher interested 
in annotating variants in a patient with a rare intellectual 
disability could consider using this tool along with a brain 
transcriptome dataset. We demonstrate the usefulness of 
this tool by reannotating ClinVar variants with a newly 
generated immune-related long-read RNA sequencing 
dataset.

Results
Analysis pipeline overview
We developed SUsPECT to reannotate variants using 
custom transcriptomes (Fig. 2). This pipeline takes a cus-
tom transcriptome (GTF file) and a VCF file as input and 
returns a VCF file with alternative variant annotations for 
downstream evaluation and prioritization. SUsPECT pre-
dicts the ORFs in the alternative transcripts, calculates 
the molecular effects of the input variants with respect to 
these transcripts and predicts the pathogenicity of mis-
sense variants in the alternative proteoforms. SUsPECT 
displays subsets of variants predicted to have more severe 
effects when based on the custom transcriptome instead 
of the reference transcriptome. The predicted molecular 
consequences can be one of five severity levels, ranging 
from “modifier” to “high” (Fig. 2A). A schematic overview 
of the pipeline is presented in Fig. 2B. The main steps in 
the pipeline are:

 	• Validate pipeline input, including (1) an assembled 
(long-read) transcriptome in GTF format with novel 
transcripts. A long-read transcriptome assembly tool 
such as TALON will output a suitable file. (2) A VCF 
containing patient(s) variants.

 	• ORF prediction is performed on the transcripts 
that are not present in the human reference 
transcriptome.

 	• Ensembl VEP predicts molecular consequence 
annotations based on the user-provided set of 
transcripts/ORFs. Variants considered as missense in 
the user-provided transcriptome are reformatted and 
submitted to Polyphen-2 and SIFT.

 	• Polyphen-2 and SIFT calculate functional effect 
scores. These are reformatted and incorporated into 
the final VCF annotation file.
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 	• A sub-list of variants that have a more severe 
molecular consequence in the custom transcriptome 
are provided in tabular format.

A long-read sequencing transcriptome of stimulated 
peripheral blood mononuclear cells
We have generated long-read sequencing data on atypi-
cal, i.e. in vitro stimulated samples - provoking a strong 
expression response, to illustrate the use of the pipeline. 
We chose this dataset to exemplify less-studied tissues/
conditions because novel transcripts are more numer-
ous in these samples and SUsPECT is most likely to 
yield interesting results when the input transcriptome 
has many novel transcripts. Our custom transcriptome 
is based on long-read transcript sequences related to 

host-pathogen interactions and is derived from human 
peripheral blood mononuclear cells (PBMCs) exposed 
to four different classes of pathogens. We combined the 
transcript structures of all four immune stimuli and con-
trol samples for the reannotation. We identified a total 
of 80,297 unique transcripts, 37,434 of which were not 
present in the Ensembl/GENCODE or RefSeq reference 
transcriptomes. Relative abundances of novel transcripts 
were lower than of reference transcripts (Suppl. Figure 1). 
The custom transcriptomes resulted in prediction of 
34,565 unique novel ORFs passing CPAT’s coding capac-
ity threshold. The majority of transcripts had at least one 
ORF predicted (Suppl. Figure 2).

Fig. 1  Premise for the creation of SUsPECT. (A) Some pathogenic variants may be missed without actual information about all alternative transcripts 
expressed in a relevant sample. A variant in a particular genomic position may be incorrectly predicted to be non-deleterious. (B) A variant at the same 
genomic position may cause a different missense variant in different transcript structures due to varying open reading frames per transcript
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Reannotation of ClinVar variants
Variants may be predicted to have a more severe molecu-
lar consequence in novel (non-reference) transcripts, but 
the functional and ultimately clinical implications remain 
unclear. To demonstrate that SUsPECT can suggest new 
candidate pathogenic variants associated with clinical 
outcomes, we reannotated ClinVar variants. ClinVar con-
tains variants with clinical significance asserted by differ-
ent sources. We hypothesized that ClinVar variants that 
were annotated as pathogenic and not predicted to be 
deleterious with the reference transcript annotation, but 
predicted deleterious with a (relevant) sample transcrip-
tome, would support the utility of this pipeline.

We tested SUsPECT on a recent ClinVar [27] release 
(April 2022), excluding all variants that were annotated in 
ClinVar to be (probably) benign. We compared the pre-
dicted severity of the 776,866 variants using our custom 
transcript annotation versus the reference. After applying 
filters as described in the Methods section, 1,867 candi-
date variants remained. Of these variants, 145 were asso-
ciated with monogenic immune-related disorders (Suppl. 
Table  1), which is significantly more than expected 
by chance (odds ratio = 5.46, p = 1.51 × 10− 55, Fisher’s 
exact test). This could indicate that annotation with an 
immune-relevant transcriptome is better suited for the 
identification of variants with an impact on immune 
function than annotating with a reference transcriptome. 
The strongest argument for the utility of this pipeline can 
be made with variants that are curated in ClinVar to be 
pathogenic rather than those of uncertain significance. 
After excluding variants of unknown significance (VUS) 
from the full candidates list, there are 90 variants remain-
ing, of which 5 immune-related. These 90 variants had an 
enrichment of severity level 4 events (Suppl. Figure  3). 

An overview of the number of variants remaining after 
the different filter steps is given in Suppl. Figure 4.

Five immune-related variants curated in ClinVar to be 
pathogenic were reannotated from a low severity molec-
ular consequence in the Ensembl/GENCODE and Refseq 
transcript set to a moderate or high severity in our tran-
scriptome (Table  1). Two were missense variants in the 
custom annotation and three were start-loss/stop-gain. 
We visualized the variants in the context of the transcript 
structures/ORFs on the UCSC genome browser. Two 
examples can be seen in Fig.  3. The variant in IFNGR1 
(dbSNP identifier rs1236009877) is associated with 
IFNGR1 deficiency. It is curated by a single submitter in 
ClinVar as ‘likely pathogenic’ using clinical testing. Anno-
tation of the variant with reference transcripts results 
in a low severity (intronic variant) result, but results in 
a stop-gain variant (high severity) when annotating with 
our transcriptome. Our custom transcriptome con-
tained multiple novel transcripts with a retained intron 
at the site of the variant, but only 1 of these transcripts 
had a predicted ORF in this intron. The particular tran-
script affected by this stop gained variant was found in 
all samples sequenced with minimum 3 and up to 10 sup-
porting reads, indicating that it is unlikely an artifact. The 
predicted ORF extended 30 base pairs into the retained 
intron in the region of this variant. It was the most prob-
able ORF for that transcript with a coding probability by 
CPAT of 0.934.

In addition, the variant in STAT1 (dbSNP identifier 
rs387906763) was pathogenic according to the LitVar 
[28] literature mining tool and a clinical testing sub-
mission. It is a missense variant (Tgc/Cgc) in the refer-
ence annotation that is predicted by PolyPhen-2 to be 
benign. However, in one novel transcript it causes an 
M/T substitution, leading to loss of translation start site. 

Fig. 2  Reannotation with SUsPECT. (A) Defining “more severe”. The five categories of severity are modifier, low, moderate, damaging missense and high. 
We consider levels 3 and 4 to be deleterious, and thus potentially pathogenic. (B) The schematic of the pipeline
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Further inspection revealed that the transcript affected 
by the start-loss was expressed in C. albicans, S. aureus 
and PolyIC stimulated conditions by up to 6 supporting 
reads, but not in the control condition. STAT1 is previ-
ously described to be involved in the immune disease 
(chronic mucocutaneous candidiasis) linked to this vari-
ant by weakened response to C. albicans [29], which is a 
condition where this novel transcript was expressed. The 
ORF affected was the most probable ORF for that tran-
script and had a coding probability of almost 1 by CPAT.

Discussion
SUsPECT predicts the functional consequences of 
genetic variants in the context of novel open reading 
frames predicted from a user-defined transcriptome. It is 
important to underline that the pipeline does not return 
a statement on the pathogenicity of variants. The pipe-
line simply brings new candidates forward for further 
interpretation; the user may choose to cross-reference 
the clinical phenotypes of the patients with the functions 
of the genes that the patients’ variants are found to dis-
rupt. In our use case, ClinVar variants were used as they 
already have widely accepted annotations. However, 40% 
of ClinVar variants are of unknown significance, some 
of which are suspected to have some impact on clinical 
phenotype. Nearly 2% of these variants changed rating to 
be predicted as deleterious in our reannotation. As more 
people generate sample-specific transcriptomes to anno-
tate variant sets, an increasing number of VUS may be 
classified as benign or deleterious.

Alternative splicing is known to increase the proteomic 
diversity, but it is less well understood how the novel 
transcripts contribute to the diversity of proteoforms and 
their function, and how these are impacted by genetic 
variants [30–33]. One of the most commonly used vari-
ant annotators, Ensembl VEP, predicts molecular con-
sequences for variants in custom transcripts in standard 

formats, but lacks functional effect predictions for mis-
sense variants in those transcripts. Considering the well-
established importance of missense variants on a variety 
of diseases [34–36], this presents a hurdle in the reanno-
tation of variants with a custom transcriptome data.

We observed that many missense variants were pre-
dicted to have more severe effects when annotated 
based on custom transcriptomes. This may be due to 
the numerous new ORFs. Multiple ORFs passing CPAT’s 
‘human threshold’ were often predicted per novel 
sequence; for our 37,434 novel transcript sequences we 
predicted 34,565 novel ORFs. Some proteogenomics 
tools choose the ‘best’ ORF per sequence, but we have 
decided to keep all that passed the probability threshold. 
We do not filter out non-coding genes when predicting 
ORFs, because some of them may still have protein cod-
ing capacity. Missense results implicitly depend on the 
confidence of the ORF predictions that are produced 
by CPAT. New deleterious missense variants will not be 
relevant if the predicted protein is not produced in the 
cell. Coding ability of novel transcripts is an area of active 
research [37–39] and new techniques to identify cred-
ible ORFs may be added to the pipeline as they become 
available. In the meantime, it may be prudent to validate 
interesting candidates using targeted proteomics tech-
niques before establishing a genetic diagnosis.

SUsPECT is flexible; it takes transcriptomes from either 
short-read or long-read sequencing, PacBio or Oxford 
Nanopore, cDNA or direct RNA, as long as novel tran-
scripts exist in the dataset. SUsPECT may produce the 
most comprehensive results if the transcriptome dataset 
comes from patient cells or tissues that are affected by 
the condition under study. However, it is also possible to 
use existing or newly generated long-read transcriptomes 
from relevant cells or tissues of healthy individuals, like 
we have demonstrated in the current work. The modular-
ity of the tool means its components are also adaptable. 

Table 1  Five ClinVar pathogenic immune-related variants annotated as low severity in the reference transcript set but high severity in 
the custom transcriptome
Variant Location 

GRCh38
Allele Gene Conse-

quence 
reference

Conse-
quence 
custom

ClinVar condition ClinVar evidence

rs80358236 1:172665641 C FASLG In-frame 
deletion

Start lost 
& in-frame 
deletion

Autoimmune lymphop-
roliferative syndrome

No assertion criteria provided. Cita-
tion; PMID: 8787672. No functional 
evidence.

rs1573262398 2:97724319 T ZAP70 Benign 
missense

Missense 
(unknown)

Combined T and B cell 
immunodeficiency

Criteria provided, single submitter. 
No functional evidence, no citation

rs113994173 2:97733464 A ZAP70 Intron Missense 
(unknown)

Combined immunode-
ficiency due to ZAP70 
deficiency

No assertion criteria provided. 
Citation; PMID: 20301777. No func-
tional evidence.

rs387906763 2:190999647 G STAT1 Benign 
missense

Start lost Immunodeficiency 31 C Criteria provided, single submit-
ter. Citation; PMID: 21727188. No 
functional evidence.

rs1236009877 6:137203727 A IFNGR1 Intron Stop gained Immunodeficiency 27 A Criteria provided, single submitter. 
No functional evidence, no citation.
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Fig. 3  Two examples of ClinVar pathogenic variants being reannotated. Both variants were considered low severity variants when using hg38 refer-
ence transcriptome to annotate. (A) IFNGR1 whole view and close-up of region around the variant. Variant causes a stop-gain effect (K>*) in the custom 
transcript novelT001005410. (B) STAT1 whole view and close-up of region around variant. Variant causes a start loss (M > T) in the custom transcript 
novelT001115628
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The module that reads input can be updated as new 
(long-read) transcript analysis tools become available, 
which is useful considering new tools are actively being 
developed [40]. Its modularity facilitates incorporation of 
other functional effect prediction tools [41–44] than the 
currently implemented PolyPhen-2 and SIFT software. 
The current implementation and future extensions of 
SUsPECT may thus contribute to increase the diagnos-
tic yield for disorders that are associated with transcripts 
expressed in specific tissues or under specific conditions.

Conclusions
The full complexity of the human transcriptome is not 
represented in the current reference annotation. Ana-
lysing variants using alternative transcripts may aid in 
explaining missed genetic diagnoses, especially when 
disease or tissue-specific transcripts are used. SUsPECT 
puts genetic variants in the context of alternative tran-
script expression and can contribute to an increase in 
diagnostic yield. We used missense variants with ClinVar 
assertions of pathogenicity to demonstrate the potential 
of this methodology and have demonstrated a higher 
yield of missense variants are predicted to be deleterious. 
The enrichment of immune-related variants after rean-
notation suggests there is biological significance to these 
findings. Thus, long-read transcriptome data relevant to 
the disease of interest may not only improve our under-
standing of the ever-growing number of genetic variants 
that are identified in human disease context, but also aid 
in diagnoses for rare and/or unsolved disease [45, 46].

Methods
Severity classification
SUsPECT classifies variants according to their expected 
impact and their molecular consequence. Impact scores 
used by SUsPECT are based on the predicted molecular 
consequence groupings in Ensembl VEP (Fig.  2A) with 
higher numbers corresponding to more severe conse-
quences: zero being equivalent to “modifier”, one to “low” 
severity, two to “moderate” severity, and four to “high” 
severity. SUsPECT uses Polyphen-2 predictions to distin-
guish between (likely) benign (score: 2) and (likely) del-
eterious (score: 3) missense variants.

Additional filters for output variant list
SUSPeCT initial output is a list of variants with higher 
severity scores based on the custom transcriptome anno-
tation compared to the reference annotation (homo_
sapiens_merged cache version 104 which includes both 
Refseq and Ensembl/GENCODE transcripts). The vari-
ants that remain in the final list of “increasing severity” 
are filtered to retain only variants that are potentially 
interesting for establishing a disease diagnosis. Thus, the 
pipeline removes variants that are already considered 

deleterious based on the reference annotation, i.e. vari-
ants that already have scores of 3 or 4. An additional 
criterion was applied for missense variants. Missense 
variants for which the same amino acid substitution 
found in the custom and reference annotation are also 
removed. To reduce computational time further, mis-
sense variant alleles in novel sequences that are common 
(AF > 0.01) are removed. These filters are integrated in 
SUsPECT. For the use case described in this manuscript, 
missense variants present in the custom annotation that 
are predicted by PolyPhen-2 to be “benign” in both cus-
tom and reference annotation are removed. In our Clin-
Var example, we define “immune-related” variants as 
those variants that contain the string “immun” some-
where in the clinical description.

Software details
A pipeline was built to streamline the process of variant 
prioritization using custom transcript annotation. The 
pipeline is written in Nextflow [47], using Ensembl VEP 
as the variant annotator. Each step of the pipeline runs 
Singularity/Docker containers pulled automatically from 
Docker Hub. The input of the pipeline is the sample-
specific/non-reference long-read transcriptome in GTF 
format, variants in a VCF file, and a FASTA file of the 
genome sequence. It is designed for use with output from 
TALON [48].

First, the GTF file is converted to BED format with 
AGAT v0.9.0 [49]. ORFs for any novel sequences are pre-
dicted based on the BED annotation and FASTA genome 
reference using CPAT v3.0.4. CPAT output is converted 
to BED format with the biopj python package and fil-
tered for a coding probability of at least 0.364, which is 
the cutoff for human ORFs recommended by the authors 
of CPAT [21]. Conversion from CPAT CDS to protein 
FASTA is performed with EMBOSS transeq v6.5.7. This 
ORF BED file is combined with the BED file of transcripts 
to make a complete BED12 file with ORF/transcript 
information. Then, we convert this BED12 file to GTF 
with UCSC’s bedToGenePred and genePredToGtf. The 
resulting GTF file is used for a preliminary annotation 
of the variants with Ensembl VEP to fetch variants pre-
dicted as missense in the custom transcript sequences. 
Next, variant filtering was performed as outlined in the 
previous section with the filter_vep utility distributed 
with Ensembl VEP as well as bedtools v2.30.0. The func-
tional effect predictions from Polyphen-2 and SIFT are 
reformatted and one final run of Ensembl VEP (with the 
custom plugin enabled) integrates these predictions to 
the VCF. The output is the annotated VCF, as well as a 
VCF with the subset of variants predicted to have higher 
severity.
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Ex vivo PBMC experiments
Venous blood was drawn from a healthy control [50] 
and collected in 10mL EDTA tubes. Isolation of periph-
eral blood mononuclear cells (PBMCs) was conducted as 
described elsewhere [51]. In brief, PBMCs were obtained 
from blood by differential density centrifugation over 
Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) 
after 1:1 dilution in PBS. Cells were washed twice in 
saline and re-suspended in cell culture medium (Roswell 
Park Memorial Institute (RPMI) 1640, Gibco) supple-
mented with gentamicin, 50 mg/mL; L-glutamine, 2 mM; 
and pyruvate, 1 mM. Cells were counted using a par-
ticle counter (Beckmann Coulter, Woerden, The Neth-
erlands) after which, the concentration was adjusted to 
5 × 106/mL. Ex vivo PBMC stimulations were performed 
with 5 × 105 cells/well in round-bottom 96-well plates 
(Greiner Bio-One, Kremsmünster, Austria) for 24  h at 
37  °C and 5% carbon dioxide. Cells were treated with 
lipopolysaccharide (E. Coli LPS, 10 ng/mL), Staphy-
lococcus aureus (ATCC25923 heat-killed, 1 × 106/mL), 
TLR3 ligand Poly I:C (10 µg/mL), Candida albicans yeast 
(UC820 heat-killed, 1 × 106/mL), or left untreated in regu-
lar RPMI medium as normal control. After the incuba-
tion period of 24 h and centrifugation, supernatants were 
collected and stored in 350uL RNeasy Lysis Buffer (Qia-
gen, RNeasy Mini Kit, Cat nr. 74,104) at − 80 °C until fur-
ther processing.

RNA isolation and library preparation
RNA was isolated from the samples using the RNeasy 
RNA isolation kit (Qiagen) according to the protocol 
supplied by the manufacturer. The RNA integrity of the 
isolated RNA was examined using the TapeStation HS 
D1000 (Agilent), and was found to be ≥ 7.5 for all sam-
ples. Accurate determination of the RNA concentration 
was performed using the Qubit (ThermoFisher). Librar-
ies were generated using the Iso-Seq-Express-Template-
Preparation protocol according to the manufacturer’s 
recommendations (PacBio, Menlo Parc, CA, USA). We 
followed the recommendation for 2-2.5  kb libraries, 
using the 2.0 binding kit, on-plate loading concentra-
tions of final IsoSeq libraries was 90pM (C. albicans, S. 
aureus, PolyIC, RPMI) and 100pM (LPS) respectively. 
We used a 30  h movie time for sequencing. The five 
samples were analyzed using the isoseq3 v3.4.0 pipeline. 
Each sample underwent the same analysis procedure. 
First CCS1 v6.3.0 was run with min accuracy set to 0.9. 
Isoseq lima v2.5.0 was run in isoseq mode as recom-
mended. Isoseq refine was run with ‘--require-polya’. 
The output of isoseq refine was used as input for Tran-
scriptClean v2.0.3. TranscriptClean was run with ‘--pri-
maryOnly’ and ‘--canonOnly’ to only map unique reads 
and remove artifactual non-canonical junctions of each 
of the samples. The full TALON pipeline was then run 

with all five samples together using GRCh38 (https://
www.encodeproject.org/files/GRCh38_no_alt_analysis_
set_GCA_000001405.15/@@download/GRCh38_no_alt_
analysis_set_GCA_000001405.15.fasta.gz). Assignment 
of reads to transcripts was only allowed with at least 
95% coverage and accuracy. A minimum of 5 reads was 
required to keep alternative transcripts in the final tran-
script set (default of talon_filter_transcripts). GENCODE 
annotation (v39) was used by TALON to determine nov-
elty of transcripts in the sample.
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