
Bayesian estimation of gene constraint from an evolutionary
model with gene features

Tony Zeng1,∗,†, Jeffrey P. Spence1,∗,†, Hakhamanesh Mostafavi1, Jonathan K. Pritchard1,2,†

1 Department of Genetics, Stanford University, Stanford CA
2 Department of Biology, Stanford University, Stanford CA

∗ Equal contribution
† Correspondence to:

tkzeng@stanford.edu, jspence@stanford.edu, pritch@stanford.edu

April 10, 2024

Abstract

Measures of selective constraint on genes have been used for many applications including
clinical interpretation of rare coding variants, disease gene discovery, and studies of genome
evolution. However, widely-used metrics are severely underpowered at detecting constraint
for the shortest ∼25% of genes, potentially causing important pathogenic mutations to be over-
looked. We developed a framework combining a population genetics model with machine
learning on gene features to enable accurate inference of an interpretable constraint metric,
shet. Our estimates outperform existing metrics for prioritizing genes important for cell essen-
tiality, human disease, and other phenotypes, especially for short genes. Our new estimates
of selective constraint should have wide utility for characterizing genes relevant to human
disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can
improve estimation of many gene-level properties, such as rare variant burden or gene expres-
sion differences.
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1 Introduction

Identifying the genes important for disease and fitness is a central goal in human genetics. One
particularly useful measure of importance is how much natural selection constrains a gene [1–4].
Constraint has been used to prioritize de novo and rare variants for clinical followup [5, 6], predict
the toxicity of drugs [7], link GWAS hits to genes [8], and characterize transcriptional regulation
[9, 10], among many other applications.

To estimate the amount of constraint on a gene, several metrics have been developed using
loss-of-function variants (LOFs), such as protein truncating or splice disrupting variants. If a gene
is important, then natural selection will act to remove LOFs from the population. Several metrics
of gene importance have been developed based on this intuition to take advantage of large exome
sequencing studies.

In one line of research, the number of observed unique LOFs is compared to the expected
number under a model of no selective constraint. This approach has led to the widely-used metrics
pLI [11] and LOEUF [12].

While pLI and LOEUF have proved useful for identifying genes intolerant to LOF mutations,
they have important limitations [3]. First, they are uninterpretable in that they are only loosely
related to the fitness consequences of LOFs. Their relationship with natural selection depends on
the study’s sample size and other technical factors [3]. Second, they are not based on an explicit
population genetics model so it is impossible to compare a given value of pLI or LOEUF to the
strength of selection estimated for variants other than LOFs [3, 4].

Another line of research has solved these issues of interpretability by estimating the fitness
reduction for heterozygous carriers of a LOF in any given gene [1,2,4]. Throughout, we will adopt
the notation of Cassa and colleagues and refer to this reduction in fitness as shet [1, 2], although
the same population genetic quantity has been referred to as hs [4, 13]. In [1], a deterministic
approximation was used to estimate shet, which was relaxed to incorporate the effects of genetic
drift in [2]. This model was subsequently extended by Agarwal and colleagues to include the X
chromosome and applied to a larger dataset, with a focus on the interpretability of shet [4].

A major issue for most previous methods is that thousands of genes have few expected unique
LOFs under neutrality, as they have short protein-coding sequences. For example, when LOEUF
was introduced [12], it was stated that the method is underpowered for genes with fewer than 10
expected unique LOFs, corresponding to ∼25% of genes. This problem is not limited to LOEUF,
however, and all of these methods are severely underpowered to detect selection for this ∼25% of
genes. Throughout, we will say that genes have “few expected LOFs” if they fall in this bottom
quartile of genes.

Here, we present an approach that can accurately estimate shet even for genes with few ex-
pected LOFs, while maintaining the interpretability of previous population-genetics based esti-
mates [1, 2, 4].

Our approach has two main technical innovations. First, we use a novel population genet-
ics model of LOF allele frequencies. Previous methods have either only modeled the number of
unique LOFs, throwing away frequency information [11, 12, 14], or considered the sum of LOF
frequencies across the gene [1, 2, 4], an approach that is not robust to what we will refer to as mis-
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annotated LOFs. In particular, some variants that have been annotated as LOFs do not actually
affect the function of a gene product. For example, a splice-disrupting variant may be rescued
by a nearby cryptic splice site, or an early stop codon may be in an exon that is absent in phys-
iologically relevant isoforms. In contrast to previous approaches, we model the frequencies of
individual LOF variants, allowing us to not only use the information in such frequencies but also
to model the possibility that a LOF has been misannotated and hence is expected to evolve neu-
trally. Our approach uses new computational machinery, described in a companion paper [15],
to accurately obtain the likelihood of observing a LOF at a given frequency without resorting to
simulation [2, 4] or deterministic approximations [1].

Second, our approach uses thousands of gene features, including gene expression patterns,
protein structure information, and evolutionary constraint, to improve estimates for genes with
few expected LOFs. By using these features, we can share information across similar genes. In-
tuitively, this allows us to improve estimates for genes with few expected LOFs by leveraging
information from genes with similar features that do have sufficient LOF data.

Adopting a similar approach, a recent paper [14] used gene features in a deep learning model
to improve estimation of constraint for genes with few expected LOFs, but did not use an explicit
population genetics model, resulting in the same issues with interpretability faced by pLI and
LOEUF.

We applied our method to a large exome sequencing cohort [12]. Our estimates of shet are
substantially more predictive than previous metrics at prioritizing essential and disease-associated
genes. We also interrogated the relationship between gene features and natural selection, finding
that evolutionary conservation, protein structure, and expression patterns are more predictive of
shet than co-expression and protein-protein interaction networks. Expression patterns in the brain
and expression patterns during development are particularly predictive of shet. Finally, we use
shet to highlight differences in selection on different categories of genes and consider shet in the
context of selection on variants beyond LOFs.

Our approach, GeneBayes, is extremely flexible and can be applied to improve estimation of
numerous gene properties beyond shet. Our implementation is available at https://github.com/
tkzeng/GeneBayes.

2 Results

2.1 Model Overview

Using LOF data to infer gene constraint is challenging for genes with few expected LOFs, with
metrics like LOEUF considering almost all such genes to be unconstrained (Figures 1A,B). We
hypothesized that it would be possible to improve estimation using auxiliary information that
may be predictive of LOF constraint, including gene expression patterns across tissues, protein
structure, and evolutionary conservation. Intuitively, genes with similar features should have
similar levels of constraint. By pooling information across groups of similar genes, constraint
estimated for genes with sufficient LOF data may help improve estimation for underpowered
genes.
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Figure 1: Limitations of LOEUF and schematic for inferring shet using GeneBayes. A) Stacked histogram of
the expected number of unique LOFs per gene, where the distribution for genes considered unconstrained (respectively
constrained) by LOEUF are colored in red (respectively blue). Genes with LOEUF < 0.35 are considered constrained,
while all other genes are unconstrained (Methods). The plot is truncated on the x-axis at 100 expected LOFs. B)
Scatterplot of the observed against the expected number of unique LOFs per gene. The dashed line denotes observed =
expected. Each point is a gene, colored by its LOEUF score; genes with LOEUF > 1 are colored as LOEUF = 1. C)
Schematic for estimating shet using GeneBayes, highlighting the major components of the model: prior (blue boxes)
and likelihood (red boxes). Parameters of the prior are learned by maximizing the likelihood (red arrow). Combining
the prior and likelihood produces posteriors over shet (purple box). See Methods for details.
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However, while the frequencies of LOFs can be related to shet through models from population
genetics [1, 2, 4], we lack an understanding of how other gene features relate to constraint a priori.

To address this problem, we developed a flexible empirical Bayes framework, GeneBayes, that
learns the relationship between gene features and shet (Figure 1C, Methods and Supplementary
Note A). Our model consists of two main components. First, we model the prior on shet for each
gene as a function of its gene features (Figure 1C, left). Specifically, we train gradient-boosted
trees using a modified version of NGBoost [16] to predict the parameters of each gene’s prior
distribution from its features. Our gene features include gene expression levels, Gene Ontology
terms, conservation across species, neural network embeddings of protein sequences, gene reg-
ulatory features, co-expression and protein-protein interaction features, sub-cellular localization,
and intolerance to missense mutations (see Methods and Supplementary Note C for a full list).

Second, we use a model from population genetics to relate shet to the observed LOF data (Fig-
ure 1C, right). This model allows us to fit the gradient-boosted trees for the prior by maximizing
the likelihood of the LOF data. Specifically, we use the discrete-time Wright Fisher model with
genic selection, a standard model in population genetics that accounts for mutation and genetic
drift [13,17]. In our model, shet is the reduction in fitness per copy of a LOF, and we infer shet while
keeping the mutation rates and demography fixed to values taken from the literature (Supplemen-
tary Note B). In particular, we assume that the average number of offspring an individual has is
proportional to 1, 1− shet, or 1− 2shet if they carry zero, one, or two copies of the LOF respectively,
with these fitnesses lower bounded at zero. As such, if shet is large, then individuals carrying a
LOF allele will, on average, have fewer offspring either due to reduced viability or reduced fertil-
ity. Likelihoods are computed using new methods described in a companion paper [15].

Previous methods use either the number of unique LOFs or the sum of the frequencies of all
LOFs in a gene, but we model the frequency of each individual LOF variant. We used LOF fre-
quencies from the gnomAD consortium (v2), which consists of exome sequences from ∼125,000
individuals for 19,071 protein-coding genes.

Combining these two components—the learned priors and the likelihood of the LOF data— we
obtained posterior distributions over shet for every gene. Throughout, we use the posterior mean
value of shet for each gene as a point estimate. While shet is a quantitative measure of constraint,
in Section 2.5 we provide qualitative descriptions of different ranges of shet to aid practitioners in
interpreting shet. See Methods for more details and Supplementary Table 2 for estimates of shet.

2.2 Population genetics model and gene features both affect the estimation of shet

First, we explored how LOF frequency and mutation rate relate to shet in our population genet-
ics model (Figure 2A). Invariant sites with high mutation rates are indicative of strong selection
(shet > 10−2), consistent with [18], while invariant sites with low mutation rates are consistent
with essentially any value of shet for the demographic model considered here. Regardless of mu-
tation rate, singletons are consistent with most values of shet but can rule out extremely strong
selection, and variants observed at a frequency of >10% rule out even moderately strong selection
(shet > 10−3).

To assess how informative gene features are about shet, we trained our model on a subset
of genes and evaluated the model on held-out genes (Figure 2B, Methods). We computed the
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Figure 2: Factors that contribute to our estimates of shet. A) Likelihood curves for different allele frequencies
( f ) and mutation rates. B) Scatterplot of shet estimated from LOF data (y-axis; posterior mean from a model without
features) against the prior’s predictions of shet (x-axis; mean of learned prior). Dotted line denotes y = x. Each point
is a gene, colored by the expected number of LOFs. C) Comparison of posterior distributions of shet (95% Credible
Intervals) from a model with (blue lines) and without (orange lines) gene features. Genes are ordered by their posterior
mean in the model with gene features. D) Top: scatterplot of LOEUF (y-axis) and our shet estimates (x-axis; posterior
mean). Each point is a gene, colored by the expected number of LOFs. Bottom: scatterplot of shet estimates from [4]
(y-axis; posterior mode) and our shet estimates (x-axis; posterior mean). Numbered points refer to genes in panels E
and F. E) RTP4 and NDP are two example genes where the gene features substantially affect the posterior. We plot
their posterior distributions (blue) and likelihoods (orange; rescaled so that the area under the curve = 1). F) AARD
and TWIST1 are two example genes with the same LOEUF but different shet. Posteriors and likelihoods are plotted as
in panel E.
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Spearman correlation between shet estimates from the prior and shet estimated from the LOF data
only. The correlation is high and comparable between train and test sets (Spearman ρ = 0.80 and
0.77 respectively), indicating the gene features alone are highly predictive of shet and that this is
not a consequence of overfitting.

To further characterize the impact of features on our estimates of shet, we removed all features
from our model and recalculated posterior distributions (Figure 2C). For most genes, posteriors
are substantially more concentrated when using gene features.

Some of our features are evolutionary measures of constraint, such as conservation among
mammals, or the degree of constraint estimated from missense variants [19]. Given that these fea-
tures may be correlated with LOF variation in a way independent of selection (e.g., local variation
in mutation rate that is not well-captured by trinucleotide context), we wanted to make sure that
these features were not majorly biasing our results. As such, we trained a version of our model
that excluded these features, finding the results to be extremely concordant (Supplementary Fig-
ure 8A, Supplementary Note D).

We also made sure that our results were insensitive to the genetic ancestries of the individuals
used when computing LOF frequencies by retraining our model using different subsets of the data
(Supplementary Figure 6, Supplementary Note B).

Next, we compared our estimates of shet using GeneBayes to LOEUF and to selection coeffi-
cients estimated by [4] (Figure 2D). To facilitate comparison, we use the posterior modes of shet
reported in [4] as point estimates, but we note that [4] emphasizes the value of using full posterior
distributions. While the correlation between our estimates is high for genes with sufficient LOFs
(for genes with more LOFs than the median, Spearman ρ with LOEUF = 0.94; ρ with shet from [4]
= 0.87), it is lower for genes with few expected LOFs (for genes with fewer LOFs than the median,
Spearman ρ with LOEUF = 0.71; ρ with shet from [4] = 0.69).

We further explored the reduced correlations for genes with few expected LOFs. For example,
RTP4 and NDP have few expected LOFs, and their likelihoods are consistent with any level of
constraint (Figure 2E). Due to the high degree of uncertainty, LOEUF considers both genes to be
unconstrained, while the shet point estimates from [4] err in the other direction and consider both
genes to be constrained (Figure 2D). This uncertainty arises from use of the LOF data alone, and
is captured by the wide posterior distributions for the shet estimates from [4]. In contrast, by using
gene features, our posterior distributions of shet indicate that NDP is strongly constrained but
RTP4 is not, consistent with the observation that hemizygous LOFs in NDP cause Norrie Disease,
where degeneration of the neuroretina causes early childhood blindness [20].

In contrast to estimates of shet, LOEUF further ignores information about allele frequencies by
considering only the number of unique LOFs, resulting in a loss of information. For example,
AARD and TWIST1 have almost the same numbers of observed and expected unique LOFs, so
LOEUF is similar for both (LOEUF = 1.1 and 1.06 respectively). However, while TWIST1’s ob-
served LOF is present in only 1 of 246,192 alleles, AARD’s is ∼40× more frequent. Consequently,
the likelihood rules out the possibility of strong constraint at AARD (Figure 2F), causing the two
genes to differ in their estimated selection coefficients (Figure 2D).

In contrast, TWIST1 has a posterior mean shet of 0.11 when using gene features, indicating very
strong selection. Consistent with this, TWIST1 is a transcription factor critical for specification of
the cranial mesoderm, and heterozygous LOFs in the gene are associated with Saethre-Chotzen
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syndrome, a disorder characterized by congenital skull and limb abnormalities [21, 22].

As expected, genes with higher numbers of expected LOFs generally have greater concordance
between their likelihoods and posterior distributions. We provide additional examples of genes
with varying numbers of expected LOFs in Supplementary Figure 1.

Gene shet LOEUF Obs. Exp. Condition and reference

RPS15A* 0.68 0.56 0 5.4
Diamond-Blackfan anemia: Red blood cell aplasia resulting in growth,
craniofacial, and other congenital defects [23]

DCX 0.28 0.62 3 12.6
Lissencephaly: Migrational arrest of neurons resulting in mental re-
tardation and seizures [24]

UBE2A 0.28 0.54 0 5.6
Intellectual disorder, Nascimento type: Intellectual disability character-
ized by dysmorphic features [25]

PQBP1 0.28 0.50 1 9.5
Renpenning syndrome: Mental retardation with short stature and a
small head size [26]

NAA10 0.28 0.52 1 9.1
Syndromic microphthalmia: Missing or abnormally small eyes from
birth [27]

SOX3 0.22 0.86 1 5.5
Intellectual disorder and isolated growth hormone deficiency: Impaired
fetal growth and intellectual development [28]

NDP 0.20 0.88 0 3.4
Norrie disease: Retinal dystrophy resulting in early childhood blind-
ness, mental disorders, and deafness [20]

EIF5A 0.19 0.54 1 8.7
Faundes-Banka syndrome: Developmental delay, microcephaly, and fa-
cial dysmorphisms [29]

CDKN1C 0.19 0.53 0 5.7
Beckwith-Wiedemann syndrome: Pediatric overgrowth with predispo-
sition to tumor development [30]

BCAP31 0.15 0.65 2 9.7
Deafness, dystonia, and cerebral hypomyelination Motor and intellectual
disabilities, with deafness and involuntary muscle contraction [31]

SOX2 0.14 0.57 1 8.3
Syndromic microphthalmia: Missing or abnormally small eyes from
birth [32]

SH2D1A 0.14 0.96 1 4.9
Lymphoproliferative syndrome: Immunodeficiency characterized by se-
vere immune dysregulation after viral infection [33]

GATA4 0.12 0.53 3 14.7
Atrial septal defect: Congenital heart defect resulting in a hole be-
tween the atria [34]

TWIST1 0.11 1.1 1 4.5
Saethre-Chotzen syndrome: Craniosynostosis, facial dysmorphism,
and hand and foot abnormalities [21] [22]

TAFAZZIN 0.11 0.49 2 13.0
Barth syndrome: Disorder in lipid metabolism characterized by heart,
muscle, immune, and growth defects [35]

Table 1: OMIM genes constrained by shet but not by LOEUF. Mutations that disrupt the functions of these
genes are associated with Mendelian diseases in the OMIM database [36]. Genes are ordered by shet (posterior mean).
Obs. and Exp. are the unique number of observed and expected LOFs respectively. *RPS15A is associated with
Diamond-Blackfan anemia along with 12 other genes considered constrained by shet but not by LOEUF (Supplemen-
tary Table 1), with 9 of the 12 genes falling outside the most constrained quartile by LOEUF. These genes were chosen
from 301 genes that had shet > 0.1 but were not in the most constrained LOEUF quartile. This includes 71 of 3,045
genes with pathogenic ClinVar variants that fall outside the most constrained LOEUF quartile.

Besides NDP and TWIST1, many genes are considered constrained by shet but not by LOEUF,
which is designed to be highly conservative. In Table 1, we list 15 examples in the top ∼15% most
constrained genes by shet but in the ∼75% least constrained genes by LOEUF, selected based on
their clinical significance and prominence in the literature (Methods). One notable example is a
set of 18 ribosomal protein genes for which heterozygous disruption causes Diamond-Blackfan
anemia—a rare genetic disorder characterized by an inability to produce red blood cells [23] (Sup-
plementary Table 1). Sixteen of the genes are considered strongly constrained by shet. In contrast,
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only 6 are considered constrained by LOEUF (LOEUF < 0.35), as many of these genes have few
expected unique LOFs. Yet, collectively, these 18 proteins have ∼139 expected unique LOFs but
only 3 observed. If a single gene had this combination of observed and expected unique LOFs, it
would have a LOEUF score of 0.06, consistent with extreme selective constraint. This highlights
that LOEUF conflates lack of statistical power with a presumed lack of constraint.

2.3 Utility of shet in prioritizing phenotypically important genes

To assess the accuracy of our shet estimates and evaluate their ability to prioritize genes, we first
used these estimates to classify genes essential for survival of human cells in vitro. Genome-wide
CRISPR growth screens have measured the effects of gene knockouts on cell survival or prolifera-
tion, quantifying the in vitro importance of each gene for fitness [37,38]. We find that our estimates
of shet outperform other constraint metrics at classifying essential genes (Figure 3A, left; bootstrap
p < 7 × 10−7 for pairwise differences in AUPRC between our estimates and other metrics). The
difference is largest for genes with few expected LOFs, where shet (GeneBayes) retains similar pre-
cision and recall while other metrics lose performance (Figure 3A, right). Our performance gains
remain even when comparing to LOEUF computed using gnomAD v4, which contains roughly
6× as many individuals (Supplementary Figure 7A), highlighting that sharing information across
genes is more important than increasing sample sizes, a point we made in [15]. In addition, our
estimates of shet outperform other metrics at classifying nonessential genes (Supplementary Fig-
ure 7B).

DeepLOF [14], the only other method that combines information from both LOF data and gene
features, outperforms methods that rely exclusively on LOF data, highlighting the importance of
using auxiliary information. Yet, DeepLOF uses only the number of unique LOFs, discarding
frequency information. As a result, it is outperformed by our method, indicating that careful
modeling of LOF frequencies also contributes to the performance of our approach.

Next, we performed further comparisons of our estimates of shet against LOEUF, as LOEUF
and its predecessor pLI are extremely popular metrics of constraint. To evaluate the ability of
these methods to prioritize disease genes, we first used shet and LOEUF to classify curated devel-
opmental disorder genes [39]. Here, shet outperforms LOEUF (Figure 3B; bootstrap p = 5 × 10−20

for the difference in AUPRC) and performs favorably compared to additional constraint metrics
(Supplementary Figure 7C).

We find that our estimates of shet are not strongly dependent on any individually important
features (Supplementary Figure 8B,C). In addition, shet outperforms LOEUF even for genes with
sufficient numbers of expected LOFs, although the measures become more concordant (Supple-
mentary Figure 9).

Next, we considered a broader range of phenotypic abnormalities annotated in the Human
Phenotype Ontology (HPO) [40]. For each HPO term, we calculated the enrichment of the 10%
most constrained genes and depletion of the 10% least constrained genes, ranked using shet or
LOEUF. Genes considered constrained by shet are 2.0-fold enriched in HPO terms, compared to
1.4-fold enrichment for genes considered constrained by LOEUF (Figure 3C, left). Additionally,
genes considered unconstrained by shet are 3.2-fold depleted in HPO terms, compared to 2.1-fold
depletion for genes considered constrained by LOEUF (Figure 3C, right).
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Figure 3: GeneBayes estimates of shet perform well at identifying constrained and unconstrained genes.
A) Precision-recall curves comparing the performance of shet against other methods in classifying essential genes (left:
all genes, right: quartile of genes with the fewest expected unique LOFs). B) Precision-recall curves comparing the
performance of shet against LOEUF in classifying developmental disorder genes. C) Scatterplots showing the enrich-
ment (respectively depletion) of the top 10% most (respectively least) constrained genes in HPO terms, with genes
ranked by shet (y-axis) or LOEUF (x-axis). D) Enrichment of de novo mutations in patients with developmental
disorders, calculated as the observed number of mutations over the expected number under a null mutational model.
We plot the enrichment of synonymous, missense, splice, and nonsense variants in the 10% most constrained genes,
ranked by shet (blue) or LOEUF (orange); or enrichment in the remaining genes, ranked by shet (green) or LOEUF
(brown). Bars represent 95% confidence intervals. E) Left: LOESS curve showing the relationship between constraint
(gene rank, x-axis) and absolute log fold change in expression between chimp and human cortical cells (y-axis). Genes
are ranked by shet (blue) or LOEUF (orange). Right: LOESS curve showing the relationship between constraint (gene
rank, x-axis) and gene expression variation in GTEx samples after controlling for mean expression levels.

X-linked inheritance is one of the terms with the largest enrichment of constrained genes (6.7-
fold enrichment for shet and 4.1-fold enrichment for LOEUF). The ability of shet to prioritize X-
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linked genes may prove particularly useful, as many disorders are enriched for X-chromosome
genes [41] and the selection on losing a single copy of such genes is stronger on average [4].
Yet, population-scale sequencing alone has less power to detect a given level of constraint on
X-chromosome genes, as the number of X chromosomes in a cohort with males is smaller than the
number of autosomes.

We next assessed if de novo disease-associated variants are enriched in constrained genes, simi-
lar to the analyses in [4,5]. To this end, we used data from 31,058 trios to calculate for each gene the
enrichment of de novo synonymous, missense, and LOF mutations in offspring with DDs relative
to unaffected parents [5]. We found that for missense and LOF variants, enrichment is higher for
genes considered constrained by shet, with the highest enrichment observed for LOF variants (Fig-
ure 3D; enrichment of shet and LOEUF respectively, for missense mutations = 2.1, 1.9; splice site
mutations = 5.9, 4.6; and nonsense mutations = 8.9, 6.7). Synonymous variants are not enriched in
genes constrained by either method. Consistent with previous findings, the excess burden of de
novo variants is predominantly in highly constrained genes (Figure 3D). Notably, this difference in
enrichment remains after removing known DD genes (Supplementary Figure 7D, right). Together,
these results indicate that shet not only improves identification of known disease genes but may
also facilitate discovery of novel DD genes [5].

In addition to rare de novo disease-associated variants, we find that common variant heritability
as computed using stratified LD score regression is enriched in constrained genes (Supplementary
Figure 7E), consistent with the findings from [5]. For 380 of 438 highly-heritable traits (87%),
heritability is more highly enriched in the decile of genes most highly constrained by shet than
the decile most highly constrained by LOEUF (Supplementary Figure 7E, Methods), with a mean
enrichment across traits of 1.5-fold.

Finally, constraint can also be related to longer-term evolutionary processes that give rise to the
variation among individuals or species, including variation in gene expression levels. We expect
constrained genes to maintain expression levels closer to their optimal values across evolutionary
time scales, as each LOF can be thought of as a ∼50% reduction in expression. Consistent with
this expectation, we find that less constrained genes have larger absolute differences in expres-
sion between human and chimpanzee in cortical cells [42], with a stronger correlation for shet than
for LOEUF (Figure 3E). This pattern should also hold when considering the variation in expres-
sion within a species. We quantified variance in gene expression levels estimated from RNA-seq
samples in GTEx [43] after controlling for mean expression levels, and found that the variance de-
creases with increased constraint, again with a stronger correlation for shet (Figure 3E; Methods).

2.4 Interpreting the learned relationship between gene features and shet

Our framework allows us to learn the relationship between gene features and shet in a statistically
principled way. In particular, by fitting a model with all of the features jointly, we can account
for dependencies between the features. To interrogate the relationship between features and shet,
we divided our gene features into 10 distinct categories (Figure 4A) and trained a separate model
per category using only the features in that category. We found that missense constraint, gene
expression patterns, evolutionary conservation, and protein embeddings are the most informative
categories.
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Figure 4: Breakdown of the gene features important for shet prediction. A) Ordered from highest to lowest,
plot of the mean per-gene log likelihood over the test genes for models separately trained on categories of features. “All”
and “Baseline” include all and no features respectively. B) Plot of the mean per-gene log likelihood, as in panel A,
for models separately trained on expression features grouped by tissue, cell type, or developmental stage. C) Ordered
from highest to lowest, feature scores for individual gene ontology (GO) terms. Inset: lineplot showing the change
in predicted shet for a feature as the feature value is varied. D) Lineplot as in panel C (inset) for protein-protein
interaction (PPI) and co-expression features, E) enhancer and promoter features, and F) gene structure features.

Next, we further divided the expression features into 24 subgroups, representing tissues, cell
types, and developmental stage (Table 6). Expression patterns in the brain, digestive system,
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and during development are the most predictive of constraint (Figure 4B). Notably, a study that
matched Mendelian disorders to tissues through literature review found that a sizable plurality
affect the brain [44]. Meanwhile, most of the top digestive expression features are also related to
development (e.g., expression component loadings in a fetal digestive dataset [45]). The impor-
tance of developmental features is consistent with the severity of many developmental disorders
and the expectation that selection is stronger on early-onset phenotypes [46], supported by the
findings of [4].

To quantify the relationship between constraint and individual features, we changed the value
of one feature at a time and used the variation in predicted shet over the feature values as the score
for each feature (Methods).

We first explored some of the individual Gene Ontology (GO) terms most predictive of con-
straint (Figure 4C). Consistent with the top expression features, the top GO features highlight
developmental and brain-specific processes as important for selection.

Next, we analyzed network (Figure 4D), gene regulatory (Figure 4E), and gene structure (Fig-
ure 4F) features. Protein-protein interaction (PPI) and gene co-expression networks have high-
lighted “hub” genes involved in numerous cellular processes [47,48], while genes linked to GWAS
variants have more complex enhancer landscapes [49]. Consistent with these studies, we find
that connectedness in PPI and co-expression networks as well as enhancer and promoter count
are positively associated with constraint (Figure 4D,E). In addition, gene structure affects gene
function—for example, UTR length and GC content affect RNA stability, translation, and localiza-
tion [50,51]—and likewise, several gene structure features are predictive of constraint (Figure 4F),
consistent with recent work on UTRs [52]. Our results indicate that more complex genes—genes
that are involved in more regulatory connections, that are more central to networks, and that have
more complex gene structures—are generally more constrained.

Gene length is predictive of shet (Figure 4F), but also correlates with the amount of information
in the LOF data as well as a number of other gene features (Supplementary Figure 10A,B,C).
While the model learns the importance of all features jointly, and hence could adjust for gene
length when considering other features, we wanted to be sure that the signal from other features
was not generally driven by their correlation with gene length. As such, we computed partial
correlations between each feature and posterior mean shet adjusting for gene length, and found
that gene length explains at most a modest amount of the correlation between most features and
shet (Supplementary Figure 10D).

2.5 Contextualizing the strength of selection against gene loss-of-function

A major benefit of shet over LOEUF and pLI is that shet has a precise, intrinsic meaning in terms
of fitness [1–4]. This facilitates comparison of shet between genes, populations, species, and stud-
ies. For example, shet can be compared to selection estimated from mutation accumulation or
gene deletion experiments performed in model organisms [53,54]. More broadly, selection applies
beyond LOFs. While we focused on estimating changes in fitness due to LOFs, consequences of
non-coding, missense, and copy number variants can be understood through the same framework,
as we expect such variants to also be under negative selection [18] due to ubiquitous stabilizing
selection on traits [55]. Quantifying differences in the selection on variants will deepen our under-
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Figure 5: Comparing selection on LOFs (shet) between genes and to selection on other variant types. A)
Distributions of shet for gene sets, calculated by averaging the posterior distributions for the genes in each gene set.
Gene sets are sorted by the mean of their distributions. Colors represent four general selection regimes. B) Posterior
distributions of shet for individual genes, ordered by mean. Lines represent 95% credible intervals, with labeled
genes represented by thick black lines. Colors represent the selection regimes in panel A. C) Schematic demonstrating
the hypothesized relationship between changes in expression (x-axis, log2 scale) and selection (y-axis) against these
changes for two hypothetical genes, assuming stabilizing selection. The shapes of the curves are not estimated from
real data. Background colors represent the selection regimes in panel A. The red points and line represent the effects
of heterozygous LOFs and deletions on expression and selection, while the blue points and line represent the potential
effects of other types of variants.

standing of the evolution and genetics of human traits (see Discussion).
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To contextualize our shet estimates, we compared the distributions of shet for different gene sets
(Figure 5A) and genes (Figure 5B), and analyzed them in terms of selection regimes. To define such
regimes, we first conceptualized selection on variants as a function of their effects on expression
(Figure 5C), where heterozygous LOFs reduce expression by ∼50% across all contexts relevant to
selection. Under this framework, we can directly compare shet to selection on other variant types—
for the hypothetical genes in Figure 5C, a GWAS hit affecting Gene 1 has a stronger selective effect
than a LOF affecting Gene 2, despite having a smaller effect on expression.

Next, we divided the range of possible shet values into four regimes determined by theoretical
considerations [56] and comparisons to other types of variants [57, 58]—nearly neutral, weak se-
lection, strong selection, and extreme selection. LOFs in nearly neutral genes (shet < 10−4) have
minimal effects on fitness—the frequency of such variants is dominated by genetic drift rather
than selection [56]. Under the weak selection regime (shet from 10−4 to 10−3), gene LOFs have sim-
ilar effects on fitness as typical GWAS hits, which usually have small or context-specific effects on
gene expression or function [57]. Under the strong selection regime (shet from 10−3 to 10−1), gene
LOFs have fitness effects on par with the strongest selection coefficients measured for common
variants, such as the selection estimated for adaptive mutations in LCT [58]. Finally, for genes in
the extreme selection regime (shet > 10−1), LOFs have an effect on fitness equivalent to a >2%
chance of embryonic lethality, indicating that such LOFs have an extreme effect on survival or
reproduction.

Gene sets vary widely in their constraint. For example, genes known to be haploinsufficient
for severe diseases are almost all under extreme selection. In contrast, genes that can tolerate
homozygous LOFs are generally under weak selection. One notable example of such a gene is
LPA—while high expression levels are associated with cardiovascular disease, low levels have
minimal phenotypic consequences [59, 60], consistent with limited conservation in the sequence
or gene expression of LPA across species and populations [61, 62]

Other gene sets have much broader distributions of shet values. For example, manually curated
recessive genes are under weak to strong selection, indicating that many such genes are either not
fully recessive or have pleiotropic effects on other traits under selection. For example, homozy-
gous LOFs in PROC can cause life-threatening congenital blood clotting [63], yet shet for PROC is
non-negligible (Figure 5B), consistent with observations that heterozygous LOFs can also increase
blood clotting and cause deep vein thrombosis [64].

Similarly, shet values for ClinVar disease genes [65] span the range from weak to extreme se-
lection, with only moderate enrichment for greater constraint relative to all genes. Consistent
with this, the effects of disease on fitness depend on disease severity, age-of-onset, and preva-
lence throughout human history. For example, even though heterozygous loss of BRCA1 greatly
increases risk of breast and ovarian cancer [66], BRCA1 is under strong rather than extreme se-
lection. Possible partial explanations are that these cancers have an age-of-onset past reproduc-
tive age and are less prevalent in males, or that BRCA1 is subject to some form of antagonistic
pleiotropy [67, 68].
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Figure 6: GeneBayes is a flexible framework for estimating gene-level properties. Schematic for how
GeneBayes can be applied to estimate gene-level properties beyond shet, showing the key inputs and outputs and two
example applications. See Supplementary Note E for more details.

3 Discussion

Here, we developed an empirical Bayes approach to accurately infer shet, an interpretable metric of
gene constraint. Our approach uses powerful machine learning methods to leverage vast amounts
of functional and evolutionary information about each gene while coupling them to a population
genetics model.

There are two advantages of this approach. First, the additional data sources result in substan-
tially better performance than LOEUF across tasks, from classifying essential genes to identifying
pathogenic de novo mutations. These improvements are especially pronounced for the large frac-
tion of genes with few expected LOFs, where LOF data alone is underpowered for estimating
constraint.

Second, by inferring shet, our estimates of constraint are interpretable in terms of fitness, and
we can directly compare the impact of a loss-of-function across genes, populations, species, and
studies.

As a selection coefficient, shet can also be directly compared to other selection coefficients, even
for different types of variants [3, 4]. In general, we believe genes are close to their optimal levels
of expression and experience stabilizing selection [55], in which case expression-altering variants
decrease fitness, with larger perturbations causing greater decreases (Figure 5C). Estimating the
fitness consequences of other types of expression-altering variants, such as duplications or eQTLs,
will allow us to map the relationship between genetic variation and fitness in detail, deepening
our understanding of the interplay of expression, complex traits, and fitness [10, 57, 69, 70].
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A recent method, DeepLOF [14], uses a similar empirical Bayes approach, but by estimating
constraint from the number of observed and expected unique LOFs, it inherits the same difficulties
regarding interpretation as pLI and LOEUF, and loses information by not considering variant
frequencies. Another line of work [1, 2], culminating in [4], solved the issues with interpretability
by directly estimating shet. Yet, by relying exclusively on LOFs, these estimates are underpowered
for ∼25% of genes. Furthermore, by using the aggregate frequencies of all LOF variants, previous
shet estimates [1, 2, 4] are not robust to misannotated LOF variants. Our approach eliminates this
tradeoff between power and interpretability present in existing metrics.

Similar insights that combine evolutionary modeling and genomic features have been used to
estimate constraint on non-coding variation [71–74], and extending our approach to non-coding
variation would be an interesting direction for future work.

Our estimates of shet will be useful for many applications. For example, by informing gene-
level priors, LOEUF, pLI, and previous estimates of shet have been used to increase the power of
association studies based on rare or de novo mutations [5,6,75]. In such contexts, our shet estimates
can be used as a drop-in replacement. Additionally, extremely constrained and unconstrained
genes may be interesting to study in their own right. Genes of unknown function with particularly
high values of shet should be prioritized for further study. Investigating highly constrained genes
may give insights into the mechanisms by which cellular and organism-level phenotypes affect
fitness [76].

While we primarily used the posterior means of shet here, our approach provides the entire
posterior distribution per gene, similar to [4]. In some applications, different aspects of the pos-
terior may be more relevant than the mean. For example, when prioritizing rare variants for
followup in a clinical setting, the posterior probability that shet is high enough for the variant to
severely reduce fitness may be more relevant.

As more exomes are sequenced, one might expect that we would be better able to more ac-
curately estimate shet. Yet, in a companion paper [15], we show that increasing the sample size
used for estimating LOF frequencies will provide essentially no additional information for the
∼85% of genes with the lowest values of shet. This fundamental limit on how much we can learn
about these genes from LOF data alone highlights the importance of approaches like ours that
can leverage additional data types. By sharing information across genes, we can overcome this
fundamental limit on how accurately we can estimate constraint.

Here we focused on estimating shet, but our empirical Bayes framework, GeneBayes, can be
used in any setting where one has a model that ties a gene-level parameter to gene-level observ-
able data (Supplementary Note E). For example, GeneBayes can be used to find trait-associated
genes using variants from case/control studies [77, 78], or to improve power to find differen-
tially expressed genes in RNA-seq experiments [79]. We provide a graphical overview of how
GeneBayes can be applied more generally in Figure 6. Briefly, GeneBayes requires users to specify
a likelihood model and the form of a prior distribution for their parameter of interest. Then, using
empirical Bayes and a set of gene features, it improves power to estimate the parameter by flexibly
sharing information across similar genes.

In summary, we developed a powerful framework for estimating a broadly applicable and
readily interpretable metric of constraint, shet. Our estimates provide a more informative ranking
of gene importance than existing metrics, and our approach allows us to interrogate potential
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causes and consequences of natural selection.

Data availability

Posterior means and 95% credible intervals for shet are available in Supplementary Table 2. Poste-
rior densities for shet are available in Supplementary Table 3. A description of the gene features is
available in Supplementary Table 4. These supplementary tables are also available at [80], along
with likelihoods for shet, LOF variants with misannotation probabilities, and gene feature tables.

Code availability

GeneBayes and code for estimating shet are available at https://github.com/tkzeng/GeneBayes.
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4 Methods

Empirical Bayes overview

Many genes have few observed loss-of-function variants, making it challenging to infer constraint
without additional information. Bayesian approaches that specify a prior distribution for each
gene can provide such information to improve constraint estimates, but specifying prior distri-
butions is challenging as we have limited prior knowledge about the selection coefficients, shet.
Empirical Bayes procedures allow us to learn a prior distribution for each gene by combining
information across genes.

To use the information contained in the gene features, we learn a mapping from a gene’s fea-
tures to a prior specific for that gene. We parameterize this mapping using gradient-boosted trees,
as implemented in NGBoost [16]. Intuitively, this approach learns a notion of “similarity” between
genes based on their features, and then shares information across similar genes to learn how shet
relates to the gene features. This approach has two major benefits. First, by sharing information
between similar genes, it can dramatically improve the accuracy of the predicted shet values, par-
ticularly for genes with few expected LOFs. Second, by leveraging the LOF data, this approach
allows us to learn about how the various gene features relate to fitness, which cannot be modeled
from first principles.

For a more in-depth description of our approach along with mathematical and implementation
details, see Supplementary Note A.

Population genetic likelihood

To model how shet relates to the frequency of individual LOF variants, we used the discrete-time
Wright-Fisher model, with an approximation of diploid selection with additive fitness effects. We
used a composite likelihood approach, assuming independence across individual LOF variants to
obtain gene-level likelihoods. Within this composite likelihood, we model each individual variant
as either having a selection coefficient of shet with probability 1 − pmiss, or having a selection
coefficient of 0 with probability pmiss. That is, pmiss acts as the prior probability that a given variant
is misannotated, and we assume that misannotated variants evolve neutrally regardless of the
strength of selection on the gene. All likelihoods were computed using new machinery developed
in a companion paper [15].

Our model depends on a number of parameters—a demographic model of past population
sizes, mutation rates for each site, and the probability of misannotation. The demographic model
is taken from the literature [81] with modifications as described in [4]. The mutation rates account
for trinucleotide context as well as methylation status at CpGs [12]. Finally, we estimated the
probability of misannotation from the data.

For additional technical details and intuition see Supplementary Note B.
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Curation of LOF variants

We obtained annotations for the consequences of all possible single nucleotide changes to the
hg19 reference genome from [82]. The effects of variants on protein function were predicted us-
ing Variant Effect Predictor (VEP) version 85 [83] using GENCODE v19 gene annotations [84] as
a reference. We defined a variant as a LOF if it was predicted by VEP to be a splice acceptor,
splice donor, or stop gain variant. In addition, predicted LOFs were further annotated using LOF-
TEE [12], which implements a series of filters to identify variants that may be misannotated (for
example, LOFTEE considers predicted LOFs near the ends of transcripts as likely misannotations).
For our analyses, we only kept predicted LOFs labelled as High Confidence by LOFTEE, which
are LOFs that passed all of LOFTEE’s filters.

Next, we considered potential criteria for further filtering LOFs: cutoffs for the median ex-
ome sequencing read depth, cutoffs for the mean pext (proportion expressed across transcripts)
score [82], whether to exclude variants that fall in segmental duplications or regions with low
mappability [85], and whether to exclude variants flagged by LOFTEE as potentially problematic
but that passed LOFTEE’s primary filters.

We trained models with these filters one at a time and in combination, and chose the model
that had the best AUPRC in classifying essential from nonessential genes in mice. The filters
we evaluated and chose for the final model are reported in Table 2. Since we used mouse gene
essentiality data to choose the filters, we do not further evaluate shet on these data.

We considered genes to be essential in mice if they are heterozygous lethal, as determined
by [12] using data from heterozygous knockouts reported in Mouse Genome Informatics [86]. We
classify genes as nonessential if they are reported as Homozygous-Viable or Hemizygous-Viable
by the International Mouse Phenotyping Consortium [87] (annotations downloaded on 12/08/22
from https://www.ebi.ac.uk/mi/impc/essential-genes-search/).

Filtering criterion Tested values Best value
Cutoff for sequencing read depth (median across exomes) 0×, 5×, 10×, 20× 0×
Cutoff for mean pext across tissues 0.05, 0.1 0.05
Filter if variant falls in a segmental duplication or low mappability region True, False True
Filter if variant is flagged as potentially problematic True, False True

Table 2: Filtering criteria for LOF curation

Finally, we annotated each variant with its frequency in the gnomAD v2.1.1 exomes [12], a
dataset of 125,748 uniformly-analyzed exomes that were largely curated from case–control stud-
ies of common adult-onset diseases. gnomAD provides precomputed allele frequencies for all
variants that they call.

For potential LOFs that are not segregating, gnomAD does not release the number of indi-
viduals that were genotyped at those positions. For these sites, we used the median number of
genotyped individuals at the positions for which gnomAD does provide this information. We
performed this separately on the autosomes and X chromosome.

Data sources for the variant annotations, filters, and frequencies, as well as additional infor-
mation used to compute likelihoods are listed in Table 3.
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Resource Link

Annotations for possible LOFs
gs://gnomad-public/papers/2019-tx-annotation/pre_
computed/all.possible.snvs.tx_annotated.GTEx.v7.
021520.tsv

Mean methylation for CpG sites gs://gcp-public-data--gnomad/resources/methylation

Exome sequencing coverage
gs://gcp-public-data--gnomad/release/2.1/coverage/
exomes/gnomad.exomes.coverage.summary.tsv.bgz

Variant frequencies
gs://gcp-public-data--gnomad/release/2.1.1/vcf/
exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz

Low mappability and segmental duplications
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/
giab/release/genome-stratifications/v3.1/GRCh37/Union/
GRCh37_alllowmapandsegdupregions.bed.gz

Table 3: Sources for LOF data

Feature processing and selection

We compiled 10 types of gene features from several sources:

1. Gene structure (e.g., number of transcripts, number of exons, GC content)

2. Gene expression across tissues and cell lines

3. Biological pathways and Gene Ontology terms

4. Protein-protein interaction networks

5. Co-expression networks

6. Gene regulatory landscape (e.g., number and properties of enhancers and promoters)

7. Conservation across species

8. Protein embeddings

9. Subcellular localization

10. Missense constraint

Additionally, we included an indicator variable that is 1 if the gene is on the non-pseudoautosomal
region of the X chromosome and 0 otherwise.

For a description of the features within each category and where we acquired them, see Sup-
plementary Note C.

Training and validation

We fine-tuned a set of hyperparameters for our full empirical Bayes approach, using the best hy-
perparameters from an initial feature selection step (described in Supplementary Note C) as a
starting point. To minimize overfitting, we split the genes into three sets—a training set (chromo-
somes 7-22, X), a validation set for hyperparameter tuning (chromosomes 2, 4, 6), and a test set to
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evaluate overfitting (chromosomes 1, 3, 5). During each training iteration, one or more trees were
added to the model to fit the gradient of the loss on the training set. We stopped model training
once the loss on the validation set did not improve for 10 iterations in a row (or the maximum
number of iterations, 1,000, was reached). Using this approach, we performed a grid search over
the hyperparameters listed in Table 4, and used the combination with the lowest validation loss
and best performance at classifying mouse essential genes (mean of the ranks on the two metrics).

Parameter(s) Tested values Best value
Learning rate 2.5 × 10−3, 0.01, 0.04 0.04
Maximum tree depth (max_depth) 3, 4, 5 3
Data subsampling ratio (subsample) 0.6, 0.8, 1 0.8
Minimum weight of a leaf node (min_child_weight) 1, 2, 4 4
L1 regularization (alpha) 1, 2, 4 2
L2 regularization (lambda) 0, 1, 2 0
Number of trees to fit per iteration (n_estimators) 1, 2, 4 1

Table 4: Parameters for fitting the gradient-boosted trees

Choosing genes for Table 1

To identify genes that are considered constrained by shet but not by LOEUF, we filtered for genes
with shet > 0.1 (top ∼15% most constrained genes, analogous to the recommended LOEUF cutoff
of 0.35 [67], which corresponds to the top ∼16% of genes) and LOEUF > 0.47 (least constrained
∼75% of genes). Of these, we identified genes where heterozygous or hemizygous mutations that
decrease the amount of functional protein (e.g. LOF mutations) are associated with Mendelian
disorders in the Online Mendelian Inheritance in Man (OMIM) database [36]. We chose genes for
Table 1 primarily based on their prominence in the existing literature.

We define a gene as having a pathogenic variant in ClinVar if it contains a variant annotated
with CLNSIG = Pathogenic. We downloaded ClinVar variants from https://ftp.ncbi.nlm.nih.
gov/pub/clinvar/vcf_GRCh38/ on 12/03/2023.

Evaluation on additional datasets

Definition of human essential and nonessential genes

We obtained data from 1,085 CRISPR knockout screens quantifying the effects of genes on cell
survival or proliferation from the DepMap portal (22Q2 release) [37, 38]. Scores from each screen
are normalized such that nonessential genes identified by [88] have a median score of 0 and that
common essential genes identified by [88, 89] have a median score of −1.

In classifying essential genes (Figure 3A), we define a gene as essential if its score is < − 1
in at least 25% of screens, and as not essential if its score is > − 1 in all screens. In classifying
nonessential genes, we define a gene as nonessential if it has a minimal effect on growth in most
cell lines (absolute effect <0.25 in at least 99% of screens), and as not nonessential if its score is <0
in all screens.
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Definition of developmental disorder genes

Through the Deciphering Developmental Disorders (DDD) study [39], clinicians have annotated
a subset of genes with the strength and nature of their association with developmental disor-
ders. We classify genes as developmental disorder genes if they are annotated by the DDD study
with confidence_category = definitive and allelic_requirement = monoallelic_autosomal,
monoallelic_X_hem (hemizygous), or monoallelic_X_het (heterozygous).

We classify genes as not associated with developmental disorders if they are annotated by
the DDD study, do not meet the above criteria for association with a disorder, and are not an-
notated with confidence_category = strong, moderate, or limited and allelic_requirement =
monoallelic_autosomal, monoallelic_X_hem, or monoallelic_X_het.

We downloaded genes with DDD annotations from https://www.deciphergenomics.org/ddd/
ddgenes on 11/19/2023.

Enrichment/depletion of Human Phenotype Ontology (HPO) genes

The Human Phenotype Ontology (HPO) provides a structured organization of phenotypic abnor-
malities and the genes associated with them, with each HPO term corresponding to a phenotypic
abnormality. We calculated the enrichment of constrained genes in each HPO term with at least
200 genes as the ratio (fraction of HPO genes under constraint)/(fraction of background genes
under constraint). We defined genes under constraint to be the decile of genes considered most
constrained by shet or LOEUF. To choose background genes, we sampled from the set of all genes
to match each HPO term’s distribution of expected unique LOFs. Similarly, we calculated the de-
pletion of unconstrained genes in each HPO term as the ratio (fraction of HPO genes not under
constraint)/(fraction of background genes not under constraint), where we define genes not under
constraint to be the decile of genes considered least constrained by shet or LOEUF.

We downloaded HPO phenotype-to-gene annotations from http://purl.obolibrary.org/
obo/hp/hpoa/phenotype_to_genes.txt on 01/27/2023.

Enrichment of de novo mutations in developmental disorder patients

We used the enrichment metric developed by [5] in their analysis of de novo mutations (DNMs)
identified from exome sequencing of 31,058 developmental disorder patients and their unaffected
parents. Enrichment of DNMs in developmental disorder patients was calculated as the ratio
of observed DNMs in patients over the expected number under a null mutational model that
accounts for the study sample size and triplet mutation rate at the mutation sites [90].

For Figure 3D, we calculated the enrichment of DNMs in constrained genes, defined as the
decile of genes considered most constrained by shet or LOEUF. For Supplementary Figure 7D, we
calculated the enrichment of DNMs in constrained genes with and without known associations
with development disorders. We defined a gene as having a known association if it is anno-
tated by the DDD study (see Methods section “Definition of developmental disorder genes”) with
confidence_category = definitive or strong and allelic_requirement = monoallelic_autosomal,
monoallelic_X_hem (hemizygous), or monoallelic_X_het (heterozygous).
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For each set of genes, we computed the mean enrichment over sites and 95% Poisson confi-
dence intervals for the mean using the code provided by [5].

Heritability enrichment in constrained genes

We computed the heritability enrichment in the top 10% of genes constrained by shet or LOEUF
using stratified LD score regression (S-LDSC) [91]. To do this, we divided the heritability enrich-
ment in constrained genes as reported by S-LDSC by the heritability enrichment in all genes. We
linked variants to genes if they were in or within 100kb of the gene body, and ran S-LDSC using
1000G EUR Phase3 genotype data to estimate LD scores, baseline v2.2 annotations, and HapMap
3 SNPs excluding the MHC region as regression SNPs. We performed this analysis using sum-
mary statistics from 438 traits in UK Biobank (downloaded from https://nealelab.github.io/
UKBB_ldsc) with highly statistically significant SNP heritability (LDSC z-score > 7, the threshold
recommended in [91]).

Expression variability across species

To understand the variability in expression between humans and other species, we focused on
gene expression differences between human and chimpanzee as estimated from RNA sequencing
of an in vitro model of the developing cerebral cortex for each species [42]. As a metric of vari-
ability between the two species, we used the absolute log-fold change (LFC) in gene expression
between human and chimpanzee cortical spheroids, which was calculated from samples collected
at several time points throughout differentiation of the spheroids. LFC estimates were obtained
from Supplementary Table 9 of [42].

To visualize the relationship between constraint and absolute LFC, we plotted a LOESS curve
between the constraint on a gene (gene rank from least to most constrained using either shet or
LOEUF as the constraint metric) and the absolute LFC for the gene. Curves were calculated using
the LOWESS function from the statsmodels package with parameters frac = 0.15 and delta = 10.

Expression variability across individuals

To calculate a measure of expression variance across GTEx samples, we log-transformed the per-
gene mean and variance of gene expression levels (where expression is in units of Transcripts Per
Million) and used the residuals from LOESS regression of the transformed expression variance
on the transformed mean expression. LOESS regression was computed using the LOWESS function
from the statsmodels package with parameters frac = 0.1 and delta = 0. This procedure reduces
the correlation between mean expression and expression variance (Spearman ρ = 0.02 between
mean expression and residual variance, compared to Spearman ρ = 0.90 between mean expression
and variance before regression). We calculated expression variance using 17,398 RNA-seq samples
in the GTEx v8 release [43] (838 donors and 52 tissues/cell lines) for all genes with a median
TPM of ≥ 5. LOESS curves for visualization were computed as in “Expression variability across
species.”
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Feature interpretation

Training models on feature subsets

We grouped features into categories (see Supplementary Table 4 for the features in each category),
and trained a model for each category to predict shet from the corresponding features. For each
model, we tuned hyperparameters over a subset of the values we considered for the full model
(Table 5), and chose the combination of hyperparameters that minimized the loss over genes in
the validation set. As a baseline, we trained a model with no features, such that all genes have a
shared prior distribution that is learned from the LOF data—this model is analogous to a standard
empirical Bayes model.

Parameter(s) Tested values
Learning rate 0.01, 0.04
Maximum tree depth (max_depth) 3
Data subsampling ratio (subsample) 0.8, 1
Minimum weight of a leaf node (min_child_weight) 2, 4
L1 regularization (alpha) 1, 2
L2 regularization (lambda) 0
Number of trees to fit per iteration (n_estimators) 1

Table 5: Parameters for feature subsets

Definition of expression feature subsets

We grouped gene expression features into 24 categories representing tissues, cell types, and de-
velopmental stage using terms present in the feature names (Table 6).

Scoring individual features

To score individual gene features, we varied the value of one feature at a time and calculated
the variance in predicted shet as a feature score. In more detail, we fixed each feature to val-
ues spanning the range of observed values for that feature (0th, 2nd, ..., 98th, and 100th per-
centile), such that all genes shared the same feature value. Then, for each of these 51 feature
values, we averaged the shet values predicted by the learned priors over all genes, where the
predicted shet for each gene is the mean of its prior. We denote this averaged prediction by
s( f )

het{p} for some feature f and percentile p. Finally, we define the score for feature f as score f =

sd(s( f )
het{0}, s( f )

het{2}, ..., s( f )
het{98}, s( f )

het{100}), where sd is a function computing the sample standard
deviation. In other words, a feature with a high score is one for which varying its value causes
high variance in the predicted shet.

For the lineplots in Figures 4C-4F, we scale the predictions s( f )
het{p} for each feature f by sub-

tracting (s( f )
het{0}+ s( f )

het{100})/2 from each prediction.
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Category Terms in the feature (not case sensitive)
Brain brain, nerve, microglia, hippocampus
Digestive digestive, gut, gutendoderm, intestine, colon, ileum
Development development, gastrulation, embryo
Lung lung, airway
Eye eye, retina
Endothelium endothelium
Muscle muscle
Hair follicle hairfollicle
Kidney kidney
Immune immune, monocytes, nk, tcell, pbmc
Prostate prostate
Blood blood, heme, fetalblood
Adipocyte adipocyte
Heart heart, aorta
Thymus thymus
Pancreas pancreas, islets, pancreasductal
Liver liver
Testis testis
Synovial fibroblast synovialfibroblast
Bladder bladder
Placenta placenta
Bone marrow bonemarrow
CSF csf
Lymph nodes lymphnodes

Table 6: Terms used to define tissues for expression features

Pruning features before computing feature scores

While investigating the effects of features on predicted shet, we found that including highly corre-
lated features in the model could produce unintuitive results, such as opposite correlations with
shet for highly similar features. Therefore, for Figures 4C-4F, we first pruned the set of features
to minimize pairwise correlations between the remaining features. To do this, we randomly kept
one feature in each group of correlated features, where such a group is defined as a set of features
where each feature in the set has an absolute Spearman ρ > 0.7 to some other feature in the set.

For Figures 4C-4F, we trained models on the relevant features in this pruned set (gene ontol-
ogy, network, gene regulatory, and gene structure features for Figures 4C, 4D, 4E, and 4F respec-
tively).
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Supplementary Material

A Empirical Bayes with NGBoost

Empirical Bayes overview

In the simplest version of empirical Bayes, we specify the form of the prior distribution and as-
sume that that prior is shared across all genes—for example, for gene i we might assume the prior
distribution is s(i)het ∼ LogitNormal(µ, σ) with density pµ,σ(s

(i)
het), where the LogitNormal(µ, σ) dis-

tribution is defined such that logit(s(i)het) = log(s(i)het/(1 − s(i)het)) is normally distributed with mean
µ and variance σ2. We can then estimate µ and σ using the observed LOF data for each gene,
yyy1, . . . , yyyM, by maximizing the marginal likelihood:

M

∏
i=1

∫ 1

0
p
(

yyyi | s(i)het

)
pµ,σ

(
s(i)het

)
ds(i)het.

Next, we can compute the posterior distribution of s(i)het for each gene,

p
(

s(i)het | yyyi

)
=

p
(

yyyi | s(i)het

)
pµ,σ

(
s(i)het

)
∫ 1

0
p
(

yyyi | s(i)het

)
pµ,σ

(
s(i)het

)
ds(i)het

.

However, rather than learning the parameters for the prior from only the LOF data, we can also
use gene features to learn gene-specific prior parameters, µi and σi. To do this, we used a machine
learning approach, NGBoost, to learn functions f and g such that µi = f (xxxi) and σi = g(xxxi), where
xxxi is a vector of gene features associated with gene i. In the next few sections, we will describe
how we learned f and g.

NGBoost

NGBoost (Natural Gradient Boosting) is an approach for training gradient boosted trees to predict
the parameters of a probability distribution [16]. Gradient boosted trees are a type of machine
learning model typically used to predict outcomes y, from features X, producing point estimates
such as predictions of E[y | X]; in contrast, NGBoost uses gradient boosted trees to predict p(y |
X = xxx) by learning parameters of p(y | X = xxx) as functions of xxx—in other words, NGBoost allows
us to learn the full distribution of y conditioned on observing the features xxx.

Specifically, for gene i, we assume the prior distribution is s(i)het ∼ LogitNormal(µi, σi), with

density pµi ,σi(s
(i)
het). µi = f (xxxi) and σi = g(xxxi) are functions of the vector of gene features xxxi,

where f and g are parameterized as gradient-boosted trees. We chose this distribution as previous
work has suggested that s(i)het is distributed on a logarithmic scale [1, 2, 4], yet, s(i)het is also bounded
between 0 and 1. Both of these properties are enforced by the LogitNormal distribution. In Sup-
plementary Note B, we develop a population genetic likelihood p(yyyi | s(i)het), where yyyi is a vector
that represents the observed frequencies of each possible loss of function variant for the gene.

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.05.19.541520doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541520
http://creativecommons.org/licenses/by/4.0/


Then, with M genes in the training set, the score that NGBoost minimizes during training is:

M

∑
i=1

S (yyyi; µi, σi) = −
M

∑
i=1

log p (yyyi) = −
M

∑
i=1

log
(∫ 1

0
p
(

yyyi | s(i)het

)
pµi ,σi

(
s(i)het

)
ds(i)het

)
.

To do this, NGBoost first initializes the parameters of f and g such that all genes have the same prior
distribution. Next, NGBoost adopts a gradient descent approach to minimize the score function:
for each iteration until training ends, NGBoost first computes the gradient of gene i’s score with
respect to the parameters µi and σi of pµi ,σi(s

(i)
het). In the original implementation, NGBoost uses

natural gradients, which take into account the underlying “information geometry” of the space
of distributions in a way that standard gradients do not [92], but natural gradients are costly to
compute, so we use standard gradients instead. After computing the gradient, NGBoost fits a de-
cision tree to each dimension of the gradient, updating µi and σi in the direction that most steeply
decreases the gene’s score. While gradient-boosting algorithms (including NGBoost, by default)
typically fit a single decision tree at each iteration, we allow NGBoost to fit up to n_estimators
trees per iteration, where n_estimators is a hyperparameter that we tune.

Below, we summarize the training algorithm. Let µ
(t)
i , σ

(t)
i denote the parameters of the prior at

training iteration t.

1. Initialize parameters for all genes, i = 1, ..., M:
µ
(0)
i , σ

(0)
i = argminµ,σ ∑M

i=1 S(yyyi; µ, σ)

2. For iterations t = 1, ..., T:

(a) For each gene, calculate gradients of the score:

∇S
(

yiyiyi; µ
(t)
i , σ

(t)
i

)
, whose two components we denote as ∇Sµi and ∇Sσi

(b) Fit decision trees f (t) and g(t) on the gradients:

f (t) = fit
({

xxxi,∇Sµi

}M
i=1

)
g(t) = fit

(
{xxxi,∇Sσi}

M
i=1

)
(c) Perform a line search to find a scaling, ϕ(t) that optimizes the loss function along the

search direction implied by f (t) and g(t). That is, set:

ϕ(t) = argminϕ

M

∑
i=1

S(yyyi; µ
(t−1)
i − ϕ f (t)(xxxi), σ

(t−1)
i − ϕg(t)(xxxi))

In practice, NGBoost approximately solves this optimization problem by initializing at
ϕ = 1, iteratively doubling ϕ until the objective begins to increase, and then restarting
at ϕ = 1 and iteratively halving ϕ until the objective begins to increase. Whichever of
these ϕ minimized the objective function is used for ϕ(t).

(d) Update the parameters for each gene, where η is a learning rate that is chosen by the
user as a hyperparameter:

µ
(t)
i = µ

(t−1)
i − ηϕ(t) f (t)(xxxi)

σ
(t)
i = σ

(t−1)
i − ηϕ(t)g(t)(xxxi)

37

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.05.19.541520doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541520
http://creativecommons.org/licenses/by/4.0/


Once training is complete, we obtain a learned prior with parameters µ
(T)
i , σ

(T)
i , and can com-

pute the posterior distribution of shet

p
(

s(i)het | yyyi

)
=

p
(

yyyi | s(i)het

)
p

µ
(T)
i ,σ(T)

i

(
s(i)het

)
p (yyyi)

as well as the mean of this distribution

E
[
s(i)het | yyyi

]
=

∫ 1

0
s(i)het p(s

(i)
het | yyyi)ds(i)het

To compute 95% Credible Intervals, we compute the CDF of the posterior distribution using
Pytorch’s cumulative_trapezoid function [93]. Then, the 95% Credible Interval per gene is de-
fined as [lb(i), ub(i)] such that P(s(i)het < lb(i)) = 0.025 and P(s(i)het < ub(i)) = 0.975.

NGBoost— implementation details

To initialize parameters (step 1 in the training algorithm), we perform gradient descent with the
AdamW optimizer [94] implemented in PyTorch [93] with a learning rate of 1 × 10−3 and other-
wise default settings. We initialize the optimization at µ = 0 and σ = 1.

We numerically compute all integrals using the trapezoid method implemented in PyTorch,
which enables gradient computation through automatic differentiation. We perform all integrals
using the transformed parameter, Logit(shet). Since shet has a LogitNormal prior, this transforma-
tion has a Normal distribution, and hence puts all but a negligible fraction of its mass within 8
standard deviations, σ, of its mean, µ. Therefore, we perform the trapezoid method on an evenly
spaced grid of 104 points on the domain µ − 8σ, µ + 8σ.

To flexibly fit decision trees at each training iteration, we use the XGBoost package, a library
used for fitting standard gradient boosted trees [95]. In comparison to the default NGBoost learner,
XGBoost supports missing features and allows for adjustment of numerous hyperparameters (see
“Training and Validation” in Methods). In contrast to typical applications of XGBoost, we only
allow a few (n_estimators in Table 4) trees to be fit at each training iteration, as we are using
XGBoost within a training loop rather than as a standalone approach for model fitting.

All distributions were implemented using PyTorch, and training was conducted with GPU
support when available, with tree_method = "gpu_hist" for the XGBoost learners.
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B Population Genetics Model

Overview of model

Some of the most commonly used measures of gene constraint (pLI [11], LOEUF [12]) are framed
in terms of the number of unique LOFs observed in gene, O, relative to the number expected
under a null model, E. While operationalizing constraint as some function of O and E captures the
intuition that seeing fewer LOFs than expected is evidence that a gene is conserved, the numerical
values of pLI and LOEUF are difficult to interpret. In practice this means that such measures
can be useful for ranking which genes are important, but it makes it difficult to contextualize
these results in terms of other types of variants, such as missense or noncoding variants, or copy
number variants. Previous approaches have pioneered using a population genetics model in this
context to obtain interpretable estimates, albeit with different technical details that we discuss
below [1, 2, 4].

In order to obtain a more interpretable measure of constraint, we formalize constraint as the
strength of natural selection acting against gene loss-of-function in a population genetics model.
That is, we can ask how much fitness is reduced on average for an individual with one or two non-
functional copies of a gene relative to individuals with two functional copies, following previous
work [1, 2, 4]. To tie this concept of constraint to observed allele frequency data, we use a slightly
simplified version of the discrete-time Wright Fisher model. This model contains mutation, se-
lection, and genetic drift, and assumes that there are only two alleles and that the population is
panmictic, monoecious, and has non-overlapping generations. While all of these assumptions are
violated in humans (there are four nucleotides, population structure, two sexes, and overlapping
generations), the model still provides a good approximation to allele frequency dynamics through
time. If the allele frequency in generation k is fk, then we model the allele frequency in the next
generation via binomial sampling:

2Nk+1 fk+1 ∼ Binomial (2Nk+1, p ( fk)) , (1)

where Nk+1 is the number of diploid individuals in generation k + 1, with

p( fk) :=
(1 − shet) f̃k

(
1 − f̃k

)
+ (1 − shom) f̃k

2

(
1 − f̃k

)2
+ 2(1 − shet) f̃k

(
1 − f̃k

)
+ (1 − shom) f̃k

2
,

where f̃k = fk(1 − µ1→0) + µ0→1(1 − fk) is the allele frequency after alleles change from non-
LOF to LOF at rate µ0→1 and from LOF to non-LOF at rate µ1→0. The function p(·) arises from
considering bidirectional mutation and approximating a model of diploid selection where the
relative reproductive success of individuals with 0, 1, or 2 copies of the LOF are 1, 1− shet, and 1−
shom respectively [13]. In practice, most LOF variants are extremely rare, and so it is exceedingly
unlikely to find individuals homozygous for the LOF. This makes estimating shom as a separate
parameter very difficult, and so we instead assume that shom = min {2shet, 1}. This is equivalent
to assuming genic selection (i.e., additive fitness effects) with the constraint that an individual’s
relative fitness cannot be lower than 0.

Equation 1 fully specifies the model except for an initial condition. That is, we need to know
what the distribution of frequencies is in generation 0. One mathematically appealing choice
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would be to assume that the population is at equilibrium at time 0, but this seemingly straight-
forward choice results in nonsensical conclusions. To see why, if the mutation rates are low and
selection is negligible, then at equilibrium, with extremely high probability the population will
either be in a state where the frequency of the LOF allele is very close to zero or in a state where
the frequency of the LOF allele is very close to one. If the mutation rates between the two alleles
are close to equal, then these two cases happen roughly equally often. That is, we would expect
there to be a ∼50% chance that the population is fixed or nearly fixed for the LOF mutation. If
there are multiple independently evolving sites at which a LOF could arise (or if there are many
more ways to mutate to a LOF state than a non-LOF state), then the chance that any of these sites
is fixed or nearly fixed for a LOF rapidly approaches 100%. Under this equilibrium assumption,
we thus reach the absurd conclusion that the mere act of observing a gene that is functional in a
majority of the population is overwhelming evidence that the gene is strongly selected for. An-
other way of viewing this is that in reality we can only observe genes that are functional in an
appreciable fraction of the population, and so we should somehow be conditioning on this event,
whereas the equilibrium assumption looks at a given randomly chosen stretch of DNA and asks
whether it could be a gene given some set of mutations. Indeed, any randomly chosen stretch of
DNA could be made a gene through a series of mutations, but for any given stretch it would be
extremely unlikely to be a functional gene, and the equilibrium assumption exactly captures how
rare this would be.

We instead use the equilibrium of another process as the initial condition, which avoids these
conceptual pitfalls. We assume the distribution of frequencies at generation 0 is the equilibrium
conditioned on the LOF allele never reaching fixation in the population. We then compute the like-
lihood of observing a given present-day frequency while continuing to condition on non-fixation
of the LOF allele. This assumption implies that no matter the current frequency of the LOF vari-
ant, we know that at some point in the past the population was fixed for the functional version of
the gene, and the LOF variant can thus be thought of as being “derived” and the non-LOF variant
“ancestral”. In the limit of infinitely low (but non-zero) mutation rates, this assumption becomes
equivalent to the commonly assumed “infinite sites” model commonly used to compute frequency
in population genetics [96]. In contrast to the infinite sites model, where the probability that any
given site is segregating must be 0, our model allows us to compute the probability that a given
site is segregating. Furthermore, we can easily model recurrent mutation which can be important
for sites with large mutation rates (such as CpGs) and large sample sizes [97], whereas under the
infinite sites model each mutation necessarily happens at a unique position in the genome, ruling
out the possibility of recurrent mutation. Below, we will write pDTWF(y | shet) for the probability
mass function computed using this procedure, with “DTWF” representing Discrete-Time Wright-
Fisher, and y being an observed LOF allele frequency.

Equation 1 is easy to describe and simulate under, and a very similar model has been used
in an approximate Bayesian computation approach to estimate shet [4]. While simulation is easy,
computing likelihoods under this model is difficult for large sample sizes, and unfortunately we
need explicit likelihoods in our empirical Bayes approach. In recent work [15], we have developed
an efficient method for computing likelihoods under this model. The key idea is that the above
dynamics can be written as

vk+1 = MT
k vk

where vk is a vector of dimension 2N + 1 where entry i is the probability that there are i haploids
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that have the LOF allele in generation k, and Mk is a matrix where row i is the the probability mass
function of the Binomial distribution in Equation 1 given that the allele frequency in generation
k is i/2Nk. This formulation makes clear that we can obtain the likelihood of observing a given
frequency at present given some initial distribution by performing a series of matrix-vector multi-
plications. Naively this would be prohibitively slow as Mk can be as large as 107 × 107, but in [15]
we show that Mk is approximately highly structured — it is both approximately extremely sparse
and approximately extremely low rank. Combining these insights we can perform matrix-vector
multiplication that is provably accurate while reducing the runtime for matrix-vector multiplica-
tion from O(N2

k ) to O(Nk). Similar insights can be used to speed up the computation of equilibria,
which we discuss in detail in [15]. Furthermore, as discussed above, we actually want to com-
pute likelihoods conditioned on non-fixation of the LOF allele, but that is as simple as setting the
column of Mk corresponding to fixation to 0, and then renormalizing v. We precompute these
likelihoods for each possible pair of mutation rates (to and from the LOF allele) across a range of
shet values (100 log-linearly spaced points between 10−8 and 1, as well as 0). We describe how we
set the mutation rates and the population sizes implicit in Mk below.

Modeling misannotation of LOFs

Under the likelihood described above, and as seen in Figure 2A, positions where a LOF variant
could occur, but no LOF alleles are observed are slight evidence in favor of selection, while high
frequency variants are extremely strong evidence against selection. Meanwhile, we suspect that
many variants that are annotated as causing LOF actually have little to no effect on the gene prod-
uct due to some form of misannotation. If these misannotated variants evolve effectively neutrally,
they can reach high frequencies and cause us to artifactually infer artificially low levels of selec-
tion. These misannotated variants can be particularly problematic for approaches that combine
frequencies across all LOFs within a gene to obtain an aggregate gene-level LOF frequency [1,2,4].

LOEUF [12] and pLI [11] avoid this problem by throwing away all frequency information
except for whether a LOF is segregating or not. While this approach is more robust, the ignored
frequency information is extremely useful for estimating the strength of selection. For example,
consider a gene where we expect to see 5 unique LOFs under neutrality and we see 3 segregating
LOFs. This might seem like weak or negligible constraint (O/E = 0.6), but if those 3 sites are all
highly mutable and the variants at those sites are each only present in a single individual, then it
is plausible that this gene is quite constrained.

To take full advantage of the information in the LOF frequencies while remaining robust to
misannotation, we take a composite likelihood approach [98], closely related to the Poisson ran-
dom field assumption commonly used in population genetics [96]. We approximate gene-level
likelihoods as a product of variant level likelihoods

p(i)
(

yyy(i) | s(i)het

)
≈

Ji

∏
j=1

pvariant

(
yyy(i)j | s(i)het

)
,

where yyy(i) is a vector of the observed allele frequencies at each possible LOF site in gene i, and
s(i)het is the selection coefficient for having a heterozygous loss-of-function of gene i. Under this
formulation, we can easily model misannotation by assuming that each LOF independently has
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some probability of being misannotated, pmiss, and that misannotated variants evolve neutrally:

pvariant

(
y(i)

j | s(i)het

)
= (1 − pmiss)pDTWF

(
y(i)

j | s(i)het

)
+ pmiss pDTWF

(
y(i)

j | 0
)

.

Using this formulation, we can take full advantage of the rich information included in the exact
sample frequencies of each LOF variant, while still being robust to occasional misannotation. In
practice, we precompute pvariant using a grid of pmiss values, and then to obtain the likelihood at
arbitrary values of shet and pmiss we linearly interpolate in log-likelihood space. Below, we discuss
our approach for setting pmiss.

Given a probability of misannoation, we can then calculate a posterior probability that any
given variant has been misannotated. We include a table of these misannotation probabilities for
all possible LOFs in [80].

Supplementary Figure 2 shows the impact of modeling misannotation on the variant-level
likelihoods. In particular we present the likelihood curves for individual variants of different
frequencies at a high mutation rate site (analogous to Figure 2A). We see that increasing pmiss

affects the likelihoods in two ways. First, it slightly flattens the overall likelihood, which makes
sense as some information must be lost as we assume more and more LOFs are misannotated.
Second, including pmiss results in a floor on how low the likelihood can go, and higher values
of pmiss result in higher floors. This also makes sense, as any individual variant can always be
“explained away” by it being misannotated, and in particular, the likelihood can never be lower
than pmiss times the likelihood of the variant under neutrality.

Supplementary Figure 3 shows the impact of pmiss on gene-level likelihoods for two example
genes. For AARD, a gene with only 4.3 expected LOFs and only one observed LOF, pmiss has a
large impact on the log-likelihood. For low values of pmiss the single segregating LOF (present
at a frequency of 42/250,000) provides enough evidence to strongly rule out shet > 0.02, with
the likelihood rapidly approaching zero. In contrast, if there were no LOFs, then the likelihood
would monotonically increase to a maximum at shet = 1. As such, as pmiss increases, we start to
see bimodal likelihoods, due to being a mixture of the case where the segregating variant is not
misannotated (where the likelihood would be monotonically decreasing), and the case where the
segregating variant is misannotated (where the likelihood would be monotonically increasing).
For LPA, which has 90.2 expected LOFs and 118 observed LOFs, there are enough variants of
similar frequencies where even for pmiss as high as 0.1 it is unlikely for all of the LOFs to be due
to misannotation. As a result, the likelihood is relatively insensitive to pmiss, with pmiss primarily
acting to slightly flatten the likelihood.

We also investigated whether the inferred posterior probabilities of misannotation vary based
on their positions within transcripts. We mapped each LOF to its position relative to the start
and end of the canonical transcript for each gene. We found that LOFs due to early stop codons
are inferred to be more likely to be misannotated if they are near the start or end of transcripts,
possibly due to alternative translation initiation [99] or avoiding the nonsense-mediated decay
pathway [100] respectively. In contrast, variants that are annotated as LOFs due to having a pre-
dicted effect on splicing are increasingly likely to be misannotated toward the end of transcripts.
These results are presented in Supplementary Figure 4.

As an example of the importance of correcting for misannotation, we consider the case of the
gene PPFIA3 (ENSG00000177380). This gene has a LOEUF score of 0.12 and so appears very
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constrained, but in an early version of our model where we did not incorporate variant mis-
annotation, we inferred a posterior mean value of shet of ∼2 × 10−4, which is right at the bor-
der of being nearly neutral. Inspecting the LOF data for this gene, we find that all potential
LOFs are either not observed or observed in a single individual, except for a single splice donor-
disrupting variant at 16% frequency. There are no obvious signs indicating that this variant is
misannotated (e.g., in terms of coverage or mappability). If we model misannotation, however,
we find that this variant is likely misannotated (posterior probability of misannotation ∼100%),
and as a result we estimate extremely strong selection against gene loss-of-function (posterior
mean shet of ∼ 0.202). Indeed, a single autosomal dominant missense variant in this gene is
suspected to have caused a number of severe symptoms including developmental delay, intel-
lectual disability, seizures, and macrocephaly in an Undiagnosed Diseases Network participant
(https://undiagnosed.hms.harvard.edu/participants/participant-159/) [101].

Modeling the X chromosome

We must slightly modify our model when applying it to the X chromosome. Because males only
have one copy of the X chromosome, there are only 3/4 as many X chromosomes as autosomes
(assuming an approximately equal sex ratio). As a result, when dealing with the X chromosome
we scale all population sizes to 3/4 of the size used for the autosomes (rounded to the nearest
integer). We also need to slightly modify the expected frequency in the next generation. We as-
sume haploid selection in males with strength shom, and diploid selection in females with selection
coefficients shet and shom for individuals heterozygous and homozygous for the LOF variant re-
spectively. This selection results in modified allele frequencies in the pool of males and females,
and the we assume that each chromosome in the next generation has 1/3 probability of coming
from a male, and 2/3 probability of coming from a female. This means that the expected fre-
quency in the next generation is 1/3 times the post-selection frequency in males plus 2/3 times
the post-selection frequency in females. Variants within the pseudoautosomal regions on the X
are modeled identically to variants on the autosomes. Agarwal and colleagues also considered
selection on the X in the context of LOF variants, with a model similar to that described here [4].

Model parameters

Our model has three key parameters — the mutation rate, the demographic model (i.e., population
sizes through time), and the probability that different variants are misannotated.

We obtained mutation rates from gnomAD [12, Supplementary Dataset 10], which take into ac-
count trinucleotide context and methylation level (for CpG to TpG mutations). In our population
genetics model, we assume that there are only two alleles (a functional allele and a LOF allele),
whereas in reality there are four nucleotides. We approximate the rate of mutating from the func-
tional allele to the LOF allele as being the sum of the mutation rates from the reference nucleotide
to any nucleotide that might result in LOF. For example, if the reference allele is A, and either a
C or a T would result in LOF, then we say that the rate at which the functional allele mutates to
the LOF allele is the rate at which A mutates to C in this context plus the rate at which A mutates
to T in this context. For the rate of back mutation from the LOF allele to the functional allele, we
compute a weighted average of the rates of each possible LOF nucleotide back-mutating to any
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possible non-LOF nucleotide, weighed by the probability that the original non-LOF nucleotide
mutated to that particular LOF nucleotide. Continuing our previous example, suppose A mutates
to C at rate 1 × 10−8 and A mutates to T at a rate 1.5 × 10−8. Then conditioned on there having
been a single mutation resulting in a LOF variant, there is a 1/2.5 = 0.4 chance that the LOF is C
and 0.6 chance that the LOF is T. We then compute the back mutation rate as 0.4 times the rate at
which C mutates to A in this context plus the rate at which C mutates to G in this context (since
both A and G do not result in LOF) plus 0.6 times the rate at which T mutates to A in this con-
text plus the rate at which T mutates to G in this context. Implicitly this scheme assumes that the
flanking nucleotides in the trinucleotide context do not change, and we further assume that all
mutations resulting in CpGs result in unmethylated CpGs.

For the population sizes in each generation, we used the “CEU” model inferred in [81] using
the 1000 Genomes Project data [102]. This model was also used in [4]. Population sizes under this
model are relatively constant before 5156 generations ago (approximately 155 thousand years ago)
and the effects of strong selection are relatively insensitive to all but the most recent population
sizes, so for a computational speedup we assumed that the population size was constant prior
to 5156 generations ago. Recently, [4] found that this CEU model underestimates the number
of low frequency variants and that changing the population size to 5,000,000 for the most recent
50 generations provides a better fit to the data. We used both demographic models and found
qualitatively similar results, with slightly better fit provided by the modified model, so we used
that demographic model for all subsequent analyses. In both cases, we modified the most ancient
population sizes, which are relatively constant, to be actually constant to speed up likelihood
calculations. The demographic models are presented in Supplementary Figure 5.

Given that demography plays an important role in the likelihood and that gnomAD contains
individuals of diverse ancestries, we wanted to make sure that our results were generally robust
to misspecification of the demography. All of the results presented in the main text used the
entirety of gnomAD v2, but we also trained models using the subset of individuals labeled in the
dataset as “non-Finnish European” (NFE) as well as all non-NFE individuals. When training these
models we assumed the Agarwal. et al. demography, regardless of the ancestry of the individuals
used in training. The posterior mean shet values under all three models are quantitatively and
qualitatively consistent, with Spearman correlations greater than 0.93 between all pairs Figure 6.
The high concordance indicates that our pooling of individuals of different genetic ancestries is
justified, and that our results are robust to slight mismatches between the demography and the
individuals used.

The only remaining model parameter is pmiss the probability that any given LOF is misan-
notated. Throughout we focus on LOFs that either introduce early stop codons, disrupt splice
donors, or disrupts splice acceptors. Given that predicting which variants have these different
consequences involves different bioinformatic challenges, we inferred separate misannoatation
probabilities pc

miss for c ∈ {stop codon, splice donor, splice acceptor}. Below we write pmiss for the
collection of these three misannotation parameters. To get a rough estimate of these parameters
and avoid excessive computational burden, we took an h-likelihood approach [103, 104]. That is,
we jointly maximized the likelihood across all genes with respect to their selective constraints as
well as the the three misannotation probabilities that are shared across all genes:

max
pmiss,s(1)het,...,s

(M)
het

M

∑
i=1

log p
(

y(i) | s(i)het, pmiss

)
.
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This approach of just using the maximum likelihood estimates of shet for each gene contrasts with
the standard empirical Bayes approach, which would involve marginalizing out the unknown shet
values. Yet, this marginalization step depends on the prior on shet, which we learn via our NGBoost
framework. As a result, we would need to repeatedly run our NGBoost framework as an inner loop
to perform the standard empirical Bayes approach on pmiss. For our application, these values are
nuisance parameters, and the results are relatively insensitive to their exact values so we opted for
this simpler h-likelihood approach. Ultimately, we estimate that the probability of misannotation
is 0.7%, 4.5%, and 8.1% for stop codons, splice donors, and splice acceptors respectively.
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C Feature processing and selection

We compiled 10 types of gene features from several sources:

1. Gene structure. Gene structure features were derived from GENCODE gene annotations (Re-
lease 39) [84]. Such features include the number of transcripts and, for the primary transcript
of each gene (the transcript tagged Ensembl_canonical), the number of exons as well as the
length and GC content of the transcript, total coding region, 5’ UTR, and 3’ UTR.

2. Gene expression. We used gene features from 77 bulk and single-cell RNA-seq datasets, pro-
cessed and derived in [105]. These datasets can be grouped into 24 categories representing
tissues, cell types, and developmental stage (Table 6). For each dataset, features were de-
rived separately from all data and from individual cell clusters (for example, gene loadings
on principal components). In addition, features were derived from comparisons between
clusters (for example, t-statistics for differential expression). Finally, we include a metric, τ,
that summarizes the tissue-specificity of gene expression [106].

3. Biological pathways and Gene Ontology terms. First, we included previously curated biological
pathway features [105,107]. In addition, to include GO terms that capture additional known
relationships between genes, we downloaded Biological Pathway (BP), Molecular Function
(MF), and Cellular Component (CC) terms [108] with at least 10 member genes using the
procedure described in [10]. Features for each gene were encoded as binary indicators of the
gene’s membership in the pathways and GO terms.

4. Connectedness in protein-protein interaction (PPI) networks. We included previously computed
measures of the connectedness of protein products of genes in PPI networks [10]. Connect-
edness was calculated as the number of interactions per protein weighted by the interaction
confidence scores.

5. Co-expression. First, we included previously computed measures of the connectedness of
genes in co-expression networks [10], where connectedness measures the relative number
of neighbors of each gene in the network, averaged over tissues. Next, for each gene, we
derived features representing its co-expression with other genes (i.e. correlation in their ex-
pression levels across samples). To do this, we downloaded from the GeneFriends database
a co-expression network derived from GTEx RNA-seq samples [109,110], calculated the vari-
ance in the co-expression for each gene, and kept the 6,000 most variable genes. Then, we
included the co-expression with each of these 6,000 genes as a feature.

6. Gene regulatory landscape. Gene regulatory features include the counts and properties of the
enhancers and promoters that regulate each gene. First, we included the number of pro-
moters per gene estimated by the FANTOM consortium using Cap Analysis of Gene Ex-
pression [10, 111]. Next, for each gene, we calculated the number, summed length, and
summed score of enhancer-to-gene links predicted using the Activity-By-Contact (ABC) ap-
proach [49,112], where an enhancer is considered linked to a gene if its ABC score is ≥0.015.
We computed separate features for each of 131 biosamples. We also included features de-
rived by aggregating over all biosamples for both ABC enhancers and predicted enhancers
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from the Roadmap Epigenomics Consortium [10, 113, 114]—these feature include the num-
ber of biosamples with an active enhancer element, the total number of enhancer elements,
the total number of enhancer elements after taking merging enhancer domains, the total
length of the merged domains, and the average total enhancer length in an active cell type.
Finally, we included the enhancer-domain score for each gene [9] as a feature.

7. Conservation across species. For each gene, we calculated the mean and 95th percentile phast-
Cons scores over the gene’s exons for multiple alignments of 7, 17, 20, 30, and 100 verte-
brate species to the human genome [115]. We downloaded phastCons Scores from https:
//hgdownload.soe.ucsc.edu/goldenPath/hg38/. In addition, we included the fraction of
coding sequence (CDS) or exons constrained across 240 mammals or 43 primates sequenced
in the Zoonomia project [116], with constraint determined by the per-base phyloP [117] or
phastCons score. Zoonomia data were downloaded from https://figshare.com/articles/
dataset/geneMatrix/13335548.

8. Protein embedding features. We included as features the embeddings learned by an autoen-
coder (ProtT5) trained on protein sequences [118]. Embeddings were downloaded from
https://zenodo.org/record/5047020. The embedding for each protein is a fixed-size vec-
tor that captures some of the protein’s biophysical and functional properties. For each gene
with more than one protein product, we averaged the embeddings of the proteins for that
gene.

9. Subcellular localization. We included as features the subcellular localization of each pro-
tein and whether the protein is membrane-bound or soluble, as predicted by deep neu-
ral networks trained on the ProtT5 protein embeddings [118, 119]. Possible subcellular
classes included nucleus, cytoplasm, extracellular space, mitochondrion, cell membrane,
endoplasmatic reticulum, plastid, Golgi apparatus, lysosome or vacuole, and peroxisome.
Predictions were one-hot encoded, and for each gene with more than one protein product,
we summed the predictions for the gene’s proteins. Predictions were downloaded from
https://zenodo.org/record/5047020.

10. Missense constraint. We included a measure of each gene’s average intolerance to missense
variants (UNEECON-G score) [19]. UNEECON-G scores incorporate variant-level features
to account for differences in the effects of missense variants on gene function.

In addition to these 10 groups of features, we included a binary indicator for whether the
gene is located on the X chromosome. Genes in the pseudoautosomal regions were categorized as
autosomal.

After compiling these features (total of 65,383), we performed feature selection to minimize
the practical complexity of training on such a large feature set and the complexity of the resulting
model. First, we removed features with zero variance and features where the Spearman corre-
lation of the feature values with O/E (the ratio of observed over expected unique LOF variants,
computed using gnomAD data) was less than 0.1 or had a nominal p-value ≥ 0.05. Next, we per-
formed simultaneous feature selection and an initial round of hyperparameter tuning using the
shap-hypetune package, which uses Bayesian optimization to identify a set of features and hyper-
parameters that minimize the loss of a machine learning model fit on the training data. Specifically,
we fit gradient-boosted trees using XGBoost to predict O/E from the gene features; we chose to
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perform feature selection using XGBoost rather than NGBoost as training XGBoost models is sub-
stantially faster, and because we expect features/hyperparameters that perform well for XGBoost
to also perform well for NGBoost. For each set of hyperparameters, shap-hypetune performs back-
ward step-wise selection by removing the k least influential features (we chose k = 1000 and
calculated influence using SHAP scores) at each step. Finally, we performed further feature se-
lection using shap-hypetune by fixing the hyperparameters and performing backward step-wise
selection with k = 50. Ultimately, we included 1,248 features in the model.
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D Potential for bias from the use of missense constraint or cross-species
conservation

In theory, features that correlate with patterns of human LOF polymophism but not with con-
straint may bias our estimates. In particular, a number of population genetic forces beyond natu-
ral selection contribute to patterns of conservation across species and missense constraint, and if
these forces also affect observed LOF frequencies, then these features could be problematic. While
we take into account mutation rate differences due to trinucleotide context and methylation status
when considering LOFs, larger-scale variation in mutation rates and other forces that might alter
the “local effective population size” could affect various measures of constraint as well as LOF
frequency in a manner independent of selection.

To evaluate this possibility, we trained a model excluding missense constraint and cross-species
conservation features, and compared the shet estimates from this model to those from the full
model (Supplementary Figure 8). We find that the posterior mean values of shet are highly cor-
related between the models (Supplementary Figure 8A, Spearman ρ = 0.92). In addition, the
performance of the models in classifying genes essential in vitro and in classifying developmental
disorder genes is extremely similar (Supplementary Figure 8B,C). These results indicate that the
use of such features does not substantially bias the model.
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E Estimating additional gene properties using GeneBayes

GeneBayes is a flexible framework that can be used to infer other gene-level properties of interest
beyond shet. In Figure 6, we presented a schematic of the key components of GeneBayes that users
should specify, which we describe in more detail now.

First, users should specify the gene features to use as predictors. We expect the gene features
we use for shet estimation to work well for other applications, but GeneBayes supports any choice
of features. In particular, GeneBayes can handle categorical and continuous features without fea-
ture scaling, as well as features with missing values.

Next, users should specify the form of the prior distribution. GeneBayes supports the distri-
butions defined by the distributions package of PyTorch. GeneBayes also supports custom dis-
tributions, as long as they implement the methods used by GeneBayes (i.e. log_prob and sample)
and are differentiable within the PyTorch framework.

Finally, users need to specify a likelihood function that relates their gene property of interest to
observed data. The likelihood can be specified in terms of a PyTorch distribution, or as a custom
function.

After model training, GeneBayes outputs a per-gene posterior mean and 95% credible interval
for the property of interest. For each parameter in the prior, GeneBayes also outputs a metric for
each feature that represents the contribution of the feature to predictions of the parameter.

In the next section, we describe in more detail the two example applications that we outlined
in Figure 6.

Example applications

Differential expression

In this example, users have estimates of log-fold changes in gene expression between conditions
and their standard errors from a differential expression workflow, and would like to estimate log-
fold changes with greater power (e.g. for lowly-expressed genes with noisy estimates).

Likelihood We define ℓ
(i)
DE and ℓi as the estimated and true log-fold change in expression respec-

tively for gene i, and si as the standard error for the estimate. Then, we define the likelihood for ℓi
as

ℓ
(i)
DE | ℓi ∼ Normal(ℓi, s2

i ).

Prior We describe two potential priors that one may choose to try. The first is a normal prior
with parameters µi and σi:

ℓi ∼ Normal(µi, σ2
i ).

The second is a spike-and-slab prior with parameters πi, µi, and σi, which assumes that gene i
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only has a πi probability of being differentially expressed:

zi ∼ Bernoulli(πi)

ℓi|zi ∼
{

0, if zi = 0

Normal(µi, σ2
i ), if zi = 1

Variant burden tests

In this example, users have sequencing data from patients with a disease or (if calling de novo
mutations) sequencing data from family trios, and would like to identify genes with excess muta-
tional burden in patients (e.g. an excess of missense or LOF variants). One approach is to infer the
relative risk for each gene (denoted as γi for gene i), defined as the expected ratio of the number
of variants in patients to the number of variants in healthy individuals.

Likelihood Let Ei be the number of variants we expect to observe for gene i given the study
sample size and sequence-dependent mutation rates (e.g. expected counts obtained using the
mutational model developed by [90]). Next, let Oi be the number of variants observed in patients
for gene i. Then, we define the likelihood for ηi as

Oi | ηi ∼ Poisson(ηiEi).

Prior Because ηi is non-negative, one may want to choose a gamma prior with parameters αi
and βi:

ηi ∼ Gamma(αi, βi).
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Gene shet LOEUF Obs. Exp.
RPL18 0.74 0.28 0 10.5
RPL11 0.72 0.30 0 10.1
RPS19 0.70 0.37 0 8.1
RPS15A 0.68 0.56 0 5.4
RPL35A 0.56 0.41 0 7.3
RPS26 0.56 0.48 0 6.2
RPS7 0.56 0.31 0 9.7
RPL26 0.50 0.38 0 8.0
RPS24 0.49 0.59 1 8.0
RPL35 0.46 0.72 1 6.6
RPS10 0.45 0.27 0 11.0
RPL5 0.45 0.17 0 17.9
RPL27 0.43 0.48 0 6.2
RPL15 0.23 0.27 0 11.0
RPS29 0.19 1.2 1 3.9
RPS28 0.13 0.80 0 3.8
RPS27 0.10 0.64 0 4.7
RPS17 0.05 1.8 0 0.4

Supplementary Table 1: LOEUF and shet for ribosomal proteins associated with Diamond-Blackfan
anemia.
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Supplementary Figure 1: shet distributions for additional example genes. Left: Posterior distributions and
rescaled likelihoods for genes with few expected LOFs (genes in the bottom quartile). Right: Posterior distributions
and rescaled likelihoods for genes with many expected LOFs (genes in the top quartile).
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Supplementary Figure 2: Dependence of likelihoods on parameters. Relative log likelihoods for a high
mutation rate site with different allele frequencies, f , and misannotation probabilities, pmiss.

54

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.05.19.541520doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541520
http://creativecommons.org/licenses/by/4.0/


10
6

10
5

10
4

10
3

10
2

10
1

10
0

6

4

2

0

R
el

at
iv

e 
lo

g 
lik

el
ih

oo
d

4.3 Expected LOFs, 1 Observed

pmiss = 0.1

pmiss = 0.01

pmiss = 0.001

pmiss = 0

AARD

10
6

10
5

10
4

10
3

10
2

10
1

10
0

200

150

100

50

0

90.2 Expected LOFs, 118 Observed

LPA

10
6

10
5

10
4

10
3

10
2

10
1

10
0

shet

0.0

0.1

0.2

0.3

0.4

S
ca

le
d 

lik
el

ih
oo

d

10
6

10
5

10
4

10
3

10
2

10
1

10
0

shet

0.0

0.1

0.2

0.3

0.4

Supplementary Figure 3: Likelihoods for example genes. Relative log likelihoods (top row) or scaled likeli-
hoods (bottom row) for representative genes AARD (left column) and LPA (right column) for different misannotation
probabilities, pmiss. Here we set pmiss to be the same regardless of the type of LOF variant. AARD is a representative
example of a gene with few expected LOFs, while LPA is a representative example of a gene with many expected LOFs.
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Supplementary Figure 4: Mean posterior probabilities of misannotation along canonical transcripts.
Each potential LOF was mapped to its position within the transcript normalized to the total transcript length. Variants
within the first 5% of the transcript were binned, and then the next 5% of the transcript, and so on. In the plot, points
represent the mean of the inferred posterior probabilities within each bin, and lines correspond to ±1.96 standard
errors of the mean estimate.
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Supplementary Figure 5: Comparison of CEU demographies. CEU demography inferred by Schiffels and
Durbin [81], modified by Agarwal and colleagues [4], and further modified for this paper.
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Supplementary Figure 6: Comparison of shet estimates from models trained on subsets of gnomAD.
A) Scatterplot of posterior mean shet estimated from a model trained with non-NFE individuals (y-axis) against shet
estimated from the full model (x-axis). NFE = Non-Finnish European. This subset consists of ∼56, 000 individuals, or
∼45% of the total dataset. B) Scatterplot of posterior mean shet estimated from a model trained with NFE individuals
(y-axis) against shet estimated from the full model (x-axis). This subset consists of ∼67, 000 individuals, or ∼55% of
the total dataset.
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Supplementary Figure 7: Additional validation analyses. A) Precision-recall curves comparing the perfor-
mance of shet estimates from GeneBayes against LOEUF from gnomAD v4.0.0 (∼731k exomes) or LOEUF from
gnomAD v2.1.1 (∼125k exomes) in classifying essential genes. B) Precision-recall curves comparing the performance
of shet estimates from GeneBayes against other constraint metrics in classifying non-essential genes. C) Precision-
recall curves comparing the performance of shet against other constraint metrics in classifying developmental disorder
genes. D) Enrichment of de novo mutations in patients with developmental disorders, calculated as the observed num-
ber of mutations over the expected number under a null mutational model. We plot the enrichment of synonymous,
missense, splice, and nonsense variants in the 10% of genes considered most constrained by shet (blue) and the enrich-
ment of these variants in all other genes (gray), including (left) and excluding (right) known developmental disorder
genes. Bars represent 95% confidence intervals. E) Scatterplot of the enrichment of common variant heritability in
the 10% of genes considered most constrained by shet (y-axis) or LOEUF (x-axis), normalized by the enrichment of
heritability in all genes. Each point represents one trait.
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Supplementary Figure 8: Performance of shet estimates from a model with some features removed.
A) Scatterplot of posterior mean shet estimated from a model trained without missense constraint or cross-species
conservation features (y-axis) against shet estimated from the full model (x-axis). B) Precision-recall curves comparing
the performance of shet estimated from the full model (blue) and from the model without missense/conservation features
(orange) in classifying essential genes. C) Precision-recall curves comparing the performance of shet estimated from
the two models in classifying developmental disorder genes.
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Supplementary Figure 9: Performance of shet and LOEUF for genes with differing numbers of expected
LOFs. Left: Precision-recall curves comparing the performance of shet against LOEUF in classifying essential genes
for groups of genes binned by their expected number of LOFs. Right: Precision-recall curves comparing the perfor-
mance of shet against LOEUF in classifying developmental disorder genes for binned genes.
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Supplementary Figure 10: Correlation of gene features with gene length A) Histogram of the Spearman
ρ between gene features and coding sequence (CDS) length. B) Histogram of the Spearman ρ between gene features
and CDS length for gene expression features, colored by category. C) Spearman ρ between gene features and CDS
length for additional features of interest. D) Scatterplot of the Spearman ρ between gene features and posterior mean
shet (y-axis) against the partial Spearman ρ (x-axis) after controlling for the effect of gene (CDS) length.

62

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.05.19.541520doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.19.541520
http://creativecommons.org/licenses/by/4.0/

