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Abstract

Astrocytes are the largest subset of glial cells and perform structural, metabolic, and regulatory
functions. They are directly involved in the communication at neuronal synapses and the maintenance of
brain homeostasis. Several disorders, such as Alzheimer’s, epilepsy, and schizophrenia, have been
associated with astrocyte dysfunction. Computational models on various spatial levels have been
proposed to aid in the understanding and research of astrocytes. The difficulty of computational
astrocyte models is to fastly and precisely infer parameters. Physics informed neural networks (PINNs)
use the underlying physics to infer parameters and, if necessary, dynamics that can not be observed. We
have applied PINNs to estimate parameters for a computational model of an astrocytic compartment.
The addition of two techniques helped with the gradient pathologies of the PINNS, the dynamic
weighting of various loss components and the addition of Transformers. To overcome the issue that the
neural network only learned the time dependence but did not know about eventual changes of the input
stimulation to the astrocyte model, we followed an adaptation of PINNs from control theory (PINCs). In
the end, we were able to infer parameters from artificial, noisy data, with stable results for the
computational astrocyte model.

Keywords: computational model, astrocyte, parameter inference, physics informed neural networks,
physics informed neural-net control
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1 Introduction 77

Together with the well-studied neurons, glial cells make up the nervous system. Astrocytes are the 78

largest group of glial cells and provide structural support, perform diverse metabolic and regulatory 79

functions, and are responsible for the regulation of synaptic transmission. They connect to neurons at 80

synaptic clefts [Araque et al., 1999] and absorb glutamate and other neurotransmitters released by firing 81

neurons. As a reaction to the glutamate, the intracellular calcium (Ca2+) concentration of astrocytes 82

rises, causing Ca2+ transients that can spread over multiple astrocytes, and causes the release of ions 83

and transmitter molecules that affect the neurons. Malfunctions in astrocytes have been connected to 84

multiple diseases such as Alzheimer’s, Huntington’s [Siracusa et al., 2019], schizophrenia [Notter, 2021], 85

and epilepsy [Verhoog et al., 2020]. Research has also shown that astrocytes play an important role in 86

the acquisition of fear memory, offering new ways to potentially treat anxiety-related disorders [Liao 87

et al., 2017, Li et al., 2020]. 88

To this day, astrocytes remain difficult to study and observe. Therefore, many of their pathways 89

remain unknown. To aid the general understanding and research of astrocytes, several computational 90

models have been proposed. The types of models range from network models, that attempt to simulate 91

whole neuron and astrocyte networks [Lenk et al., 2020], over single cell models, used to study Ca2+ 92

wave propagation and neuron interaction [Larter and Craig, 2005, Nadkarni and Jung, 2007, De Pitta 93

and Brunel, 2016], to single compartment models [Denizot et al., 2019, Oschmann et al., 2017] focusing 94

on only a small part of an astrocyte. 95

However, these models are often incomplete and rely on parameters that often are not available. 96

Respective measurements are too expensive or not possible with current technology. Thus, one major 97

challenge of computational astrocyte models, and computational models in general, is the fast and 98

accurate inference of parameters. Well-known methods for parameter inference include least squares 99

fitting [Liu et al., 2012, Dattner et al., 2019], genetic algorithms [Mitchell, 1998], Bayesian inference 100

methods such as Markov Chain Monte Carlo (MCMC) [Valderrama-Bahamóndez and Fröhlich, 2019] or, 101

though more often used in robotics, Kalman filters [Lillacci and Khammash, 2010]. More recently, 102

Yazdani et al. [2020] proposed to use physics informed neural networks (PINNs) to infer parameters. In 103

contrast to the more traditional methods, PINNs make use of the underlying physics to infer parameters 104

and, if necessary, dynamics that can not be observed. 105

In this study, we focus on the computational model of an astrocytic compartment developed by 106

Oschmann et al. [2017]. Using the parameter inference algorithm originally developed by Yazdani et al. 107

[2020], we demonstrate different problems with the algorithm and propose solutions that aim to stabilize 108

the algorithm. Using the stabilized inference algorithm, we then go on and infer the parameters for 109

different currents underlying the molecular dynamics of the astrocytic compartment model. 110
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2 Background 111

In this section, we introduce the two main topics of this study: astrocytes and parameter inference in the 112

context of machine learning. 113

2.1 Biology of Astrocytes 114

Astrocytes are a type of glial cell usually found in the brain and spinal cord. For many years, it was 115

assumed that astrocytes only serve structural, metabolic, and regulatory functions. However, in the last 116

30 years, this view has been challenged by a multitude of research suggesting that astrocytes are also 117

involved in the control of synaptic transmission [Vesce et al., 1999, Araque et al., 1999, Haydon and 118

Carmignoto, 2006, Nedergaard and Verkhratsky, 2012, Araque et al., 2014]. 119

According to research, the number of astrocytes and their exact morphology can vary widely between 120

different species, brain regions, and brain layers [Zhou et al., 2019]. For example, it has been shown that 121

astrocytes in the human neocortex are 2.6 times larger in diameter and exhibit up to 10 times as many 122

primary processes as the astrocytes of rodents [Oberheim et al., 2009]. Experiments performed by Buosi 123

et al. [2018] showed distinct astrocytic gene expressions between different brain regions. Furthermore, 124

Lanjakornsiripan et al. [2018] described differences in cell orientation, territorial volume, and 125

arborization between different layers in the somatosensory cortex of mice. 126

While astrocytes are very heterogeneous in form and function [Verkhratsky and Nedergaard, 2018], 127

they can generally be described as star-formed and highly branched cells. Each cell consists of a soma 128

with several outgoing branches that split into smaller branchlets and then into distal processes. Several 129

intracellular Ca2+ storages (endoplasmatic reticulum, ER) and mitochondria are placed along astrocytic 130

processes. The volume of ER decreases along the astrocytic process [Patrushev et al., 2013]. Astrocytic 131

distal processes can enclose neuronal synapses, thereby forming a so-called tripartite synapse [Araque 132

et al., 1999] consisting of pre- and postsynaptic neurons as well as of an astrocyte. Furthermore, 133

neighboring astrocytes communicate with each other through gap junctions, thereby forming a separate 134

network. 135

In contrast to neurons, astrocytes are not electrically excitable [Verkhratsky and Nedergaard, 2018]. 136

Instead, the main signal of astrocytes is considered to be Ca2+ transients. Ca2+ transients can either 137

involve the whole astrocytic cell body as well as neighboring astrocytes or different proportions of an 138

astrocytic process [Di Castro et al., 2011, Srinivasan et al., 2015]. The propagation of Ca2+ waves 139

through gap junctions is assumed to be mediated either intracellular, through the direct diffusion of IP3 140

[Giaume and Venance, 1998], or by an extracellular diffusion of ATP [Guthrie et al., 1999, Fujii et al., 141

2017]. As a reaction to increased intracellular Ca2+ levels, astrocytes release gliotransmitters, such as 142

glutamate, D-Serine, adenosine triphosphate (ATP), and gamma-Aminobutyric acid (GABA), that 143

modulate the synaptic properties of enclosed neurons [Serrano et al., 2006, Henneberger et al., 2010, 144

Sahlender et al., 2014, Harada et al., 2015]. 145

In 2011, Di Castro et al. [2011] used high-resolution two-photon laser scanning microscopy (2PLSM) 146

to observe endogenous Ca2+ activity along an astrocytic process. By subdividing the astrocytic process 147

into smaller subregions (compartments) and recording their respective Ca2+ activity, they were able to 148

observe two different categories of Ca2+ transients. Focal transients, mostly occurring at random and 149

being confined to single compartments, and extended transients, cause larger, compartment-overlapping 150

Ca2+ elevations. Furthermore, the authors noticed that the occurrence of transients was directly 151

influenced by blocking or potentiating action potentials and transmitter release, proofing that Ca2+ 152

transients might in part be triggered by neuronal activity. 153

The mechanism underlying Ca2+ dynamics can be separated into two different pathways [Wallach 154

et al., 2014, Helen et al., 1992], both being attributed to the uptake of glutamate by astrocytes. On the 155

one hand, the released glutamate binds to respective metabotropic receptors (mGluR) in the astrocytic 156

plasma membrane, causing a release of inositol 1,4,5-trisphosphate (IP3) into the cytosol. Larger 157

concentrations of IP3 increase the probability of open IP3R channels between the astrocytic ER and 158

intracellular space, leading to an increase in intracellular Ca2+ levels [Bezprozvanny et al., 1991]. The 159

increased intracellular Ca2+ concentration elevates the probability of open IP3R channels further, 160
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leading to a Ca2+-induced Ca2+ release (CICR) mechanism. Ca2+ is transported back into the ER using 161

ATP via the sarco endoplasmic reticulum Ca2+-ATPase (SERCA) pump). On the other hand, the 162

released glutamate activates glutamate transporters (GluT). In exchange for one potassium (K+) ion, 163

GluT one glutamate-, one hydrogen, and three sodium (Na+) ions into the intracellular space. The 164

changes in Na+ and K+ level influence two other transport mechanisms, namely the Na+-Ca2+ 165

exchanger (NCX) and the Na+-K+ adenosine triphosphatase (NKA). Depending on the intracellular Na+ 166

levels, NCX transports three Na+ ions out/into the cell and one Ca2+ ion into/out of the cell, 167

respectively. Similarly, NKA exchanges three intracellular Na+ ions for two extracellular K+ ions. 168

Additionally, depending on the current membrane voltage and the Nernst potentials of Na+ and K+
169

respectively, Na+ and K+ ions leak out of the cell. 170

2.2 Computational Models of Astrocytes 171

So far, a multitude of computational astrocyte models have been developed. Generally, different models 172

can be categorized into network models, single cell models, or single compartment models [Oschmann 173

et al., 2018, González et al., 2020]. 174

2.2.1 General Overview 175

Many astrocyte models focusing on the interaction between astrocytes have been published. For example, 176

Goldberg et al. [2010] studied Ca2+ signaling through gap junctions inside a small astrocyte chain. 177

Assuming that Ca2+ waves are propagated through the exchange of IP3 molecules through gap junctions, 178

they found that long-distance Ca2+ waves require the astrocyte network to be sparsely connected, to 179

have a non-linear coupling function and a threshold, that, if not reached, causes the wave to dissipate. 180

Similar observations were made in a later paper by Lallouette et al. [2014] that includes more complex 181

networks. An astrocytic network model including both, the propagation of waves using IP3 and ATP, 182

was proposed by Kang and Othmer [2009]. In their paper, they showed that the IP3 and ATP pathways 183

can be distinguished from each other by looking at the delay between cells. Since astrocyte morphology 184

and spatiotemporal patterns were found to play an important role in astrocyte function, Verisokin et al. 185

[2021] proposed an algorithm to create realistic, data-driven astrocyte 2D morphologies. Other network 186

models include both astrocytes and neurons. Using a simple neuron-astrocyte architecture based on 187

anatomical observations made in the hippocampal area, Amiri et al. [2013] showed the influence of 188

astrocytes on neuron synchronicity. Lenk et al. [2020] presented a discrete computational 189

astrocyte-neuron model consisting of a neuronal network, an astrocyte network, and joint tripartite 190

synapses. They used the model to study the effects of astrocytes on neuronal spike- and burst rate. 191

Several models simulate the interaction between neurons and astrocytes at a tripartite synapse. For 192

instance, Nadkarni and Jung [2007] simulated a tripartite synapse of an excitatory pyramidal neuron. 193

Their model assumes that astrocytes release glutamate in response to synaptic activity, thereby 194

regulating Ca2+ at the presynaptic terminal. The effects of glutamatergic gliotransmission were further 195

studied using a computational model by De Pitta and Brunel [2016]. In that model, the authors assumed 196

that the release of gliotransmitters by the astrocyte is Ca2+-dependent and showed that gliotransmitter 197

release is able to swap the synaptic plasticity between depressing and potentiating effects. Oyehaug et al. 198

[2011] studied the effect of high K+ accumulation during neuronal excitation using a tripartite synapse 199

model with detailed glial dynamics. They found that the presence and uptake of K+ by astrocytes are 200

necessary to keep neurons from deactivating due to membrane depolarization. 201

Most models introduced so far release gliotransmitters that act on connected neurons, but not on the 202

releasing astrocyte itself. An exception to this is the single-cell model developed by Larter and Craig 203

[2005]. In this model, the astrocyte reacts to the glutamate release of a neuron by releasing more 204

glutamate, triggering a glutamate-induced glutamate release (GIGR) similar to the concept of CICR. 205

The authors show that the proposed mechanism accounts for Ca2+ bursts in astrocytes. 206

Other single-cell models are mostly concerned with IP3 dependent Ca2+ dynamics. Early models, 207

such as the one proposed by Goldbeter et al. [1990] or Li and Rinzel [1994], use a constant concentration 208

of IP3 to show that Ca2+ fluctuations are possible even without oscillation in IP3 level. Later models 209
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Figure 1. Schematic drawing of the computational astrocytic compartment model as it was implemented
by Oschmann et al. [2017]

.

then started to include more complete IP3-Ca
2+ dynamics [Goto et al., 2004] and finally included both, 210

the Ca2+-dependent synthesis and the degradation of IP3 [De Pittà et al., 2009]. 211

The behavior of different signaling pathways and enzymes is prevalently modeled through ordinary 212

differential equations (ODEs). For example, Taheri et al. [2017] presented a single-compartment model 213

focused on intracellular Ca2+ dynamics in an astrocytic compartment. Using ODEs and information 214

from experimental data, they described the influence of IP3 on Ca2+ signaling and used their results to 215

categorize four different types of Ca2+ transients. A more specific, particle-based model of an astrocytic 216

compartment was implemented by Denizot et al. [2019]. Using their model, the authors were able to 217

recreate stochastic Ca2+ signals and showed that the occurrence of Ca2+ signals is heavily dependent on 218

the spatial positioning of IP3R channels. Oschmann et al. [2017] created a model including intracellular 219

Ca2+ dynamics and their dependence on both GluT and mGluR, using it to study how the different 220

pathways affect the Ca2+ dynamics throughout an astrocytic process. In this study, we will focus on the 221

computational model developed by Oschmann et al. [2017]. The details will be explained further in the 222

next section. 223

2.2.2 Astrocytic Compartment Model by Oschmann et al. [2017] 224

Oschmann et al. [2017] developed a single compartment model that takes both aforementioned Ca2+ 225

pathways into account: The mGluR-dependent pathway, leading to the production of IP3 and thereby to 226

the exchange of Ca2+ between ER and cytosol, and the GluT-dependent pathway, employing glutamate 227

transporters and, together with NCX and NKA, influencing the exchange of glutamate, Ca2+, Na+ and 228

K+ between extracellular space and cytosol. A schematic drawing of the different currents resulting from 229

these pathways is shown in Figure 1. 230

In this model, the intracellular space of an astrocytic compartment is represented by a cylindrical 231

shape. Another smaller cylinder is placed within the intracellular space representing the ER. The 232

distance between soma and simulated compartment proportionally decreases the volume of the 233

intracellular space, the volume of the ER, and the volume ratio ratioER between the two (Figure 2). For 234
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Figure 2. Figure depicting the change in SVR in compartments along an astrocytic process (taken from
Oschmann et al. [2017]).

simplicity, the extracellular space is assumed to be exactly on top of the mantel area of the intracellular 235

space. Diffusion between neighboring compartments is not considered. 236

The computational model consists of seven ODEs that describe the change in ion concentrations over 237

time. Each ODE is a weighted sum of particle currents or, in the case of IP3, the production and 238

degradation of IP3. Each current accounts for the change in electrical charge caused by a specific 239

mechanism. 240

Namely, the following currents are considered: 241

• For the GluT-dependent pathway: 242

– IGluT: Based on the transport of glutamate by glutamate transporters. As a byproduct, Na+ 243

is transported into and K+ out of the intracellular space. 244

– INCX: Based on the Na+-Ca2+ exchanger [Luo and Rudy, 1994]. 245

– INKA: Based on Na+-K+ adenosine triphosphatase and a simplified form of its mathematical 246

description [Luo and Rudy, 1994]. 247

– INaLeak
and IKLeak

: Leak currents dependent on the current membrane voltage and the Nernst 248

potentials of Na+ and K+, respectively. 249

• For the mGluR-dependent pathway: 250

– IIP3R: Ca
2+ current from the ER into the intracellular space through IP3 receptor channels. 251

It is based on the mathematical description by Li and Rinzel [1994]. The exact current 252

depends on the probability of activated IP3 receptor channels. The probability is modeled 253

through the ODE (Equation 6) described in the next paragraph. 254

– ISerca: Pump to transport Ca2+ from the intracellular space into the ER [Li and Rinzel, 1994]. 255

– ICaLeak
: Leak current out of the ER. It is important to note that, other than INaLeak

and 256

IKLeak
, this leak current does not depend on the membrane voltage but on the Ca2+ 257

concentration gradient between ER and intracellular space [Li and Rinzel, 1994]. 258

The intracellular and ER Ca2+ concentration are computed using the following equations:

d[Ca2+]i
dt

= C · INCX + C ·
√
ratioER · (IIP3R − ISerca + ICaLeak

) (1)

d[Ca2+]e
dt

= C ·
√
ratioER

ratioER
· (−IIP3R + ISerca − ICaLeak

) (2)
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where C is a constant accounting for the ratio between the area of the internal Ca2+ storage and the
volume of the intracellular space. Similarly, the derivatives of intracellular Na+ and K+ concentrations
are defined as:

d[Na+]i
dt

= C · (3IGluT − 3INKA − 3INCX − INaLeak
) (3)

d[[K+]i
dt

= C · (−IGluT + 2INKA − IKLeak
) (4)

The production and degradation of IP3 are governed by mechanisms dependent on extracellular
glutamate and internal Ca2+ concentration which are further discussed in the original paper [Oschmann
et al., 2017] and a paper by De Pittà et al. [2009]. The amount of internal IP3 directly influences the
open probability h of IP3R channels.

d[IP3]i
dt

= fPLCβ + fPLCδ − fIP3−3K − fIP−5P (5)

dh

dt
= f([IP3]i, [Ca2+]i) (6)

Last, the currents also influence the membrane voltage through the equation

dV

dt
= − 1

Cm
(− 2IIP3R + 2ISerca − 2ICaLeak

+ INCX

− 2IGluT + INKA + INaLeak
+ IKLeak

)

(7)

where Cm is the membrane capacitance. The total concentrations of Ca2+, Na+, and K+ are assumed to 259

be constant. 260

A more detailed description of the computational model can be found in the original article 261

[Oschmann et al., 2017]. 262

2.3 Parameter Inference 263

One of the major challenges in computational modeling is the accurate and efficient estimation of system 264

parameters. Parameters are often not directly transferable from experiment to model or might not be 265

measurable at all. Especially in system biology, parameters might further vary vastly between different 266

species. Hence, a lot of effort has been put into the exploration of appropriate parameter inference 267

methods. Most of these methods can be summarized as algorithms that attempt to minimize an 268

objective function. 269

One of the simplest and most well-known methods for parameter inference is least squares fitting 270

(LSF). LSF attempts to find the function best describing a set of observations by minimizing the least 271

square error between each observation and the estimated solution. In general, the method is best suited 272

for linear problems without colinearity and with constant variance. In biology, adaptations of LSF have 273

been used for a variety of use cases, including the inference of parameters in S-systems [Liu et al., 2012, 274

Dattner et al., 2019] or biochemical kinetics [Mendes and Kell, 1998]. 275

Genetic algorithms (GA) on the other hand work by assigning fitness (value of the objective function) 276

to different, at the beginning randomly generated, samples. The fittest samples are selected and 277

modified by either recombining them with other samples or by randomly mutating them. The process of 278

assigning fitness, selection, and modification is then repeated until samples with sufficient fitness are 279

produced [Mitchell, 1998]. 280

Based on probability theory, Bayesian inference combines prior knowledge with the likelihood of 281

parameters generating the desired output. Respective methods attempt to estimate the parameters and 282

their probability distribution by maximizing the likelihood function. For example, Bayesian inference 283

finds its application in Markov Chain Monte Carlo (MCMC) algorithms. In general, MCMC works by 284

randomly sampling parameter values proportional to a known function. The exact implementation is 285
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algorithm-dependent. Recently, Valderrama-Bahamóndez and Fröhlich [2019] studied the performance of 286

different MCMC techniques for parameter inference in ODE-based models. 287

Kalman filtering is another approach originating from the field of control theory. Kalman filters 288

produce parameter estimates by iteratively interpreting measurements over time and comparing them to 289

their own predictions. These filters often find applications in robotics and navigation. In 2010, Lillacci 290

and Khammash [2010] proposed an algorithm to infer parameters of ODE-driven systems through 291

Kalman filters and proofed their concept on the heat shock response in E. coli and a synthetic gene 292

regulation system. Similarly, Dey et al. [2018] combined Kalman Filters with MCMC to create a robust 293

algorithm for parameter inference in biomolecular systems. 294

With the growing popularity of deep learning, various attempts have been made to use neural 295

networks for parameter inference. Green and Gair [2020] trained a neural network to closely approximate 296

the posterior distribution of gravitational waves, thereby replacing the more often used MCMC algorithm. 297

At the same time, the concept of physics informed neural networks (PINN) has been introduced by 298

Raissi et al. [2017]. The general idea is to train neural networks on sparse data while enforcing additional 299

constraints modeled through ordinary- or partial differential equations (ODE or PDE). While the first 300

version of PINNs was found to be error-prone by many authors [Wang et al., 2020, Antonelo et al., 2021], 301

the method has since been improved and applied by several researchers. For example, Lagergren et al. 302

[2020] suggested an extension of PINNs that allows for the discovery of underlying biological dynamics 303

even if the exact underlying PDE or ODE is not known. Similarly, Yazdani et al. [2020] suggested a deep 304

learning algorithm that allows for parameter inference using PINNs in systems biology. Additions to 305

make PINNs more suitable for control theory were proposed by Antonelo et al. [2021]. 306

As the most recent method of parameter inference described in this section, PINNs have not been as 307

well studied as other methods. However, preliminary results are promising and show that they have large 308

potential. In contrast to other methods, they allow for the incorporation of previous knowledge of the 309

mechanics underlying different dynamics. In this study, we will use the algorithm proposed by Yazdani 310

et al. [2020] as a foundation to estimate parameters for the previously mentioned computational model of 311

an astrocytic compartment [Oschmann et al., 2017]. 312

2.4 Neural Networks 313

2.4.1 Perceptron 314

Back in 1958, Frank Rosenblatt proposed the concept of a simple perceptron [Rosenblatt, 1958]. While 315

still very limited in its functionality, the perceptron was able to learn to distinguish between linearly 316

separable classes. To that end, the perceptron took the weighted sum of different inputs. A simple 317

thresholding function (zero if the weighted sum is below T, one otherwise) then decided which class the 318

input belongs to. The perceptron was able to learn the needed weights automatically by minimizing the 319

error between actual and sought-after output. Today’s neural networks work very similarly, basically 320

consisting of a multitude of perceptrons. 321

Mathematically speaking, a single neuron (perceptron) inside a neural network works as follows: Each
neuron gets n different inputs, denoted as x⃗ ∈ Rn. The neuron saves information about the different
input weights, denoted as w⃗ ∈ Rn, and about its bias, denoted as b ∈ R. Figure 3 shows an example of
such a perceptron. Weights and bias get optimized throughout the learning process. The relationship
between the neuron inputs x⃗ and the neuron output ŷ is given through

ŷ = g(w⃗T · x⃗+ b) (8)

where g : R→ R is called activation function. Activation functions are functions that map any real 322

single output to a value within a reasonable range. Typical examples include the functions ReLu, 323

sigmoid, and tanh. Figure 4 depicts different activation functions. 324

2.4.2 Full Neural Networks 325

Usually, a neural network consists of multiple layers L of neurons. Inside each layer is a fixed amount of
neurons Nl. While neurons inside the same layer are not connected with each other, each neuron of layer
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x1

x2

x3

z

b

ŷ

w1

w2

w3

g(z)

Figure 3. Example image of a perceptron. In this case, x1, x2, x3 are the inputs. The weights are w1,
w2 and w3. b is the perceptron bias. z is the weighted sum of the network inputs and the bias. g(z) is
the activation function. ŷ is the perceptrons output.
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Figure 4. Plots of the different activation functions ReLu, tanh, sigmoid and swish.
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x1

x2

f̂(θ⃗)

X⃗
l = 1

W⃗ [1] ,⃗b[1]
l = 2

W⃗ [2] ,⃗b[2]
l = 3

W⃗ [3] ,⃗b[3] W⃗ [L+1] ,⃗b[L+1]

Figure 5. Fully connected neural network with L = 3

l is connected with each neuron of layer l − 1 and with each neuron of layer l + 1. The output equation
for a single perceptron (Equation 8) can be written in matrix form for each layer, resulting in

A⃗[1] = g[1]
(
W⃗ [1] · x⃗+ b⃗[1]

)
(9)

A⃗[l] = g[l]
(
W⃗ [l] · A⃗[l−1] + b⃗[l]

)
(10)

f̂(θ⃗) = W⃗ [L+1] · A⃗[L] + b⃗[L+1] (11)

where W⃗ = (w⃗1, ..., w⃗Nl
) is a matrix containing all input weights, A⃗[l−1] are the output values of the 326

previous layer, b⃗[l] are the biases and g[l] is a function that applies the chosen activation function 327

component-wise. Figure 5 shows an example of a fully connected network. Note that in this specific 328

example, no activation function is used between the last neural network layer and the output layer. 329

Depending on the desired type of output, this can vary. 330

To learn how weights and biases have to be changed to get the best possible results, the concept of
backpropagation is applied. Backpropagation works as follows: First, a loss function L measuring the
wrongness of the network is defined. Typical loss functions include mean squared error for regression
tasks or cross-entropy for classification tasks. Next, the gradient of the loss with respect to the network
weights W⃗ [l] and biases b⃗[l] is computed. For simplicity, the combination of all weights and all biases is
usually written in vector form θ⃗ = (W⃗ [1], b⃗[1], ..., W⃗ [L+1], b⃗[L+1]), which means that the gradient of the

loss function can be written as ∇θ⃗L(θ⃗). Generally, there is a multitude of different methods to update
the network weights given ∇θ⃗, the simplest one being stochastic gradient descent (SGD). With SGD, the
network parameters are updated using

θ⃗n+1 = θ⃗n − η∇θ⃗L (12)

where η is the learning rate and n is the current iteration. A more modern adaptation of SGD is called 331

Adam [Kingma and Ba, 2014]. In contrast to SGD, Adam is an adaptive gradient descent algorithm that 332

maintains a learning rate per-parameter and is, therefore, less sensitive to the set learning rate η. 333

Furthermore, it uses the first and second moments of the gradient to speed up convergence where 334

possible. 335

2.4.3 Systems biology informed deep learning for inferring parameters by Yazdani et al. 336

[2020] 337

Yazdani et al. [2020] suggested a deep learning model for inferring parameters and hidden dynamics in 338
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biological models governed by ODEs. Using only a few, incomplete and noisy measurements, they were 339

able to accurately estimate unknown model parameters. 340

In their algorithm, Yazdani et al. [2020] assumed a computational model with s states
x⃗ = (x1, x2, ..., xs) of which m, m ≤ s, states are observable. Each state is described through one ODE.
Therefore, the system of ODEs can be described by

dx⃗

dt
= f(x⃗, t; p⃗) (13)

where p⃗ ∈ Rn are the n unknown model parameters. Using neural networks, they then attempt to learn 341

a surrogate function f̂(t) that maps measurement times to the state variables. 342

In addition to the usual neural network layers (input layer, hidden layers, output layer), they 343

extended the network by three additional layers. The first two layers are added in between the input- 344

and hidden layers. The first one is an input scaling layer, that scales the timestamps to be between zero 345

and one. Second, a feature layer is added. This layer transforms the scaled input time to a function that 346

already roughly describes the function the network is supposed to learn. For example, if the state 347

variables oscillate heavily, sin(t) might be used as a feature transform. The last layer is added behind the 348

output layer and is responsible for scaling the output states to be approximately of magnitude O(1). A 349

schematic drawing of the different network layers can be seen in Figure 6. 350

As mentioned earlier, neural networks learn by attempting to reduce a loss function. In this
algorithm, the loss function is defined as

L(θ⃗, p⃗) := LData(θ⃗) + LODE(θ⃗, p⃗) + LAux(θ⃗) (14)

The different loss terms have the following meaning: 351

• LData: The weighted mean squared error (MSE) between the observed states x⃗i and their 352

respective state outputs ⃗̂xi of the neural network. 353

• LAux: The weighted MSE between initial and end values of the original states x⃗(t = T0|t = T1) 354

and initial and end values of the neural network output ⃗̂x(t = T0|t = T1) 355

• LODE : The weighted MSE between the gradient of the learned function with respect to time d⃗̂x
dt 356

and the gradients given by the computational model, df(⃗̂x,t;p⃗)
dt . The term d⃗̂x

dt is computed through 357

automatic differentiation. 358

Using these loss terms, the neural network is able to learn both, an approximation of the function f 359

and the unknown parameters p⃗. 360

Using this algorithm, Yazdani et al. [2020] were able to infer hidden dynamics and parameters from 361

noisy data in a standard yeast glycolysis model, in a cell apoptosis model, and even in an event-driven 362

ultradian endocrine model. While inference on the last model worked best when event times were known, 363

parameter inference was still reasonably successful without. However, it is important to note that the 364

suggested setup does not allow for the generalization of inference or measurements when the 365

computational model is event-driven. A more detailed description of the algorithm can be found in the 366

original article [Yazdani et al., 2020]. More details regarding the implementation will be given in the 367

next section. 368

3 Methods, Part 1 369

In this section, we detail the implementation of the Oschmann et al. [2017] model and the parameter 370

inference algorithm originally developed by Yazdani et al. [2020]. 371
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t t̃ e2(t̃)

e1(t̃)

e3(t̃)

Features

x̃2

x̃1

x̃3

x̂1

x̂2

x̂3

Scaled Output

Figure 6. Image depicting the structure of the neural network as it is used by Yazdani et al. [2020]. The
neural network uses measurement timestamps as input. In the first layer, the timestamp is normalized to
be between zero and one. In the next layer, the scaled time is transformed according to prior knowledge
about the state variables. The normal, fully connected layers are depicted next as gray circles. The
output of the network is then scaled to ensure that x̃i is approximately of magnitude O(1).

3.1 Tools 372

All code was written in Python 3.8.1. The well-known libraries numpy, scipy, and pandas were used 373

to aid with different aspects of the implementation. The plotting library plotly was used for result 374

visualization. 375

While the original deep learning paper referred to in this manuscript, [Yazdani et al., 2020] used the 376

machine learning library TensorFlow in combination with DeepXDE [Lu et al., 2021], we chose to use 377

PyTorch 1.8.1 instead. In contrast to Tensorflow, PyTorch is more object-oriented (OOP) and 378

usually more intuitive to understand and modify. Runtime experiments were performed on a local 379

computer with Ubuntu 20.04, an AMD 6 core CPU, and a high-end NVIDIA graphics card. 380

3.2 Model by Oschmann et al. [2017] 381

In this section, we shortly detail changes made to the original Oschmann et al. [2017] model. 382

Furthermore, we explain how the ODEs from the Oschmann et al. model are integrated and where the 383

parameter sets used originate from. 384

3.2.1 Conceptual Changes to the Model 385

We made two minor changes to the computational model of an astrocytic compartment. First, we
noticed that other computational models only consider charge fluxes between intra- and extracellular
space when computing membrane voltage [Farr and David, 2011, Witthoft and Em Karniadakis, 2012].
Since fluxes between the ER and the cytosol do not change the total charge of the intracellular space, we
removed currents originating from the mGluR-dependent pathway from the membrane voltage ODE in
Equation 7, resulting in a new ODE of the form

dV

dt
= − 1

Cm
(INCX − 2IGluT + INKA + INaLeak

+ IKLeak
) (15)
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where Cm is the membrane capacitance. 386

Second, we modified Equation 1 to incorporate the two times positive valence of Ca2+, resulting in:

d[Ca2+]i
dt

=
1

2
· C · INCX + C ·

√
ratioER · (IIP3R − ISerca + ICaLeak

) (16)

In this equation, C is a constant accounting for the ratio between the area of the internal Ca2+ storage 387

and the volume of the intracellular space. 388

3.2.2 Integration Method 389

As mentioned earlier, the Oschmann et al. model consists of seven highly nonlinear ODEs that describe 390

the behavior of different molecules within an astrocytic compartment. Using a glutamate stimulation 391

train and a time frame as input, the computational model integrates the ODEs and gives concentrations 392

([Ca2+]i, [Ca2+]e, [K
+]i, [Na+]i, [IP3]i), open probability of IP3R channels (h) and membrane voltage 393

(Vm) as output at each timestep. The integration is done using the scipy function solve_ivp. 394

While solve_ivp allows for many different integration methods, we chose the implicit multi-step 395

variable order method BDF [Shampine and Reichelt, 1997]. This decision is based on the observation 396

that the described system of ODEs is stiff. Another stiff solver offered by scipy is Radau [Hairer and 397

Wanner, 1996]. However, BDF is known to perform better if evaluating the ODEs in itself is expensive, 398

as is the case in the computational model at hand. We used a relative tolerance of 1e−9 and an absolute 399

tolerance of 1e−6. 400

3.2.3 Parameter Configuration 401

As part of this work, we tested different parameter sets. The first parameter set included the parameters 402

as they were in the original paper (parameter set Paper). The second parameter set slightly differed from 403

the first one and included parameters according to the doctorate thesis by Oschmann [2018] (parameter 404

set Thesis). The third parameter set is seen as the default parameter set and is used unless otherwise 405

indicated (parameter set Default; based on a personal communication between Franziska Oschmann and 406

Kerstin Lenk, 08.11.2018). The differences in parameter sets are listed in Table 1. A simple configuration 407

mechanism that allows for modifying, loading, and saving different parameter sets is provided. 408

3.3 Adaptation of the Deep Learning Model by Yazdani et al. [2020] 409

In this section, we detail the methods and equations used to do parameter inference using the algorithm 410

by Yazdani et al. [2020]. We show how the algorithm has to be adapted for the astrocytic compartment 411

model, discuss implementation details not mentioned in the original paper, and highlight changes. 412

3.3.1 Configuration of the Neural Network 413

Figure 7 shows a schematic drawing of the neural network algorithm as proposed by Yazdani et al. [2020] 414

implemented for the Oschmann et al. model. As mentioned previously, the Oschmann et al. model 415

consists of seven different ODEs. Therefore, the neural network has seven output nodes. If not otherwise 416

indicated in parameter inference experiments, the neural network itself consists of 4 network layers with 417

150 nodes each. Weights and biases are initialized with random values from a truncated normal 418

distribution, called Glorot normal distribution, centered around zero [Glorot and Bengio, 2010]. 419

we used the activation function swish [Ramachandran et al., 2017], which is defined as

swish(x) := x · σ(x) = x · 1

1 + e−βx
(17)

with β = 1. This activation function was introduced by Google in 2017 and has been shown to perform 420

better than the more commonly known activation functions ReLu and sigmoid. The performance 421

improvement is mostly attributed to the unboundedness of the function. The previously shown Figure 4 422
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Parameter Unit Default Paper Thesis Description

Initial Values

[Ca2+]e mM 0.01963 0.025 0.019 Ca2+ in ER

[Na+]tot mM 165 160 160 Tot. Na+ available

[Na+]out mM 150 145 145 Na+ in extracelluar space

Vm V -0.08588 -0.085 -0.085 Membrane voltage

Parameters

IGluTmax
pA
µm2 0.75 0.68 0.75 Max. current of IGluT

INCXmax
pA
µm2 0.001 0.1 0.1 Max. current of INCX

gNaLeak

µS
µm2 13 6.5 13 Conductance of Na+ leak

gKLeak

µS
µm2 162.46 79.1 162.46 Conductance of K+ leak

νβ
mM
s 1e-4 5e-5 5e-5 Max. production of IP3 by PLC β

rL
1
s 0.055 0.11 0.11 Ca2+ leak rate between ER and intracellular space

rC
1
s 3 6 6 Max. CICR rate

νER
mM
s 0.0045 0.004 0.004 Max. Ca2+ uptake by SERCA

Table 1. Different values for the three parameter sets Default, Paper, and Thesis

Model Parameters p⃗Model

t [IP3]i

h

[Ca2+]e

[Ca2+]i

[Na+]i

[K+]i

V

AD

Computational Model

ODE Loss LODE

Data Loss LData

Auxiliary Loss LAux

Reg. Data Loss Lx̂

Reg. Param Loss Lp

Observed Data

Figure 7. This Figure shows the implementation of the algorithm initially proposed by Yazdani et al.
[2020] in the context of this thesis. The neural network takes the input time of a measurement as an
input and outputs the seven different state variables. These state variables, together with the inferred
parameters, the computational model, and the observed data are used to compute the different loss
functions. The gradient of these loss functions is then used to optimize the inferred parameter and the
neural network. AD stands for automatic differentiation.
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includes a plot of the activation function swish. In contrast to the original authors [Yazdani et al., 2020], 423

we decided to shuffle the data and create batches of size N . In general, shuffling of input data is 424

considered to be good practice. Furthermore, the usage of a fixed batch size circumvents that the 425

learning rate has to be adapted according to the size of the data set. 426

3.3.2 Input- and Feature Transform 427

As in the original paper [Yazdani et al., 2020], we added an input scaling and a feature transform layer.
The input time t was linearly scaled to be between zero and one. Setting T0 to be the smallest time in
the measurement data and T1 to be the largest time, the scaled time was therefore defined as

t̃ =
t− T0

T1 − T0
(18)

It is important to note that the time should be scaled as part of the neural network. Scaling the time 428

beforehand, for example, to seemingly decrease complexity, leads to incorrect derivatives when automatic 429

differentiation is applied to the neural network. 430

The goal of the feature transform layer is to add prior knowledge about the time response of the
different state variables to the neural network, thereby accelerating learning. For the computational
model at hand [Oschmann et al., 2017], we chose the feature transform

t̃→ (t̃, sin(8t̃), exp(3t̃)) (19)

based on the observation that some state variables ([Na+]i, [K
+]i, V ) behave like step functions and the 431

repeated exponential growth of the intracellular Ca2+ concentration ([Ca2+]i). 432

3.3.3 Output Transform 433

In the code accompanying the original paper [Yazdani et al., 2020], the output transform of the network
is implemented as follows:

⃗̂x := x⃗(t̃ = 0) + tanh(t̃) · w⃗o ◦ ⃗̃x (20)

where w⃗o ∈ Rs is a vector accounting for the different orders of magnitude, t̃ is the scaled time and ◦ is
the Hadamard product (component-wise multiplication). While this output transform works, it has one
major underlying problem. It requires the initial state x⃗(t̃ = 0) to be known exactly. Since
tanh(t̃ = 0) = 0, the gradient of the data- and auxiliary loss ∇θ⃗LData ≡ 0, ∇θ⃗LAux ≡ 0 with respect to
the neural network parameters will always be zero. It follows that the network can not learn from the
observed data at t̃ = 0. For some state variables, it might not be possible to observe the initial state,
leaving the network with an uncorrectable error. We, therefore, implemented the simpler and
computationally less expensive output transform function

⃗̂x := b⃗+ w⃗o ◦ ⃗̃x (21)

where b⃗ ∈ Rs is a vector allowing for prior knowledge about the starting conditions to be incorporated 434

into the network. In contrast to the previous transform function, however, b⃗ can be noisy or set to b⃗ = 0 435

without limiting the network’s ability to learn. Further, all data is prioritized equally, independent of 436

time. 437

Both transform functions have the disadvantage that w⃗o has to be set manually. The weights w⃗o used 438

throughout this study are based on the mean values of the different state variables and are listed in 439

Table 2. The mean values are shown in the Appendix in Table ?? and Table ??. 440

3.3.4 Loss Function 441

In the following, we shortly explain changes and additions made to the originally used loss function 442

[Yazdani et al., 2020], before giving the exact loss formulas used throughout this study. 443
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State Variable w⃗o w⃗Data w⃗ODE

[Ca2+]i 1e-04 1e+04 1e+04

[Ca2+]e 1e-02 1e+02 1e+03

h 1e-01 1e+01 1e+02

[IP3]i 1e-04 1e+04 1e+04

[Na+]i 1e+01 1e-01 1e-01

[K+]i 1e+02 1e-02 1e-02

V -1e-01 1e+01 1e-01

Table 2. This table lists the state variable-related weights used for the deep learning algorithm.

Parameter Unit Original Scaling Range Description

INKA

KNKAmN mM 10 1 [0,∞] Half saturation of Na+

INCX

INCXmax
pA
µm2 0.001 0.01 [0,∞] Ca2+ max. current

ISerca

νER
mM
s 0.0045 0.001 [0,∞] Ca2+ max. uptake

KER mM 0.0001 0.001 [0,∞] Ca2+ affinity

Table 3. Parameter values (Default), their scaling, and feasible parameter ranges that are used
throughout this study.

Mean Squared Error In the original paper, the authors use the following definition of weighted MSE:

MSE(o⃗, f⃗ ; w⃗) :=
1

N

N∑
i

wi · [oi − fi]
2

(22)

where o⃗ ∈ RN is the expected output and f⃗ ∈ RN is the computed output. The vector w⃗ ∈ Rn is used to 444

scale the different state variables to approximately the same order of magnitude. 445

In practice, we found that setting appropriate weights is more intuitive when using the following
definition:

MSE(o⃗, f⃗ ; w⃗) :=
1

N

N∑
i

(wi · [oi − fi])
2

(23)

The weights used in this manuscript are listed in Table 2. Column w⃗Data is used when computing the 446

MSE of the observed data. Column w⃗ODE is used when computing the MSE of the automatically 447

differentiated network output in comparison to the ODEs computed by the Oschmann et al. model. 448

ODE Loss As mentioned earlier, LODE is the weighted MSE between the gradient of the neural 449

network with respect to time and the gradients given by the computational Oschmann et al. model. The 450

assumption is that LODE is minimized when the learned dynamics and the inferred parameters are 451

correct. To compute LODE , the Oschmann et al. model is fed with the output of the neural network ˆ⃗x 452

and the current parameter assumptions at each iteration. Similar to the neural network outputs, Yazdani 453

et al. [2020] suggested scaling the model parameters to be approximately of scale O(1). The scalings 454

used throughout this study are listed in Table 3. The gradient of the neural network dx̂s

dt |tn is computed 455

using the automatic differentiation function autograd.grad from the machine learning library PyTorch. 456
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State Variable Minimum Maximum

[Ca2+]i 0 mM 1e-02 mM

[Ca2+]e 0 mM 1e-01 mM

h 0 1

[IP3]i 0 mM 1e-02mM

[Na+]i 5e+00mM 4e+01mM

[K+]i 5e+01mM 103mM

V -2e-01V 0V

Table 4. Feasible ranges for the different state variables. The ranges are used to compute the
regularization loss.

Auxiliary Loss In physics informed deep learning, the idea of auxiliary loss origins from the concept 457

of Dirichlet boundary conditions. For example, when attempting to learn the solution to the stationary 458

heat equation, one might want to enforce the temperature next to known heat sources. However, in the 459

field of computational biology, the auxiliary loss LAux might not be suitable as it requires the state 460

variables x⃗(t = T0|t = T1) to be known at the beginning and the end of the experimental data. To ensure 461

the algorithm can still be used and still delivers good results when this data is not available, we created 462

a flag σAux with which the auxiliary loss can be disabled. 463

Since we shuffle the data and only use batches of size N = 32, the learning batch will often not 464

contain the timestep t = 0. To circumvent this problem, we added the data point t = 0 manually for 465

each learning step. 466

Regularization Loss In their original paper, Yazdani et al. [2020] suggest speeding up the 467

convergence process by first training the network on the supervised losses LData and LAux only, before 468

adding the unsupervised learning of the computational model parameters. While this method does 469

indeed speed up the convergence of the network, we found it to lead to one significant problem: The 470

neural network learned the output of the observed state variables without considering the implications 471

for unobserved state variables, leading to infeasible predictions which interfered with the evaluation of 472

the computational model once LODE was added. 473

To counteract this behavior, we added a soft regularization to the state variables, constraining their
feasible range. The regularization mechanism is expressed through a function R defined as:

R(xi, ai, bi) :=


0, if xi ∈ [ai, bi]

(ai − xi)
2, if xi < ai

(bi − xi)
2, otherwise

(24)

where xi, i ∈ {1, ..., s} is the considered variable, ai is the lower range boundary and bi is the upper 474

range boundary. In words, R evaluates to zero if the state variable is within range. Otherwise, R returns 475

the square distance between the closest range boundary and the current value. This regularization 476

function is used in an additional loss function Lx̂. The exact formulation is given in the following section. 477

We added the same mechanism for the inferred network parameters Lp, thereby allowing for the 478

incorporation of prior knowledge and avoiding biologically illogical minimas. 479

For experimental purposes, the ODE loss and the regularization losses can be enabled or disabled 480

through the respective flags σODE , σx̂ and σp. The feasible ranges for the state variables are listed in 481

Table 4, and the feasible ranges for parameters in Table 3. 482

Weighting Although not explicitly mentioned in the paper, the code by Yazdani et al. [2020] shows 483

that the different loss terms LData, LAux, and LODE are not only weighted to account for different orders 484

of magnitude but also give varying weight to the different loss functions. In my own implementation, we 485

chose to weight the data loss with 98% and the auxiliary and ODE loss with 1% each. 486
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Complete Loss Function Taken all together, the changed loss function now reads

L(θ⃗, p⃗) =λDataLData(θ⃗) + σODEλODELODE(θ⃗, p⃗) + σAuxλAuxLAux(θ⃗) (25)

+ σx̂Lx̂(θ⃗) + σpLp(p⃗) (26)

Assuming a batch size of N and S different state variables of which the first M are observable, the
different loss terms are defined as

LData(θ⃗) :=
1

N

M∑
s

N∑
n

(
wData,s

[
xs(tn)− x̂s(t̃n; θ⃗)

])2

(27)

LODE(θ⃗, p⃗) :=
1

N

S∑
s

N∑
n

(
wODE,s

[
dx̂s

dt
|tn − fs(⃗̂x(t̃n; θ⃗), tn; p⃗)

])2

(28)

LAux(θ⃗) := 0.5
S∑
s

(
wData,s

[
xs(T0)− x̂s(0, θ⃗)

])2

+
(
wData,s

[
xs(T1)− x̂s(1, θ⃗)

])2

(29)

Lx̂(θ⃗) :=
1

N

S∑
s

N∑
n

w2
Data,s · R

(
x̂s(t̃n), aData,s, bData,s

)
(30)

Lp(p⃗) :=
R∑
r

w2
p,r · R (pr, ap,r, bp,r) (31)

(32)

Again, special care has to be taken regarding the timestamp: While the network learns the output with 487

respect to scaled time, automatic differentiation and computational model relay on unscaled time. 488

3.3.5 Stabilization of the Learning Process 489

To stabilize the learning process, we employed two methods not initially considered in the original paper 490

[Yazdani et al., 2020]. First, we included the possibility of automatic learning rate reduction. Second, we 491

extended the update step of the neural network with gradient clipping. 492

Learning Rate Reduction If the learning rate η of a neural network optimization is too large, a 493

network might fail to learn because it keeps overshooting the minimal region. At the same time, if the 494

learning rate is too small, the network might take too long to converge to an appropriate solution. A 495

solution to that problem is learning rate reduction strategies. In this manuscript, we decided to use a 496

learning rate reduction strategy that reduced the learning rate once it has not decreased for a fixed 497

number of epochs. The respective number is called patience. The learning rate reduction is 498

implemented using the learning rate model called ReduceLROnPlateau implemented in the library 499

PyTorch. Unless otherwise indicated, we reduced the learning rate by a factor of 0.5 if the learning rate 500

had not decreased for 5000 epochs. 501

Gradient Clipping Figure 8 depicts the gradient norms computed during 60000 epochs of network 502

training with the deep learning algorithm described in this section. It can be seen that most gradient 503

norms are within a reasonable range. However, occasionally occurring highly inaccurate network 504

predictions cause far larger gradient norms that disturb the learning process or, in some cases, even 505

cause overflows that render the currently used neural network useless. 506

Gradient clipping is a mechanism often employed to avoid these predictions disturb the training 507

process too much. The basic idea is to scale the norm of ∇θ⃗L to a maximum value c if it is larger than c. 508

In my experiments, we found c = 10 to work best. The gradient clipping is done through the function 509

clip_grad_norm_ from the PyTorch library. 510

19/72

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.16.540982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.16.540982
http://creativecommons.org/licenses/by-nc/4.0/


Figure 8. Gradient norms computed during 60000 epochs of network training.

3.3.6 Complete Algorithm 511

Algorithm 1 gives an overview of the deep learning algorithm described in this section. The algorithm 512

starts by loading all observed data and by initializing the necessary models. After that, the learning 513

process begins. For n_epochs, the algorithm loads the whole data set in batches of size N = 32 and feeds 514

them into the neural network to predict ⃗̂x. Together with the neural network parameters and the inferred 515

parameters, the predicted data is used to compute the different loss terms and eventually the total loss L 516

and its gradient ∇θ⃗L. If gradient clipping is enabled, the norm of ∇θ⃗L is clipped as described in Section 517

3.3.5. Afterwards, the neural network parameters and the inferred parameters are changed according to 518

the chosen optimization technique (Adam or SGD). The variable mean_loss is used to compute the mean 519

loss value in the current epoch and to reduce the learning rate as necessary as described in Section 3.3.5. 520

At the end of the algorithm, all generated data and the created neural network model are saved. 521

3.4 Inference Setup 522

In this section, we specify the used artificial data sets and define the term accuracy. An overview of the 523

different neural network parameters and configurations used is given in Table 5. 524

3.4.1 Data Sets 525

we generated results using two different data sets: 526

1. The data set Parameter Study consists of 600 data points from 50s of simulation with the 527

computational astrocyte model. The timestamps are spaced evenly and the data is assumed to be 528

noise free. We used this data set to test different neural network configurations. 529

2. The data set Noise is identical to the previous data set. However, in comparison to 530

Parameter Study, we added 10% Gaussian noise to the data, resulting in a more realistic data set. 531

Unless otherwise indicated, we assumed that the glutamate stimulation causing the Ca2+ signals is 532

known. The concentration of the glutamate stimulus over time is shown in Figure 9. To study the 533

stability of the deep learning algorithm, we experimented with different amounts of observed state 534

variables, and the data sets were reduced accordingly. 535

20/72

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.16.540982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.16.540982
http://creativecommons.org/licenses/by-nc/4.0/


Algorithm 1 Overview over the deep learning algorithm described in this section

1: Load observed data
2: Initialize deep learning models, optimization model, learning rate strategy
3: for n epochs do
4: mean loss← 0
5: while t, x⃗ = load batch() do
6: if σAux is True then
7: t← [0] + t
8: x⃗← [x⃗(t = 0)] + x⃗
9: end if

10: ˆ⃗x = model.predict(t)
11: Compute LData ▷ Equation 27
12: Compute LODE iff σODE ▷ Equation 28
13: Compute LAux iff σAux ▷ Equation 29
14: Compute L⃗̂p,L⃗̂x iff σ⃗̂p ▷ Equations 30,31
15: L ← λDataLData + σODEλODELODE + σAuxλAuxLAuxσx̂Lx̂ + σpLp

16: Compute ∇θ⃗L
17: if clip gradients then
18: clip gradients(∇θ⃗L)
19: end if
20: optimization step()
21: mean loss← mean loss + L
22: end while
23: register lr(mean loss) ▷ Reduces LR if necessary
24: end for
25: Save results

Parameter Value Description

Network

num layers 4 Number of hidden neural network layers

num nodes 150 Number of nodes per hidden neural network layer

N 32 Batch size

c 100 Maximum norm for clip gradient

T0 0s Used for scaling of t

T1 50s Used for scaling of t

Learning Rate

η 0.001 Learning rate

reduction factor 0.5

patience 5000

min lr 1e-6 Minimal learning rate

Table 5. Overview of the different neural network parameters used.
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Figure 9. Concentration for the glutamate stimulus used to simulate the astrocytic compartment. The
value range was taken from the paper by De Pittà et al. [2009].

During testing, each data set was randomly split 80/20 into a training- and a validation set. The 536

neural network was only trained on the training set, accuracy reports were made on the validation set. 537

Figures were created by predicting data on complete data sets. 538

3.4.2 Accuracy 539

We measured two different kinds of accuracy: The first type describes the accuracy of the dynamics of
the different state variables ⃗̂x. A state variable at time t is assumed to be inferred correctly if there is
not more than 5% deviation from the original, noise-free, value.

σ(⃗̂xs, x⃗, t) :=

{
1 0.95x⃗s(t) < ⃗̂xs(t) < 1.05x⃗s(t)

0 else
(33)

The reported accuracy scores Aobs and Aall then describe the mean accuracy overall measurement times
of the observed or overall existing state variables, respectively. Therefore,

Aobs :=
1

MN

N∑
i=1

M∑
s=1

σ(⃗̂xs, x⃗s, t) (34)

Aall :=
1

SN

N∑
i=1

S∑
s=1

σ(⃗̂xs, x⃗s, t) (35)

where S is number of different state variables, M is the number of the observed state variables and N is 540

the number of different measurement times t. 541

The second type is concerned with the accuracy of inferred parameters. The accuracy of an inferred
parameter is defined as

Api := 1− |pi − p̂i|
|pi|

(36)

where p̂i is the inferred parameter and pi the corresponding real value. Reported is the mean accuracy 542

Ap⃗ of all inferred parameters. 543

4 Results, Part 1 544

In this section, we show the dynamics resulting from the ODEs of the Oschmann et al. model and 545

discuss the influence of the different types of currents. 546

4.1 Model by Oschmann et al. [2017] 547

First, we describe the dynamics and currents resulting from the Oschmann et al. model and highlight 548

the influence of the conceptual changes and of the different parameter sets. 549
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4.1.1 Dynamics 550

First, we studied the temporal evolution of the state variables ([Ca2+]i, [Ca2+]e, h, [IP3]i, [Na+]i, [K
+]i, 551

Vm) given a specified glutamate stimulus. The influence of the differently made conceptual changes and 552

the different parameter sets will be discussed in the following sections. The results are depicted as 553

colored full lines in Figure 10. The behavior of [Ca2+]i can be described as a repeated pattern of rapid 554

increases and decreases in concentration. The amplitude and the frequency are higher when a glutamate 555

stimulus is present. The increase in [Ca2+]i is always correlated with a drop of Ca2+ in the ER. When 556

[Ca2+]i decreases, the [Ca2+]e raises back to its initial value. 557

As assumed, an increase in [IP3]i is correlated with an increase in the open probability of IP3R 558

channels. However, the average open probability increases over time while [IP3]i decreases. The presence 559

of a glutamate stimulus results in a higher frequency of IP3 accumulation- and degradation. While the 560

state variables described so far fluctuate over time, the Vm, the [K+]i, and [Na+]i only change within the 561

first seconds after a change in glutamate stimulus, therefore appearing like step functions. The reaction 562

of Vm and [K+]i to an increase in glutamate can be described as exponential decay; the reaction of the 563

[Na+]i as exponential saturation. 564

Figure 11 depicts the different currents of the GluT-driven pathway. The NKA current, the Na+- and 565

K+ leak current, as well as the GluT current, resemble step functions, similar to the previously observed 566

Na+, K+, and voltage membrane dynamics. Furthermore, it can be seen that the NCX current is 567

significantly smaller than the other GluT pathways currents. It stands out that the Na+ leak current is 568

negative, while the K+ leak current is positive, indicating that the K+ leak points inward rather than 569

outward as would be expected from the schematics shown in the original paper by Oschmann et al. 570

[2017]. By running the code written by Dr. Oschmann, we observed that the original code suffers from 571

the same problem. 572

Similarly, Figure 12 shows the dynamics of the mGluR pathway-driven currents. It can be seen that 573

both, ISerca and IIP3R heavily oscillate. Increases and decreases of the SERCA current correlate 574

positively with increases and decreases of the IP3R current. The Ca2+ leak current slightly decreases 575

linearly during the raise in SERCA and IP3R current, dips shortly when ISerca reaches its maximum and 576

then recovers back to its initial value. 577

4.1.2 Influence of Conceptual Changes 578

Second, we studied the influence of the conceptual changes described in Section 3.2.1. The black dotted 579

lines in Figure 10 represent the respective results of the original, unchanged computational model. Other 580

than for the [Ca2+]i and [Ca2+]e, the changes are barely visible. This corresponds with the computation 581

of the mean absolute and the mean relative deviation with respect to the original model listed in Table 6. 582

The changes of Equation 15 regarding the computation of dVm

dt barely affected the membrane voltage. 583

However, adding the valence of Ca2+ to d[Ca2+]i
dt in Equation 16 affected the [Ca2+]i significantly. 584

Correspondingly, significant changes were also observed for [Ca2+]e, the intracellular IP3 concentration 585

and the open probability h - although the effect was less pronounced. 586

4.1.3 Influence of Different Parameter Sets 587

In this section, the influence of the different parameter sets described in Section 3.2.3 is examined. The 588

dynamics resulting from the three different parameter sets Paper, Thesis, and Default are shown in 589

Figure 13. While Ca2+ levels, IP3 concentrations, and open probability oscillate heavily in the 590

parameter set Default, their behavior is more linear for the parameter sets Paper and Thesis. The 591

[Ca2+]i mimics a step function that increases whenever a glutamate stimulus is present, thereby 592

behaving similarly to the [K+]i and [Na+]i. During the absence of a glutamate stimulus, the [Ca2+]e 593

decreases linearly, only to linearly increase again during the presence of a stimulus. Increases are more 594

pronounced for the parameter set Thesis. The open probability of IP3R channels and the IP3 595

concentration show opposite behavior to the [Ca2+]e. At the same time, Na+ levels, K+ levels, and Vm 596

are barely affected by the change in the parameter set. 597
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Figure 10. The behavior of the different state variables [Ca2+]i, [Ca2+]e, h, [IP3]i, [Na+]i, [K
+]i, V over

time. Black dashed lines (where visible) indicate the behavior of the state variable before the changes
described in Section 3.2.1 were made. Note the differently scaled axes.
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Figure 11. Dynamics of the GluT-pathway related currents INCX, INKA, INaLeak
, IKLeak

and IGluT (a).
Due to the different orders of magnitude, INCX is plotted a second time in (b). Note the different scales
of the y axes. The used glutamate stimulation is shown in Figure 9.
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Figure 12. Dynamics of the mGluR-pathway related currents ISerca, ICaLeak
and IIP3R. The used

glutamate stimulation is shown in Figure 9.
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Figure 13. Dynamics resulting from the different parameter sets Paper (black), Thesis (gray) and
Default (colored).The used glutamate stimulation is shown in Figure 9.

26/72

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.16.540982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.16.540982
http://creativecommons.org/licenses/by-nc/4.0/


State Variable Absolute Deviation Relative Deviation

[Ca2+]i 1.479e-05 mM 5.24%

[Ca2+]e 3.411e-04mM 1.94%

h 3.502e-03 0.538%

[IP3]i 7.488e-06 mM 1.87%

[Na+]i 1.084e-03 mM 0.00711%

[K+]i 4.162e-04 mM 0.000432%

Vm 2.748e-06 V 0.0038%

Table 6. Absolute and relative deviation of the state variables with respect to the computational
astrocyte model as described in the paper by Oschmann et al. [2017].

4.2 Learning the Dynamics and their Gradients 598

Before starting with the parameter inference experiments, we ensured that the network size (number of 599

layers and number of nodes per layer) is large enough to represent the dynamics of all seven ODEs. To 600

that end, we trained the network on the data set Parameter Set and assumed that all data can be 601

observed and that all parameters are known. The learned data can be seen in Figure 14. The network 602

learns the dynamics (dotted black line) perfectly in comparison to the underlying dynamics. Figure 15 603

then depicts both, the gradient of the learned network function f̂(θ⃗) and the gradient returned by the 604

ODEs if the output of the neural network is fed into the computational model. The colored lines indicate 605

the gradients computed during the initial simulation. It is apparent that the network is successful at 606

learning the gradients for d[Ca2+]i
dt ,d[Ca2+]e

dt , h
dt ,

d[IP3]i
dt . However, large errors occur for the ODEs 607

computed by the computational model for dVm

dt , d[Na+]i
dt and d[K+]i

dt . 608

4.3 Parameter Inference and Influence of Changes made to the Original 609

Algorithm by Yazdani et al. [2020] 610

In this section, we show the results of three different parameter inference experiments. 611

4.3.1 Precision (Repeatability) 612

As part of the first parameter inference experiments, we studied the stability of the algorithm. To that 613

end, we run the algorithm with fixed configurations six times and observed if the network infers the same 614

parameter each time. The network was trained on the data set Parameter Study and all but the 615

dynamics of d[Na+]i
dt and d[K+]i

dt were observed. For each run, we inferred the parameter KNKAmN (Table 616

3). To ensure that the inference result is start point independent, we started three times with the 617

assumption KNKAmN (t = 0) = 1 and three times with the assumption KNKAmN (t = 0) = 20. The 618

results can be seen in Figure 16. Other than Repetition 4, each run inferred a value around 619

KNKAmN = 8mM , which corresponds to an accuracy of 80%. The exact inferred values are listed in 620

Table 7. Repetition 4 shows a significant drop in accuracy between epoch 45000 and 50000. However, 621

the accuracy starts raising again afterwards. It is therefore likely that the network would achieve the 622

same accuracy as the other runs after more iterations. 623

4.3.2 Gradient Clipping 624

Next, we studied the effect of gradient clipping values. Using the data set Parameter Study and 625

assuming all but the dynamics of d[Na+]i
dt and d[K+]i

dt observed, we run the algorithm for the gradient 626

clipping values c = 1, c = 10, c = 100, c = 500 and c = None (indicating no gradient clipping). The 627

results are shown in Figure 17 and the exact inferred values are listed in Table 7. The simulation for 628
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Figure 14. Dynamics as learned by the neural network (dotted lines) in comparison to the dynamics
outputted by the Oschmann et al. model (colored lines). The used glutamate stimulation is shown in
Figure 9.
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Figure 15. Gradients as they are learned by the neural network (light gray, dotted lines). Furthermore,
it shows the gradients outputted by the Oschmann et al. model if it is fed the neural network output
as input (dark gray, dotted lines) and the gradients as they originally occur (colored lines). The used
glutamate stimulation is shown in Figure 9.
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Simulation Parameter Unit Original Inferred Ap⃗ Aall Aobs

Precision

Repetition 1 KNKAmN mM 10 8.014 80.14% 84.2% 97.5%

Repetition 2 KNKAmN mM 10 7.4 74% 87.5% 93.3%

Repetition 3 KNKAmN mM 10 8.03 80.3% 80.8% 93.3%

Repetition 4 KNKAmN mM 10 6.9 69% 85% 94.2%

Repetition 5 KNKAmN mM 10 8.06 86% 81.7% 95%

Repetition 6 KNKAmN mM 10 8.24 82.4% 90% 95.8%

Gradient Clipping

c = 1 KNKAmN mM 10 8.38 83.8% 81.6% 91.6%

c = 10 KNKAmN mM 10 8.01 80.1% 84.2% 97.5%

c = 100 KNKAmN mM 10 8.29 82.9% 84.2% 95.8%

c = 500 KNKAmN mM 10 8.36 83.6% 85.83% 92.5%

c = None KNKAmN mM 10 - - -% -%

Learning Rate Patience

patience 200 KNKAmN mM 10 7.08 83.8% 84.2% 98.3%

patience 500 KNKAmN mM 10 5.66 56.6% 85% 98.3%

patience 1000 KNKAmN mM 10 8.03 80.3% 84.2% 96.7%

patience 5000 KNKAmN mM 10 10.19 98.1% 95.93% 91.6%

patience 200 INCXmax
pA
µm2 0.001 0.000973 97.3% 95.83% 98.3%

patience 500 INCXmax
pA
µm2 0.001 0.00099 99% 96.6% 99.2%

patience 1000 INCXmax
pA
µm2 0.001 0.00098 98% 97.5% 99.2%

patience 5000 INCXmax
pA
µm2 0.001 0.000249 24.9% 94.1% 98.3%

Table 7. Inferred parameter values and accuracies for the different parameter inference experiments.
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Figure 16. Inferred parameter for KNKAmN (a) and the accuracy Aall (b) over different epochs. The
experiment is performed with a gradient clipping value of c = 10 and no learning rate reduction. The
black line in (a) indicates the original parameter value.

c = None started showing inconsistent behavior after epoch 20000 and finally predicted NaN-Values 629

shortly before epoch 30000, therefore being unable to make further predictions or improvements. In 630

general, it can be seen that the network experienced large fluctuations for c = 100 but made stable 631

progress for c = 10 and c = 1. However, the plot of the accuracy Aall shows that the learning process for 632

c = 1 was slower than the progress for c = 10. As before, all simulations with a fixed gradient clipping 633

value inferred approximately a value of KNKAmN = 8mM .

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k
0
2
4
6
8

10
12
14
16
18
20

c = 1 c = 10 c=100 c = 500 c = None

Epoch

(a) Inferred parameter KNKAmN

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k
0

0.2

0.4

0.6

0.8

1
c = 1 c = 10 c=100 c = 500 c = None

Epoch

A
cc

ur
ac

y

(b) Accuracy

Figure 17. Effect of different gradient clipping values c on the inferred parameter (a) and the accuracy
(b). The black line in (a) indicates the original parameter value.

634

4.3.3 Unstable Learning Process and the Problem with Patience 635

As explained in Section 3.3.5, the property patience of a learning reduction algorithm describes how 636

long it takes before the learning rate gets reduced if the loss does not decrease. In this section, we show 637

the problem with setting the patience correctly. Figure 18 shows the inference of parameters KNKAmN 638

and INCXmax. All simulations were performed with the data set Parameter Study and with all but 639

d[Na+]i
dt and d[K+]i

dt assumed observed. The gradient clipping value was set to c = 10. The inference of 640

INCXmax is very stable for a patience between 200 and 1000. However, the network has problems 641
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inferring the correct parameter with a higher patience of 5000, starting to deviate from a good 642

inference of approximately the correct value after epoch 25000. In comparison, a patience of 200 is too 643

small for the inference KNKAmN , leading the network to stop learning too early. The inferred values are 644

listed in Table 7. 645
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Figure 18. Effect of different amounts of patience regarding the learning rate reduction for KNKAmN

(a and b) and INCXmax (c and d). The black line in (a) and (c) indicate the original parameter value.

5 Methods, Part 2 646

In this section, we describe several methods that aim at stabilizing the inference of parameters in the 647

Oschmann et al. model. In Section 6.1, we explain a change to the Oschmann et al. model that aims at 648

stabilizing the Vm problem shown in Section 4.2. Based on a paper by Wang et al. [2020], we show 649

methods to improve gradient pathologies during the inference process in Section 6.2. Last, Section 6.3 650

proposes the addition of control inputs to the neural network as was originally done by Antonelo et al. 651

[2021]. 652

5.1 Adapted Leak Currents and their subsequent Changes in Neural 653

Network Parameters 654

As was observed in Section 4.2, the gradients of [Na+]i, [K
+]i, and Vm returned by the computational

Oschmann et al. model are extremely sensitive to small errors in the input states. In part, this is due to
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Variable Value Source

ENa 0.055V Nowak et al. [1987]

EK -0.08V Witthoft and Em Karniadakis [2012]

Table 8. The used reversal potentials for Na+ and K+ and their sources

State Variable w⃗o w⃗Data w⃗ODE

[Ca2+]i 1e-04 1e+04 1e+04

[Ca2+]e 1e-02 1e+02 1e+03

h 1e-01 1e+01 1e+02

[IP3]i 1e-04 1e+04 1e+04

[Na+]i 1e+01 1e-01 1e-01

[K+]i 1e+02 1e-01 1e-01

V -1e-01 5e+01 5e-01

Table 9. This table lists the state variable related weights used for the deep learning algorithm with new
leak computation. Values that changed in comparison to the previous weights (Table 2) are indicated in
bold.

the way the leak currents are computed. The original model computes the leak currents as

INaLeak
= gNaLeak

(Vm − ENa) (37)

ENa =
RT

F
log

(
[Na+]i
[Na+]o

)
(38)

and

IKLeak
= gKLeak

(Vm − EK) (39)

EK =
RT

F
log

(
[K+]i
[K+]o

)
(40)

where F is the Faraday constant, R is the molar gas constant and T is the current temperature. This 655

way of computing EK and ENa introduces a high level of sensitivity to the computations of the leak 656

current, especially as the outer- and inner concentrations of both K+ and Na+ are dependent on the 657

amount of [Na+]i and [K+]i. To decouple this sensitivity, we replaced the dynamic computation of ENa 658

and EK with constants, as is regularly done in other computational astrocyte models [Farr and David, 659

2011, Flanagan et al., 2018]. The used constants are equal to the known reversal potentials of Na+ and 660

K+ and are listed in Table 10. 661

While the new leak computation does not change the general behavior of the simulation, it does 662

change the order of magnitude of the computed gradients. The changed gradients require the usage of 663

adapted weights for the parameter inference algorithm. These weights are listed in Table 11. 664

5.2 Gradient Pathologies in PINNs 665

While we trained my neural network with the configurations described in Section 3.3, it became obvious 666

that the training process was not as stable and fast as expected. Wang et al. [2020] discovered and 667

addressed one major mode of failure in PINNs. According to them, numerical stiffness might lead to 668

unbalanced learning gradients during the back-propagation step in model training. They solved the 669

problems in two ways. First, they suggested an algorithm that outbalances different loss terms. Second, 670

they changed the model architecture to include a transformer network. In the following sections, we 671

shortly describe their propositions and then explain how we adapted them for my model. 672
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5.2.1 Learning Rate Annealing 673

Original Implementation To give different amounts of importance to different loss terms, loss terms
are usually weighted. Assuming the loss functions consist of an ODE loss LODE and M different data
loss terms, such as different kinds of measurements or boundary conditions, the total loss can be written
as

L(θ) := LODE(θ) +
M∑
i=1

λiLData,i(θ) (41)

where λi is the weight of LData,i. Based on the optimization method Adam [Kingma and Ba, 2014]
explained earlier, the authors suggested scaling the weights according to the ratio between the largest
and average gradient of the different loss terms. Let

λ̂i =
maxθ⃗{|∇θ⃗LODE(θ⃗)|}

|∇θ⃗LData,i(θ⃗)|
(42)

where maxθ⃗{|∇θ⃗LODE(θ⃗)|} is the largest absolute parameter gradient of the ODE loss and

|∇θ⃗LData,i(θ⃗)| denotes the mean absolute parameter gradient of the different data loss terms. Due to

the possibly high variance of |∇θ⃗LData,i(θ⃗)|, it was suggested to not directly use λ̂i for weighting but
rather to compute a running average using the equation

λi = (1− α)λi + αλ̂i (43)

with α ∈ [0.5, 0.9]. Assuming SGD optimization (Equation 12) is used, the optimization step becomes

θ⃗n+1 = θ⃗n − η∇θ⃗LODE(θ⃗n)− η

M∑
i=1

λi∇θ⃗LData,i(θ⃗n) (44)

where n stands for the n-th iteration and ∇ is the learning rate. Wang et al. [2020] suggest to use a 674

learning rate of η = 1e−3. 675

Adaption for Parameter Inference Deep Learning In contrast to the examples by [Wang et al., 676

2020], the computational model at hand [Oschmann et al., 2017] consists of multiple ODEs. Furthermore, 677

observations usually only exist for a subset of the given ODEs. This leads to the question of how the 678

learning rate annealing algorithm should be adapted for my model. We tested three different strategies 679

(A, B, C) further described below. To reduce the computational effort of computing λ̂, we only performed 680

an update step every 50th epoch. The different strategies are visualized in Figure 23. 681

Strategy A First, we matched the weight of the first ODE loss gradient (∇θ⃗LODE,1) against all other
loss gradients, both ODE loss and data loss, separately. This idea was motivated by the observation that
it is not about balancing the ODE loss with the data loss, but about balancing all terms with each other.
By setting LCombined(θ⃗) := (LODE,2, ...,LODE,s,LData,1, ...,LData,m) the total loss can be defined as

L(θ⃗) := LODE,1(θ⃗) +
M+S−1∑

i=1

λiLCombined,i(θ⃗) (45)

Then, λ̂i becomes

λ̂i =
maxθ⃗{|∇θ⃗LODE,1(θ⃗)|}

|∇θ⃗LCombined,i(θ⃗)|
(46)

and is used in combination with the moving average Equation 63 to compute λi. 682
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Figure 19. This figure visualizes the three different λ update strategies. Orange boxes stand for the
gradient with respect to the network parameters of the ODE loss ∇θ⃗LODE . Blue boxes stand for the
gradient with respect to the network parameters of the data loss ∇θ⃗LData. Almost transparent blue boxes
indicate that the respective data was not observed and is therefore not considered in the loss functions.

Strategy B For my second strategy, we assumed that the different ODEs are already balanced out
well enough through the loss weighting described in Section 3.3.4. Therefore, the weighting only has to
be adjusted between an ODE loss and its respective data loss. If an ODE does not have a counterpart,
we do not change the weighting. Assuming no regularization and auxiliary losses, the total loss can be
written in the form L(θ⃗) =

∑S
s=1 Ls(θ⃗) with

Ls(θ⃗) :=

{
LODE,s(θ⃗) + λiLData,i(θ⃗) if ODE s corresponds to a measurement i

LODE,s(θ⃗) otherwise
(47)

The weights are then computed using

λ̂i =
maxθ⃗{|∇θ⃗LODE,s(θ⃗)|}

|∇θ⃗LData,i(θ⃗)|
(48)

together with the moving average Equation 63. 683

Strategy C For my last strategy, we made the same assumption as for Strategy B, but rather than
balancing each ODE against its counterpart, we took the ratio between the largest gradient of the sum of
all ODE losses and the mean gradient of the different data losses. In this form, the total loss is written as

L(θ⃗) : =
S∑

s=1

LODE,s(θ⃗) +
M∑
i=1

λiLData,i(θ⃗) (49)

and the temporary weight becomes

λ̂i =
1

S

maxθ⃗{|
∑S

s=1∇θ⃗LODE,s(θ)|}

|∇θ⃗LData,i(θ⃗)|
(50)

35/72

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.16.540982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.16.540982
http://creativecommons.org/licenses/by-nc/4.0/


5.2.2 Improved Fully Connected Architecture 684

The second improvement by Wang et al. [2020] concerned the architecture of the neural network itself 685

and was based on the idea of a Transformer [Vaswani et al., 2017]. Transformers are often used in 686

natural language processing or sequence transduction tasks and offer an alternative to the more 687

commonly known recurrent or convolutional neural networks. Broadly speaking, a transformer considers 688

possible multiplicative connections between different input nodes and strengthens the influence of input 689

nodes on later network layers. 690

In the context of their paper, Wang et al. [2020] adapted the idea of transformer networks to PINNs

by adding two additional network layers U⃗ and V⃗ . Just as the first fully connected neural network layer,
U⃗ and V⃗ are directly connected to the input layer. They consist of the same number of nodes as all the
other network layers. In form of equations, U⃗ and V⃗ are defined through

U⃗ = g
(
X⃗ · W⃗U + b⃗U

)
(51)

V⃗ = g
(
X⃗ · W⃗V + b⃗V

)
(52)

where g is the activation function, X⃗ the input layer, W⃗ and b⃗ are the layers parameter. To enhance the
network’s performance, U⃗ and V⃗ are multiplied component-wise to the output of the normal network
layers described in Equation 10. The forward propagation equations, therefore, change to

H⃗ [l] = g
(
W⃗ [l] · A⃗[l−1] + b⃗[l]

)
(53)

A⃗[l+1] =
(
1⃗− H⃗ [l]

)
◦ U⃗ + H⃗ [l] ◦ V⃗ (54)

where ◦ denotes component-wise multiplication. Note that this change does not affect Equation 11 for 691

the output layer of the neural network. Figure 24 shows the addition of U⃗ and V⃗ to a fully connected 692

neural network. In the context of this manuscript, we followed the original implementation by Wang 693

et al. [2020] exactly. 694

5.3 Control Input 695

In the context of ODEs, PINNs attempt to learn the relationship between a continuous time input t and 696

several state variables x⃗. One of the major drawbacks of this method is that external events, such as a 697

glutamate release by a neighboring neuron, can not be taken into account. Therefore, the glutamate level 698

has either to be known or inferred at every point in time. While this might be possible under some 699

preconditions, it is not feasible and further prohibits the use of multiple, different measurement sets to 700

train one specific model. 701

The same problem is often faced in the context of control theory. While processes in for example the 702

oil, gas, or robotics industry can often be modeled through differential equations, they usually have some 703

dependence on external control inputs. To counteract this problem, Antonelo et al. [2021] recently 704

proposed an adapted PINN algorithm that allows for control inputs. The concept is called 705

Physics-Informed Neural Nets-based Control (PINC) and will be detailed further in the next Section 706

6.3.1. Section 6.3.2 then details how we adapted and implemented the concept of PINC to further 707

improve on the parameter inference algorithm proposed by Yazdani et al. [2020] implemented in the 708

context of this manuscript. 709

5.3.1 Original Implementation 710

Inspired by multiple shooting and collocation methods, Antonelo et al. [2021] changed the original PINN
algorithm [Raissi et al., 2017] in two significant ways. The first change is concerned with the input time
t. Rather than attempting to learn how the state variables change over the whole time horizon, they
suggested letting the network learn how the state variables have behaved since the last change in control
input u(t). To that end, they subdivided the time interval [T0, T1] into multiple, smaller subintervals.
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x1

x2

f̂(θ⃗)

U⃗

V⃗

Figure 20. This figure shows the extension of a transitional neural network with two additional, fully
connected layers U⃗ and V⃗ . This addition is based on the idea of transformer networks and was adapted
to PINNs in a recent paper by Wang et al. [2020]

Assuming the control input is given by a piecewise constant function u(t), they split the time intervals at
the points of discontinuity (T ′

0, T
′
1, T

′
2, ..., T

′
n), T

′
0 = T0 and T ′

n = T1, of u(t). Then, the input to the
neural network is changed from t to t′ where t′ indicates how much time has passed since the beginning
of the current subinterval.

t′ := t− T ′
i where t ∈ [T ′+

i , T ′−
i+1] (55)

Second, they added the control input u(t) and the initial conditions of the state variables of the 711

current time interval x⃗(t = T ′
i ), t ∈ [T ′+

i , T ′−
i+1] as input nodes to the neural networks. If the initial 712

conditions x⃗(t = T ′
i ) are not known, one can instead use the output of the neural network for the last 713

time point of the previous control input u(T ′−
i ). Figure 25 shows how the data propagation works in a 714

PINC. 715

5.3.2 Adaptation for Parameter Inference Deep Learning 716

Based on the original implementation of PINC by Antonelo et al. [2021], we adapted the parameter 717

inference algorithm by Yazdani et al. [2020] to allow for control inputs. To that end, we added the 718

possibility to automatically detect glutamate stimulation intervals, extended the neural network 719

architecture, and adapted the learning process. An overview of the extended algorithm is given in Figure 720

26. The different changes are explained further in the following sections. 721

Interval Detection As a first step, changes in glutamate stimulation had to be detected. To that end, 722

we assigned a interval number to each data point. The exact value of this interval number is 723

technically unimportant, as long as each interval has a unique identifier. For simplicity, we chose 724

ascending numbers. While the interval number does not get fed into the network, it is an important 725

identifier to feed the correct initial conditions into the network. Furthermore, it simplifies the process of 726

knowing the time frame of each stimulation interval. The interval number for each data point was 727
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T0 T1

t′ = 0 t′ = T ′
1 t′ = 0 t′ = 0

u(T ′
0)

u(T ′
1)

u(T ′
n−1)

x⃗(T ′
0)

x⃗(T ′
1)

x⃗(T ′
n−1)

f̂(θ⃗)

Input

Figure 21. Schematic of data propagation in a PINC based on a figure in the original paper by Antonelo
et al. [2021]. u is the control input of the different intervals. x⃗(T ′

i ) represents the corresponding initial

conditions. f̂(θ) is the function learned by the neural network.

determined by comparing the glutamate stimulation at consecutive time steps with each other. If no 728

change larger than ϵ was detected, the data point was assigned the current interval number. Otherwise, 729

we increased the current interval number before assigning it to the current data point and proceeding. 730

In this manuscript, we always assumed that the glutamate stimulation is noise free. Therefore, we 731

chose ϵ = 0 for all inference experiments. However, noise could easily be incorporated by setting larger 732

values of ϵ. 733

Input and Feature Transform Next, we had to change the input- and feature transform layer of the
neural network. To that end, we added eight input nodes to the input and feature transform layer of the
neural network (one for the value of the glutamate stimulation and seven for the initial conditions).
Furthermore, we extended the scaling of the input time t by the shifting mechanism explained in
Equation 75:

t̃ =
t− T0

T1 − T0
− T ′

i where t ∈ [T ′+
i , T ′−

i+1] (56)

Initial conditions were scaled with the inverse of w⃗o described earlier (Table 2). The glutamate 734

stimulation was scaled linearly to be between one and two. 735

Training Process Due to the addition of the initial values to the input layer, the training process had 736

to be extended with a mechanism that gauges the initial conditions of each interval before the actual 737

training step. We implemented two different versions. The simpler version, Version A, assumes that the 738

initial states of every interval are known and expands the neural network input accordingly. Version B 739

is more complex and only assumes that the initial values at x(t = 0) are known. At each epoch, the 740

algorithm starts by predicting the initial values of every interval. Since the dynamics of the state 741

variables are assumed to be continuous, this can be done as an iterative process. Starting at interval 742

i = 1 and using the initial conditions of the interval i− 1, the neural network is used to predict the end 743

state of the interval i− 1. At each training step, the loaded network inputs are then concatenated with 744

the appropriate, predicted initial states. In theory, a combination of Version A and Version B would 745
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Model Parameters p⃗Model

t

Glu

x⃗0

[IP3]i

h

[Ca2+]e

[Ca2+]i

[Na+]i

[K+]i

V

AD

Computational Model

ODE Loss LODE

Data Loss LData

Reg. Data Loss Lx̂

Reg. Param Loss Lp

Observed Data

Figure 22. This schematic shows the adaptation of the algorithm by Antonelo et al. [2021] to the
Oschmann et al. model and in combination with the deep learning algorithm initially developed by
Yazdani et al. [2020]. The input of the neural network is expanded with a control input (Glu) and initial
conditions (x⃗o). The initial conditions of each interval are predicted by the neural network itself and
replace the previously used concept of LAux. AD stands for automatic differentiation.
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be possible. In that combination, Version B would be used for unobserved state variables and 746

Version A for the observed state variables. The incorporation of x⃗o into the neural network replaces the 747

concept of auxiliary loss. 748

Algorithm 2 Overview over the deep learning algorithm adapted for control inputs

1: Load observed data
2: Initialize deep learning models, optimization model, learning rate strategy
3: Detect and label intervals ▷ Section 6.3.2
4: for n epochs do
5: mean loss← 0
6: initial conditions← [x⃗(t = 0)]
7: for i ∈ {1, ...,n intervals} do
8: inp← [T ′

i , glu(T
′−
i ), initial conditions[i− 1]]

9: est← model.predict(inp)
10: initial conditions← initial condition + est
11: end for
12:

13: while t, x⃗ = load batch() do
14: inp← [t, glu(t), initial conditions[i]] ▷ Where t ∈ [T ′+

i , T ′−
i+1]

15: ˆ⃗x = model.predict(t)
16: Compute Losses
17: Compute ∇θ⃗L
18: if clip gradients then
19: clip gradients(∇θ⃗L)
20: end if
21: optimization step()
22: mean loss← mean loss + L
23: end while
24: register lr(mean loss) ▷ Reduces LR if necessary
25: end for
26: Save results

6 Methods, Part 2 749

In this section, we describe several methods that aim at stabilizing the inference of parameters in the 750

Oschmann et al. model. In Section 6.1, we explain a change to the Oschmann et al. model that aims at 751

stabilizing the Vm problem shown in Section 4.2. Based on a paper by Wang et al. [2020], we show 752

methods to improve gradient pathologies during the inference process in Section 6.2. Last, Section 6.3 753

proposes the addition of control inputs to the neural network as was originally done by Antonelo et al. 754

[2021]. 755

6.1 Adapted Leak Currents and their subsequent Changes in Neural 756

Network Parameters 757

As was observed in Section 4.2, the gradients of [Na+]i, [K
+]i, and Vm returned by the computational

Oschmann et al. model are extremely sensitive to small errors in the input states. In part, this is due to
the way the leak currents are computed. The original model computes the leak currents as

INaLeak
= gNaLeak

(Vm − ENa) (57)

ENa =
RT

F
log

(
[Na+]i
[Na+]o

)
(58)
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Variable Value Source

ENa 0.055V Nowak et al. [1987]

EK -0.08V Witthoft and Em Karniadakis [2012]

Table 10. The used reversal potentials for Na+ and K+ and their sources

State Variable w⃗o w⃗Data w⃗ODE

[Ca2+]i 1e-04 1e+04 1e+04

[Ca2+]e 1e-02 1e+02 1e+03

h 1e-01 1e+01 1e+02

[IP3]i 1e-04 1e+04 1e+04

[Na+]i 1e+01 1e-01 1e-01

[K+]i 1e+02 1e-01 1e-01

V -1e-01 5e+01 5e-01

Table 11. This table lists the state variable related weights used for the deep learning algorithm with
new leak computation. Values that changed in comparison to the previous weights (Table 2) are indicated
in bold.

and

IKLeak
= gKLeak

(Vm − EK) (59)

EK =
RT

F
log

(
[K+]i
[K+]o

)
(60)

where F is the Faraday constant, R is the molar gas constant and T is the current temperature. This 758

way of computing EK and ENa introduces a high level of sensitivity to the computations of the leak 759

current, especially as the outer- and inner concentrations of both K+ and Na+ are dependent on the 760

amount of [Na+]i and [K+]i. To decouple this sensitivity, we replaced the dynamic computation of ENa 761

and EK with constants, as is regularly done in other computational astrocyte models [Farr and David, 762

2011, Flanagan et al., 2018]. The used constants are equal to the known reversal potentials of Na+ and 763

K+ and are listed in Table 10. 764

While the new leak computation does not change the general behavior of the simulation, it does 765

change the order of magnitude of the computed gradients. The changed gradients require the usage of 766

adapted weights for the parameter inference algorithm. These weights are listed in Table 11. 767

6.2 Gradient Pathologies in PINNs 768

While we trained my neural network with the configurations described in Section 3.3, it became obvious 769

that the training process was not as stable and fast as expected. Wang et al. [2020] discovered and 770

addressed one major mode of failure in PINNs. According to them, numerical stiffness might lead to 771

unbalanced learning gradients during the back-propagation step in model training. They solved the 772

problems in two ways. First, they suggested an algorithm that outbalances different loss terms. Second, 773

they changed the model architecture to include a transformer network. In the following sections, we 774

shortly describe their propositions and then explain how we adapted them for my model. 775

6.2.1 Learning Rate Annealing 776

Original Implementation To give different amounts of importance to different loss terms, loss terms
are usually weighted. Assuming the loss functions consist of an ODE loss LODE and M different data
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loss terms, such as different kinds of measurements or boundary conditions, the total loss can be written
as

L(θ) := LODE(θ) +
M∑
i=1

λiLData,i(θ) (61)

where λi is the weight of LData,i. Based on the optimization method Adam [Kingma and Ba, 2014]
explained earlier, the authors suggested scaling the weights according to the ratio between the largest
and average gradient of the different loss terms. Let

λ̂i =
maxθ⃗{|∇θ⃗LODE(θ⃗)|}

|∇θ⃗LData,i(θ⃗)|
(62)

where maxθ⃗{|∇θ⃗LODE(θ⃗)|} is the largest absolute parameter gradient of the ODE loss and

|∇θ⃗LData,i(θ⃗)| denotes the mean absolute parameter gradient of the different data loss terms. Due to

the possibly high variance of |∇θ⃗LData,i(θ⃗)|, it was suggested to not directly use λ̂i for weighting but
rather to compute a running average using the equation

λi = (1− α)λi + αλ̂i (63)

with α ∈ [0.5, 0.9]. Assuming SGD optimization (Equation 12) is used, the optimization step becomes

θ⃗n+1 = θ⃗n − η∇θ⃗LODE(θ⃗n)− η
M∑
i=1

λi∇θ⃗LData,i(θ⃗n) (64)

where n stands for the n-th iteration and ∇ is the learning rate. Wang et al. [2020] suggest to use a 777

learning rate of η = 1e−3. 778

Adaption for Parameter Inference Deep Learning In contrast to the examples by [Wang et al., 779

2020], the computational model at hand [Oschmann et al., 2017] consists of multiple ODEs. Furthermore, 780

observations usually only exist for a subset of the given ODEs. This leads to the question of how the 781

learning rate annealing algorithm should be adapted for my model. We tested three different strategies 782

(A, B, C) further described below. To reduce the computational effort of computing λ̂, we only performed 783

an update step every 50th epoch. The different strategies are visualized in Figure 23. 784

Strategy A First, we matched the weight of the first ODE loss gradient (∇θ⃗LODE,1) against all other
loss gradients, both ODE loss and data loss, separately. This idea was motivated by the observation that
it is not about balancing the ODE loss with the data loss, but about balancing all terms with each other.
By setting LCombined(θ⃗) := (LODE,2, ...,LODE,s,LData,1, ...,LData,m) the total loss can be defined as

L(θ⃗) := LODE,1(θ⃗) +
M+S−1∑

i=1

λiLCombined,i(θ⃗) (65)

Then, λ̂i becomes

λ̂i =
maxθ⃗{|∇θ⃗LODE,1(θ⃗)|}

|∇θ⃗LCombined,i(θ⃗)|
(66)

and is used in combination with the moving average Equation 63 to compute λi. 785
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[Ca2+]i [Ca2+]e h [IP3]i [Na+]i [K+]i Vm

[Ca2+]i [Ca2+]e h [IP3]i [Na+]i [K+]i Vm

[Ca2+]i [Ca2+]i [Ca2+]i. . .

[Ca2+]e h Vm. . .

Strategy A

[Ca2+]i Vm

[Ca2+]i Vm

Strategy B

[Ca2+]i Vm+ . . .+

[Ca2+]i Vm

Strategy C

Figure 23. This figure visualizes the three different λ update strategies. Orange boxes stand for the
gradient with respect to the network parameters of the ODE loss ∇θ⃗LODE . Blue boxes stand for the
gradient with respect to the network parameters of the data loss ∇θ⃗LData. Almost transparent blue boxes
indicate that the respective data was not observed and is therefore not considered in the loss functions.

Strategy B For my second strategy, we assumed that the different ODEs are already balanced out
well enough through the loss weighting described in Section 3.3.4. Therefore, the weighting only has to
be adjusted between an ODE loss and its respective data loss. If an ODE does not have a counterpart,
we do not change the weighting. Assuming no regularization and auxiliary losses, the total loss can be
written in the form L(θ⃗) =

∑S
s=1 Ls(θ⃗) with

Ls(θ⃗) :=

{
LODE,s(θ⃗) + λiLData,i(θ⃗) if ODE s corresponds to a measurement i

LODE,s(θ⃗) otherwise
(67)

The weights are then computed using

λ̂i =
maxθ⃗{|∇θ⃗LODE,s(θ⃗)|}

|∇θ⃗LData,i(θ⃗)|
(68)

together with the moving average Equation 63. 786

Strategy C For my last strategy, we made the same assumption as for Strategy B, but rather than
balancing each ODE against its counterpart, we took the ratio between the largest gradient of the sum of
all ODE losses and the mean gradient of the different data losses. In this form, the total loss is written as

L(θ⃗) : =
S∑

s=1

LODE,s(θ⃗) +
M∑
i=1

λiLData,i(θ⃗) (69)

and the temporary weight becomes

λ̂i =
1

S

maxθ⃗{|
∑S

s=1∇θ⃗LODE,s(θ)|}

|∇θ⃗LData,i(θ⃗)|
(70)
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6.2.2 Improved Fully Connected Architecture 787

The second improvement by Wang et al. [2020] concerned the architecture of the neural network itself 788

and was based on the idea of a Transformer [Vaswani et al., 2017]. Transformers are often used in 789

natural language processing or sequence transduction tasks and offer an alternative to the more 790

commonly known recurrent or convolutional neural networks. Broadly speaking, a transformer considers 791

possible multiplicative connections between different input nodes and strengthens the influence of input 792

nodes on later network layers. 793

In the context of their paper, Wang et al. [2020] adapted the idea of transformer networks to PINNs

by adding two additional network layers U⃗ and V⃗ . Just as the first fully connected neural network layer,
U⃗ and V⃗ are directly connected to the input layer. They consist of the same number of nodes as all the
other network layers. In form of equations, U⃗ and V⃗ are defined through

U⃗ = g
(
X⃗ · W⃗U + b⃗U

)
(71)

V⃗ = g
(
X⃗ · W⃗V + b⃗V

)
(72)

where g is the activation function, X⃗ the input layer, W⃗ and b⃗ are the layers parameter. To enhance the
network’s performance, U⃗ and V⃗ are multiplied component-wise to the output of the normal network
layers described in Equation 10. The forward propagation equations, therefore, change to

H⃗ [l] = g
(
W⃗ [l] · A⃗[l−1] + b⃗[l]

)
(73)

A⃗[l+1] =
(
1⃗− H⃗ [l]

)
◦ U⃗ + H⃗ [l] ◦ V⃗ (74)

where ◦ denotes component-wise multiplication. Note that this change does not affect Equation 11 for 794

the output layer of the neural network. Figure 24 shows the addition of U⃗ and V⃗ to a fully connected 795

neural network. In the context of this manuscript, we followed the original implementation by Wang 796

et al. [2020] exactly. 797

6.3 Control Input 798

In the context of ODEs, PINNs attempt to learn the relationship between a continuous time input t and 799

several state variables x⃗. One of the major drawbacks of this method is that external events, such as a 800

glutamate release by a neighboring neuron, can not be taken into account. Therefore, the glutamate level 801

has either to be known or inferred at every point in time. While this might be possible under some 802

preconditions, it is not feasible and further prohibits the use of multiple, different measurement sets to 803

train one specific model. 804

The same problem is often faced in the context of control theory. While processes in for example the 805

oil, gas, or robotics industry can often be modeled through differential equations, they usually have some 806

dependence on external control inputs. To counteract this problem, Antonelo et al. [2021] recently 807

proposed an adapted PINN algorithm that allows for control inputs. The concept is called 808

Physics-Informed Neural Nets-based Control (PINC) and will be detailed further in the next Section 809

6.3.1. Section 6.3.2 then details how we adapted and implemented the concept of PINC to further 810

improve on the parameter inference algorithm proposed by Yazdani et al. [2020] implemented in the 811

context of this manuscript. 812

6.3.1 Original Implementation 813

Inspired by multiple shooting and collocation methods, Antonelo et al. [2021] changed the original PINN
algorithm [Raissi et al., 2017] in two significant ways. The first change is concerned with the input time
t. Rather than attempting to learn how the state variables change over the whole time horizon, they
suggested letting the network learn how the state variables have behaved since the last change in control
input u(t). To that end, they subdivided the time interval [T0, T1] into multiple, smaller subintervals.
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x1

x2

f̂(θ⃗)

U⃗

V⃗

Figure 24. This figure shows the extension of a transitional neural network with two additional, fully
connected layers U⃗ and V⃗ . This addition is based on the idea of transformer networks and was adapted
to PINNs in a recent paper by Wang et al. [2020]

Assuming the control input is given by a piecewise constant function u(t), they split the time intervals at
the points of discontinuity (T ′

0, T
′
1, T

′
2, ..., T

′
n), T

′
0 = T0 and T ′

n = T1, of u(t). Then, the input to the
neural network is changed from t to t′ where t′ indicates how much time has passed since the beginning
of the current subinterval.

t′ := t− T ′
i where t ∈ [T ′+

i , T ′−
i+1] (75)

Second, they added the control input u(t) and the initial conditions of the state variables of the 814

current time interval x⃗(t = T ′
i ), t ∈ [T ′+

i , T ′−
i+1] as input nodes to the neural networks. If the initial 815

conditions x⃗(t = T ′
i ) are not known, one can instead use the output of the neural network for the last 816

time point of the previous control input u(T ′−
i ). Figure 25 shows how the data propagation works in a 817

PINC. 818

6.3.2 Adaptation for Parameter Inference Deep Learning 819

Based on the original implementation of PINC by Antonelo et al. [2021], we adapted the parameter 820

inference algorithm by Yazdani et al. [2020] to allow for control inputs. To that end, we added the 821

possibility to automatically detect glutamate stimulation intervals, extended the neural network 822

architecture and adapted the learning process. An overview of the extended algorithm is given in Figure 823

26. The different changes are explained further in the following sections. 824

Interval Detection As a first step, changes in glutamate stimulation had to be detected. To that end, 825

we assigned a interval number to each data point. The exact value of this interval number is 826

technically unimportant, as long as each interval has a unique identifier. For simplicity, we chose 827

ascending numbers. While the interval number does not get fed into the network, it is an important 828

identifier to feed the correct initial conditions into the network. Furthermore, it simplifies the process of 829

knowing the time frame of each stimulation interval. The interval number for each data point was 830
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T0 T1

t′ = 0 t′ = T ′
1 t′ = 0 t′ = 0

u(T ′
0)

u(T ′
1)

u(T ′
n−1)

x⃗(T ′
0)

x⃗(T ′
1)

x⃗(T ′
n−1)

f̂(θ⃗)

Input

Figure 25. Schematic of data propagation in a PINC based on a figure in the original paper by Antonelo
et al. [2021]. u is the control input of the different intervals. x⃗(T ′

i ) represents the corresponding initial

conditions. f̂(θ) is the function learned by the neural network.

determined by comparing the glutamate stimulation at consecutive time steps with each other. If no 831

change larger than ϵ was detected, the data point was assigned the current interval number. Otherwise, 832

we increased the current interval number before assigning it to the current data point and proceeding. 833

In this manuscript, we always assumed that glutamate stimulation is noise-free. Therefore, we chose 834

ϵ = 0 for all inference experiments. However, noise could easily be incorporated by setting larger values 835

of ϵ. 836

Input and Feature Transform Next, we had to change the input- and feature transform layer of the
neural network. To that end, we added eight input nodes to the input and feature transform layer of the
neural network (one for the value of the glutamate stimulation, and seven for the initial conditions).
Furthermore, we extended the scaling of the input time t by the shifting mechanism explained in
Equation 75:

t̃ =
t− T0

T1 − T0
− T ′

i where t ∈ [T ′+
i , T ′−

i+1] (76)

Initial conditions were scaled with the inverse of w⃗o described earlier (Table 2). The glutamate 837

stimulation was scaled linearly to be between one and two. 838

Training Process Due to the addition of the initial values to the input layer, the training process had 839

to be extended with a mechanism that gauges the initial conditions of each interval before the actual 840

training step. We implemented two different versions. The simpler version, Version A, assumes that the 841

initial states of every interval are known and expands the neural network input accordingly. Version B 842

is more complex and only assumes that the initial values at x(t = 0) are known. At each epoch, the 843

algorithm starts by predicting the initial values of every interval. Since the dynamics of the state 844

variables are assumed to be continuous, this can be done as an iterative process. Starting at interval 845

i = 1 and using the initial conditions of the interval i− 1, the neural network is used to predict the end 846

state of the interval i− 1. At each training step, the loaded network inputs are then concatenated with 847

the appropriate, predicted initial states. In theory, a combination of Version A and Version B would 848
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Model Parameters p⃗Model

t

Glu

x⃗0

[IP3]i

h

[Ca2+]e

[Ca2+]i

[Na+]i

[K+]i

V

AD

Computational Model

ODE Loss LODE

Data Loss LData

Reg. Data Loss Lx̂

Reg. Param Loss Lp

Observed Data

Figure 26. This schematic shows the adaptation of the algorithm by Antonelo et al. [2021] to the
Oschmann et al. model and in combination with the deep learning algorithm initially developed by
Yazdani et al. [2020]. The input of the neural network is expanded with a control input (Glu) and initial
conditions (x⃗o). The initial conditions of each interval are predicted by the neural network itself and
replace the previously used concept of LAux. AD stands for automatic differentiation.
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be possible. In that combination, Version B would be used for unobserved state variables and 849

Version A for the observed state variables. The incorporation of x⃗o into the neural network replaces the 850

concept of auxiliary loss. 851

Algorithm 3 Overview over the deep learning algorithm adapted for control inputs

1: Load observed data
2: Initialize deep learning models, optimization model, learning rate strategy
3: Detect and label intervals ▷ Section 6.3.2
4: for n epochs do
5: mean loss← 0
6: initial conditions← [x⃗(t = 0)]
7: for i ∈ {1, ...,n intervals} do
8: inp← [T ′

i , glu(T
′−
i ), initial conditions[i− 1]]

9: est← model.predict(inp)
10: initial conditions← initial condition + est
11: end for
12:

13: while t, x⃗ = load batch() do
14: inp← [t, glu(t), initial conditions[i]] ▷ Where t ∈ [T ′+

i , T ′−
i+1]

15: ˆ⃗x = model.predict(t)
16: Compute Losses
17: Compute ∇θ⃗L
18: if clip gradients then
19: clip gradients(∇θ⃗L)
20: end if
21: optimization step()
22: mean loss← mean loss + L
23: end while
24: register lr(mean loss) ▷ Reduces LR if necessary
25: end for
26: Save results

7 Results, Part 2 852

In this section, we show the inference results obtained from the methods described in section 6. 853

7.1 Effect of new Leak Computation 854

In this section, we visualize the dynamics of the state variables with the new leak computations, show 855

the effect on the learning process of the learned gradients, and infer one parameter using the new leak 856

computation. 857

7.1.1 Dynamics 858

Figure 27 shows the changed dynamics after the computation of the leak currents was changed in the 859

Oschmann et al. model. It can be seen that the dynamics of [Ca2+]i, [Ca2+]e, h, and [IP3]i were barely 860

affected. This stands in contrast to the dynamics of [Na+]i, [K
+]i, and Vm. While these dynamics keep 861

resembling step functions, the difference between the different step levels changed. Specifically, the 862

differences in Vm and [K+]i decreased, while the differences in [Na+]i increased. 863
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Simulation Parameter Unit Inferred Ap⃗ Aall Aobs

Inference with new leak

New leak, old weights KNKAmN mM 11.4 89.6% 79.1% 99.1%

New leak, new weights KNKAmN mM 15.95 40.5% 71.6% 99.1%

Old leak KNKAmN mM 7.9 79% 75.5% 93%

LR Annealing

Strategy A INCXmax
pA
µm2 0.006 -% 60 % 82.5%

Strategy B INCXmax
pA
µm2 0.001084 91.6% 90% 97.5%

Strategy C INCXmax
pA
µm2 0.001085 91.5% 91.6% 99.2%

Improved Architecture

Strategy B, Trans. INCXmax
pA
µm2 0.00103 97% 84.2% 92.5%

Strategy C, Trans. INCXmax
pA
µm2 0.000975 97.5% 82.5% 92.5%

PINC, Strategy B

Version A INCXmax
pA
µm2 0.000981 98.1% 87.5% 96.6%

Version A, Trans. INCXmax
pA
µm2 0.00111 89% 83.3% 98.3%

Version B INCXmax
pA
µm2 0.00104 96% 89.2% 96.6%

Version B, Trans. INCXmax
pA
µm2 0.009 -% 37.5 % 51.7%

PINC, Strategy C

Version A INCXmax
pA
µm2 0.00104 96% 92.5% 100%

Version A, Trans. INCXmax
pA
µm2 0.00105 95% 89.2% 97.5%

Version B INCXmax
pA
µm2 0.000978 97.8% 88.3% 95.8%

Version B, Trans. INCXmax
pA
µm2 0.00098 98% 88.3% 97.5%

Noisy data, NCX

No noise INCXmax
pA
µm2 0.00104 96% 89.16% 96.6%

Noise, repetition 1 INCXmax
pA
µm2 0.0011 89% 71.6% 78.3%

Noise, repetition 2 INCXmax
pA
µm2 0.0011 89% 76.6% 79.16%

Noise, repetition 3 INCXmax
pA
µm2 0.00240 -% 75.0% 80.8%

Noisy data, SERCA

No noise νER
mM
s 0.00449 99.7% 85% 92.5 %

Noise, repetition 1 νER
mM
s 0.0045 100% 72.5% 75.8%

Noise, repetition 2 νER
mM
s 0.00449 99.7% 74.2% 76.6%

Noise, repetition 3 νER
mM
s 0.0045 100% 75.8% 79.2%

Table 12. Inferred parameter values for the different parameter inference experiments in this section. The
original values and their scaling can be seen in Table 3. The abbreviation Trans. stands for Transformer,
the abbreviation LR for learning rate.
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Figure 27. Dynamics of the Oschmann et al. model when the leak current computation is changed
(colored lines) as described in Section 6.1. The previous behavior is depicted as black, dotted lines. The
used glutamate stimulation is shown in Figure 9.
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7.1.2 Learned Gradients 864

Next, we repeated the experiment performed in Section 4.2 and trained the neural network on the full 865

data set Parameter Study, assuming that all dynamics were observed and that all parameters were 866

known. Once all dynamics were learned accurately, we plotted the gradient of the neural network 867

together with the gradient returned by the ODEs if the output of the neural network is fed into the 868

computational model. The results can be seen in Figure 28. Noticeably, the network was able to learn all 869

network gradients well. The only noteworthy errors occurred around the sharp gradients of [Na+]i, [K
+]i 870

and Vm caused by changes in glutamate stimulation. Furthermore, the output of the computational 871

model of [K+]i and Vm is less error-prone than it was with the original leak computation. 872

7.1.3 Inference 873

To test if the inference of parameters still works with the new leak computation, we repeated the 874

inference of parameter KNKAmN on a noiseless data set created with the changed computational model. 875

The first inference experiment was done with the same weighting of the MSE terms as in the previous 876

results section (Table 2). The second inference experiment was done with the new weights listed in Table 877

11. The results are shown in Figure 29. Generally, it can be seen that the inference of KNKAmN is quite 878

accurate for the new leak computation with old weights. However, the accuracy plot shows that the 879

network fails to infer the not observed dynamics, indicating that, without learning rate reduction, the 880

inference might have failed to converge and would instead have continued to increase. Interestingly, the 881

network has a period of high accuracy Aall at the time when the parameter inference was approximately 882

correct. Furthermore, the inference process took significantly longer than for the old leak computation. 883

The inference of KNKAmN with the new weighting of MSE terms did not work well. The inferred 884

parameter only achieves 40% accuracy, the accuracy of the observed dynamics does not increase over 885

70%. However, the network is more successful in learning the dynamics of the observed state variables if 886

the new leak computation is used. The exact inferred values and accuracies are listed in Table 12. 887

7.2 Gradient Pathologies 888

In this section, we show the effect of the strategies originally suggested by Wang et al. [2020]. The first 889

subsection shows the inference of INCXmax using three different learning rate annealing strategies 890

Strategy A, Strategy B and Strategy C. The second subsection shows the results for the combination 891

of Transformers with Strategy B and Strategy C. All results are computed on the noise-free data set 892

Parameter Study and all but the dynamics of [Na+]i and [K+]i were assumed to be observed. The leak 893

computation was reset to the original version. 894

7.2.1 Learning Rate Annealing with Different Strategies 895

Figure 30 shows the results for the inference of parameter INCXmax with activated learning rate annealing. 896

The experiments were performed without decreases in learning rate and with a gradient clipping value of 897

c = 100. It can easily be seen that Strategy A does not work. This strategy leads to large oscillations 898

and inaccurate inference results. Furthermore, the achieved overall accuracy Aall is extremely low at 899

60%. Therefore, we did not consider Strategy A further after this point. However, Strategy B and 900

Strategy C yielded good results. The exact inferred values are shown in Table 12. The learning process 901

of both, Strategy B and C, showed a steady decrease in total loss and a steady increase in accuracy. 902

7.2.2 Improved Fully Connected Architecture 903

Next, we added two Transformer layers to the fully connected network architecture as suggested by 904

Yazdani et al. [2020]. The results can be seen in Figure 31. Although the transformer networks also 905

succeed at inferring the parameter INCXmax, it can be seen that the inference oscillates more heavily 906

than for the networks without a transformer. Due to this high oscillation level, we considered the 907

inferred parameter to be the average inferred parameter over the last 1000 epochs. The inferred values 908
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Figure 28. Gradients learned (gray) and gradients returned by the computational Oschmann et al.
model (black) if the learned dynamics are used as an input. The colored lines represent the gradients
initially computed during the simulation. The used glutamate stimulation is shown in Figure 9.
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Figure 29. Inference of parameter KNKAmN (a) and the respective accuracies Aall and Aobs (b) using
the original leak computation in comparison to the inference of the same parameter using the new leak
computation with two sets of weights. old weights refer to the weights used beforehand and listed in
Table 2. new weights refer to the weights computed for the new leak computation and are listed in Table
11. The black line in (a) indicates the original value.

are listed in Table 12. It can be seen that the achieved parameter accuracies are higher than for the 909

parameter inference experiments without Transformers. However, the accuracy of all dynamics AAll is 910

lower for the Transformer architecture than for the normal one. 911

7.3 Control Inputs 912

In this section, we report the results for parameter inference using PINC and highlight one possible 913

problem regarding the combination of learning with noise and PINC. 914

7.3.1 Parameter Inference 915

Using the concept of PINC originally suggested by Antonelo et al. [2021], we tested the inference of 916

INCXmax in combination with the different strategies to avoid gradient pathologies. The results of PINC 917

in combination with Strategy B are shown in Figure 32. Similarly, Figure 33 shows the results for 918

Strategy C. In the plots, Version A stands for the inference using PINC under the assumption that the 919

initial states of each interval are known. For Version B, only the initial states of the first interval are 920

assumed to be known, the initial states of the following intervals are predicted and continuously updated. 921

The inference of INCXmax was successful for all but Strategy B in combination with a Transformer 922

network. As can be seen in the plot of the loss value, the computed λ weights in this version likely 923

became too large. As a consequence, the network was unable to learn. Another interesting observation is 924

that when using Strategy C with Version B and no Transformer, the network inferred heavily 925

oscillating values between epoch 1000 and epoch 2000, before stabilizing again. All other inference 926

methods demonstrated highly stable convergence behavior. The exact values inferred are listed in Table 927

12. Surprisingly, the inference or parameters did work similarly well when the network was responsible 928

for predicting its own initial states. Furthermore, parameter convergence was achieved faster than for 929

traditional PINNs. 930
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Figure 30. Comparison of different λ strategies when inferring parameter INCXmax (a; b shows a cutout
for Strategy B and C) together with the respective loss values (c) and accuracies Aall (d). The black
lines in (a) and (b) indicate the original value.
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Figure 31. Comparison of different λ strategies when inferring parameter INCXmax with and without
the addition of Transformers to the neural network (a; b shows a cutout). The respective loss values (c)
and accuracies Aall (d) are shown. The black lines in (a) and (b) indicate the original value.
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Figure 32. Inference of INCXmax using PINC in combination with Strategy B to avoid gradient
pathologies (a). The respective loss values (c) and accuracies Aall (d) are also shown. The abbreviation
Trans. stands for the addition of Transformers. The black lines in (a) and (b) indicate the original
parameter value.
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Figure 33. Inference of INCXmax using PINC in combination with Strategy C to avoid gradient
pathologies. The abbreviation Trans. stands for the addition of Transformer networks. The black lines
in (a) and (b) indicate the original parameter value.
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Figure 34. Inference of INCXmax (a) and respective accuracies Aall (b) when using PINC in combination
with Strategy B (gradient pathologies), Version A (initial values) and noisy observation data. The
black line in (a) indicates the original value.
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Figure 35. Inference of νER (a) and the respective accuracy Aall (b) using PINC in combination with
Strategy B (gradient pathologies), Version A (initial values) and noisy observation data. The black
line in (a) indicates the original value.

7.3.2 Parameter Inference with Noise 931

Next, we tested the inference of parameters using the data set Noise. Figure 34 shows the inference 932

results of INCXmax without noise on the observed data and three repetitions of inference with noise on 933

the observed data. It can be seen that for two out of three repetitions, the inference of INCXmax was 934

successful. However, in Repetition 3, the inferred parameter converged towards a wrong value, 935

indicating instability. When repeating the same stability experiment with parameter νER of the ISerca 936

current, we did not observe the same problem (Figure 35). Not surprisingly, the achieved accuracy Aall 937

is lower for the repetitions where the observed data was noisy. Note that the term accuracy has a 938

somewhat different meaning in the context of noisy data, as fitting all data perfectly would be an 939

indication of overfitting. 940

7.4 Inference of Multiple Parameters 941

Using the created PINC algorithm and the PINN algorithm with learning rate annealing Strategy C, 942

we inferred the parameters νER and KER of ISerca. The dynamics of [Ca2+]i, [Ca2+]e, h and Vm were 943
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Figure 36. Inference of KER (a) and νER (b) using normal physics informed neural networks in
combination with Strategy C (PINN) and physics informed neural networks in combination with control
inputs, Version A and Strategy C (PINC). The respective total loss values (c) and accuracies Aall (d)
measured on noisy data are shown. The black lines in (a) and (b) indicate the original parameter values.

assumed to be observed and had 10% Gaussian noise on them (data set Noise). The results can be seen 944

in Figure 36. Interestingly, PINN and PINC achieve around the same accuracy Aall and infer the same 945

parameter KER. At the same time, PINN only achieves an accuracy of 89.2% on νER while the accuracy 946

of PINC is as high as 97.3%. The exact inferred results can be seen in Table 13. 947

7.5 Runtimes 948

In this section, we examine the difference between executing the parameter inference algorithm on a 949

GPU versus on a CPU. Furthermore, we detail the runtime of one and fifty epochs of different versions 950

of the parameter inference algorithm. 951

7.5.1 GPU vs. CPU 952

To ensure that the parameter inference can be done as fast as possible, we measured whether executing 953

the algorithm on a normal CPU or on a GPU (Cuda) is faster. The runtime for different steps of the 954

naive parameter inference algorithm are shown in Figure 37. Considered are data points from 50 epochs. 955

Unexpectedly, it can be seen that the execution time is generally shorter on the CPU. This is especially 956

true for the computation of LODE and the optimization step. 957
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Parameter Unit Real Inferred Ap⃗ Aall Aobs

PINN

Ca2+ affinity νER
mM
s 0.0045 0.00395 86.7% 67.5% 76.6 %

Max. Ca2+ uptake KER mM 1e-4 8.77e-5 87.7% 67.5% 76.6 %

PINC

Ca2+ affinity νER
mM
s 0.0045 0.00438 97.3% 66.7% 77.5%

Max. Ca2+ uptake KER mM 1e-4 8.92e-5 89.2% 66.7% 77.5%

Table 13. Achieved inference results when inferring the parameters of ISerca using PINN and PINC.
Note that the accuracy of the dynamics is measured on the data set Noise.
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Figure 37. Runtimes of different parts of the deep learning algorithm on a GPU and on a CPU. Plotted
are the run times of the first 50 epochs.
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Name 1 Epoch [s] 50 Epochs[s] Description

Initial Version 0.166± 0.0023 8.18± 0.026 Section 3.3

Strategy B 0.164± 0.0015 8.59± 0.242 Section 6.2.1

Strategy C 0.165± 0.0010 8.44± 0.040 Section 6.2.1

Strategy B, with Transformer 0.192± 0.0127 9.64± 0.027 Section 6.2.2

Strategy C, with Transformer 0.185± 0.0004 9.52± 0.021 Section 6.2.2

PINC, Version A 0.188± 0.0005 9.67± 0.019 Section 6.3

PINC, Version B 0.190± 0.0005 9.77± 0.010 Section 6.3

Table 14. This table lists the runtime of 1 or 50 epochs with different versions of the parameter inference
algorithm. The runtimes were measured with a batch size of 32 and a total of 480 data points. Excluded
is the time needed to initialize the models or to compute accuracies.

7.5.2 Differences between Methods 958

The run times of one and 50 epochs of parameter inference of different versions of the algorithm are 959

listed in Table 14. Not surprisingly, the initial version is the fastest. Computing the new weights λ in 960

Strategy B and Strategy C every 10th iteration has a computational impact, increasing the runtime 961

when looking at the runtime over 50 epochs. Because Strategy B requires more computations of ∇θ⃗L, 962

it is more expensive than Strategy C. As expected, the addition of Transformers increases the runtime 963

even further. This can be explained by the fact that Transformers add additional connections, and 964

therewith network parameters, to the neural network architecture, making the computation of ∇θ⃗L more 965

expensive. Even more expensive is the neural network architecture with control inputs (PINC). This is 966

likely due to the necessary prediction and concatenation of the loaded data with the initial conditions of 967

the respective interval. 968

8 Discussion 969

First, Section 8.1 reviews the influence of conceptual changes, different parameter sets, and other issues 970

encountered with the Oschmann et al. model. In section 8.2, we discuss the different versions of the 971

parameter inference algorithm. Last, Section 8.3 gives a broad overview of possible future steps and 972

problems that are to be expected. 973

8.1 Model by Oschmann et al. [2017] 974

As part of this manuscript, we implemented the astrocytic single-compartment model originally 975

developed by Oschmann et al. [2017] in Python. We used the model to study the dynamics of [Ca2+]i, 976

[Ca2+]e, h, [IP3]i, [Na+]i, [K
+]i and Vm and the different mGluR and GluT driven currents using three 977

different parameter sets (Default, Paper, Thesis). The observed [Ca2+]i dynamics for parameter set 978

Default resembled the Ca2+ dynamics seen in experimental studies [Di Castro et al., 2011, Nimmerjahn 979

and Bergles, 2015, Verkhratsky and Nedergaard, 2018]. However, by the design of the model, they were 980

missing the random component. In contrast to the parameter set Default, the parameter sets Paper and 981

Thesis produced Ca2+ dynamics that resembled step functions, which is not usually seen in practice. 982

By studying the different currents, we observed that mGluR- and GluT-driven pathways operate on 983

completely different orders of magnitude. The only GluT current operating on the same level as mGluR 984

is INCX. As the only GluT-current that directly influences the intracellular Ca2+ level [Ca2+]i, INCX is 985

the link between the GluT- and mGLuR pathway. By operating on a completely different order of 986

magnitude, INCX, and therefore [Ca2+]i are unlikely to directly influence the dynamics of [Na+]i, [K
+]i, 987

and Vm. In part, this might be due to the used glutamate stimulation levels. While the parameters of 988

INCX were tuned to match biophysical responses [Ziemens et al., 2019], the used glutamate stimulation 989
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in those experiments and in Oschmann et al. [2017] was significantly higher (1mM) than the glutamate 990

stimulation used in this study (≤ 0.006mM) as suggested by De Pittà et al. [2009], Dupont et al. [2011], 991

and partially Oschmann [2018]. The assumption that mGluR and GluT pathways only marginally 992

influence each other is confirmed when considering the different conceptual changes made to the 993

Oschmann et al. model. Temporarily changing the leak computation to use a constant reverse potential 994

[Farr and David, 2011, Flanagan et al., 2018] influenced the steady states of [Na+]i, [K
+]i, and Vm 995

significantly. All other dynamics were barely affected. It is currently assumed that cell regions close to 996

the soma have low numbers of leak channels [McNeill et al., 2021]. Since we simulated an astrocytic 997

compartment close to the soma, the large effect of this change on [Na+]i, [K
+]i, and Vm was surprising. 998

Similarly, adding the Ca2+ valence to INCX in the computation of [Ca2+]i
dt influenced [Ca2+]i and [Ca2+]e 999

dynamics slightly, but had no effect on the other state variables. Furthermore, the removal of IIP3R and 1000

ISerca from the computation of dVm

dt only resulted in insignificant changes in overall dynamics. 1001

Another observation made when studying the GluT-pathway is that INaLeak
causes a positive current, 1002

implicating that the Na+ leak is inward pointing. This is contrary to the schematic shown in the original 1003

paper by Oschmann et al. [2017]. However, the reverse potential of Na+ is known to be positive [Nowak 1004

et al., 1987]. Since the membrane voltage of the astrocytic compartment was consistently negative, this 1005

behavior is likely to be correct. In summary, the astrocytic compartment model by Oschmann et al. 1006

[2017] requires further refinement to be able to accurately capture and reproduce ionic dynamics as 1007

observed in experimental data. 1008

8.2 Parameter Inference 1009

In this work, we implemented the deep learning-based parameter inference algorithm originally 1010

developed by Yazdani et al. [2020]. As a first step, we added the concepts of regularization loss, gradient 1011

clipping, and adaptive learning rates to stabilize the learning process. Second, we implemented learning 1012

rate annealing and a fully connected architecture suggested by Wang et al. [2020] to further improve and 1013

stabilize the results. Last, we added the concept of PINC and expanded the neural network to use 1014

glutamate stimulation as a control input. 1015

The addition of gradient norm clipping to the learning process prevented the neural network from 1016

becoming unstable and predicting NaN values. In the literature, the problem of predicting NaN values is 1017

generally referred to as exploding- or vanishing gradient problem and is a problem more often occurring in 1018

the realms of recurrent neural networks, where gradients might become enormous due to the unrolling of 1019

network steps over several inputs [Pascanu et al., 2012]. In PINNs, these gradient pathologies also seem 1020

to be quite common and are the underlying issue Wang et al. [2020] aimed to address. Once employed, 1021

the exact gradient clipping value c did not significantly influence the resulting inferred parameter. 1022

However, influences in stability during the learning process and convergence speed were observed. 1023

In another set of parameter inference experiments, we found that using an adaptive learning rate can 1024

aid or prevent PINNs from finding an appropriate solution. While the inference of INCXmax became 1025

unstable without a reduction in the learning rate, the same mechanism stopped the learning process of 1026

KNKAmN too early. The reason for this inconsistency can probably be found in the heavy oscillations of 1027

the loss term. The employed learning rate reduction strategy, ReducerLROnPlateau, reduces the 1028

learning rate once the learning rate does not decrease for patience iterations. Due to the heavy 1029

oscillations, especially in the inference of KNKAmN , it is possible that exceptionally low loss outliers 1030

disturb the strategy and cause the learning rate to be decreased too early. In future work, it might be 1031

beneficial to consider registering a moving average learning rate over several epochs rather than the 1032

average learning rate of a single epoch. The general sensitivity of the parameter inference algorithm to 1033

the learning rate is unexpected. Using an adaptive learning rate mechanism such as Adam should lead to 1034

a low sensitivity to the used learning rate [Kingma and Ba, 2014]. 1035

The adaptive learning rate annealing strategy proposed by Wang et al. [2020] was developed for 1036

application on a single partial differential equation. We suggested three different versions to adapt their 1037

mechanism to a system of multiple ODEs and tested their application. The results showed that 1038

Strategy A, a strategy that aimed at weighting the loss gradient of the first ODE against all other loss 1039
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gradients, was not suitable. In retrospect, this is not unexpected. The goal of the adaptive learning rate 1040

annealing is to weight ODE losses against different forms of measured data. By weighting the first ODE 1041

loss against all other ODE losses, the other ODE terms were weighted too heavily, thereby disturbing the 1042

learning process. Furthermore, the results demonstrated that Strategy B, weighting each ODE loss 1043

against its data counterpart, and Strategy C, weighting the average ODE loss against the data loss 1044

counterparts, worked equally well. Both strategies helped with stabilizing the parameter inference even 1045

without a reduction in the learning rate. To the best of my knowledge, no other adaptations of the 1046

algorithm proposed by Wang et al. [2020] to multiple ODEs exist. 1047

Furthermore, we added Transformer networks to improve the fully connected architecture as also 1048

proposed by Wang et al. [2020]. Interestingly, this led to more heavy oscillations of the inferred 1049

parameter and the respective accuracies. While the parameter accuracy, if the average over the last 1000 1050

epochs was taken, was higher than for the implementations without Transformer, the accuracy of 1051

inferred dynamics was lower. Transformer networks work by adding additional nodes and residual 1052

connections to the neural network. It is possible that the larger oscillations are due to the increased 1053

amount of parameters the neural network has to optimize. Wang et al. [2020] found in their paper that 1054

the addition of Transformers to their learning rate annealing mechanism reduced the end error by 1055

approximately factor three. The difference to my own experiences might be explained by the fact that 1056

they test their architecture on two-dimensional PDEs, leading them to have three input dimensions 1057

(time, x coordinate, y coordinate). In contrast, the here used ODEs consist of only one input dimension. 1058

Therefore, the addition of residual connections leading back to the input layer might not be as beneficial. 1059

The addition of control input to the neural network, as was suggested by Antonelo et al. [2021], had 1060

several positive impacts. First, we observed that the inference of parameters is faster and more accurate 1061

than for the versions without control input. The second advantage is related to the usage of real data 1062

sets on the parameter inference algorithm. Without control input, the network would only be able to 1063

learn the data of one specific measurement series. Due to the fact that glutamate stimulation is simply 1064

assumed to be known, the network can not learn how glutamate influences the behavior of the model. 1065

Therefore, data of a possible second measurement would need to have exactly the same underlying 1066

glutamate stimulation to be useful, which might not always be achievable in practice. By adding a 1067

control input and extending it with initial conditions, multiple measurement series can now be used as 1068

long as the underlying glutamate stimulation is known. My results further indicate that learning from 1069

noisy data is possible, although it might create instabilities in the case of PINC. 1070

Unexpectedly, runtime experiments showed that the deep learning algorithm is faster on a CPU than 1071

on a GPU. We assume that this is due to the overhead created when having to copy memory back on 1072

forth between GPU and CPU whenever the network output is fed into the computational model. 1073

Furthermore, the neural network used in this manuscript is relatively small in comparison to the size of 1074

neural networks usually used in deep learning, further increasing the significance of the overhang created 1075

by having to copy memory. By analyzing the runtime over a fixed number of epochs of different versions 1076

of my parameter inference algorithm, we found that the employed stabilization mechanisms increased the 1077

compute time. However, the increase in runtime is counteracted by the fact that the stabilized versions 1078

need fewer epochs to converge to an appropriate result. 1079

Generally, we found that the neural network has more problems inferring parameters related to Vm, 1080

[Na+]i, and [K+]i. This is due to several reasons. The first reason has to do with the sensitivity of the 1081

leak currents to the inferred [Na+]i and [K+]i values. The computation of dVm

dt by the Oschmann et al. 1082

model displayed disproportionately high errors in comparison to the error in the inference of [Na+]i, 1083

[K+]i and Vm. We attempted to solve this problem by replacing the dynamic computation of the reverse 1084

potential with constant reverse potentials, as is sometimes done in other computational models [Farr and 1085

David, 2011, Flanagan et al., 2018]. While this solution bypassed the problems of disproportional errors, 1086

it introduced a new challenge: Removing the two-way dependence between Vm, [Na+]i and [K+]i seemed 1087

to make it harder for the network to appropriately infer the unobserved [Na+]i and [K+]i. As a result, 1088

experiments attempting to infer the dynamics of [Na+]i, [K
+]i, and one Na+-related parameter achieved 1089

lower overall Aall and parameter accuracy results. However, the network was more successful at learning 1090

the dynamics of the already observed data. Currently, this challenge remains open. We assume that this 1091
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can be attributed to the, although faulty, stabilization process achieved by replacing the leak 1092

computation. 1093

The second problem with inferring [Na+]i, [K
+]i, and Vm is probably related to the behavior of the 1094

gradients over time. Usually, the gradients evaluate to almost zero, only to be extremely sharp whenever 1095

the glutamate stimulation changes. Similar problems were observed by Haghighat et al. [2021]. In their 1096

paper, they argue that PINNs do not perform well near sharp gradients as they represent highly local- 1097

rather than global behavior. 1098

In their paper, Yazdani et al. [2020] found that they were able to infer parameters and hidden 1099

dynamics as long as they observed at least two state variables. This is in contrast to my own findings. In 1100

my experiments, the inference became unstable as soon as less than four dynamics were observed. My 1101

assumption is that this is due to the complexity of the Oschmann et al. model. The dynamics resulting 1102

from the model are more diverse and less symmetric than the dynamics used as examples by Yazdani 1103

et al. [2020]. 1104

8.3 Outlook 1105

The Oschmann et al. model is a computational model used to simulate a single compartment of an 1106

astrocyte. Currently, it does not account for the randomness of Ca2+ waves or for expanded Ca2+ waves 1107

that are triggered by a neighboring astrocytic compartment [Di Castro et al., 2011]. Furthermore, the 1108

model assumes a constant amount of available Ca2+, Na+, and K+. In future work, steps could be taken 1109

to account for the phenomena of randomness and expanded Ca2+ transients. For example, Denizot et al. 1110

[2019] developed an astrocyte model for thin astrocytic processes that accounts for spontaneous activity. 1111

Expanded Ca2+ waves could be achieved by including the diffusion of Ca2+ between different astrocytic 1112

compartments as was originally done in the thesis of Oschmann [2018]. Steps to remove the necessity for 1113

constant amounts of Ca2+ were for example suggested by Taheri et al. [2017]. 1114

Several improvements are also possible in the application of PINN and PINC to the Oschmann et al. 1115

model. These changes could focus on the stabilization of the learning process and on improving the 1116

balancing of different loss terms. 1117

In this manuscript, we used the optimization algorithms Adam and SGD. Based on a stiffness analysis, 1118

Wang et al. [2020] suggested that using such gradient decent-based optimization strategies might not be 1119

stable. Instead, they propose further research in the use of proximal gradient algorithms [Polson et al., 1120

2015]. Proximal gradient algorithms are an extension of classical gradient descent methods that make 1121

use of proximal operators, a mathematical, well-defined operator that poses useful properties for 1122

optimization if the minimization function f(x) is convex. Proximal gradient algorithms have for example 1123

been employed in compressive imaging [Mardani et al., 2018], in finance-related machine learning [Gu 1124

et al., 2020], or in game settings with multiple, interacting losses [Balduzzi et al., 2018]. To the best of 1125

my knowledge, no applications of proximal gradients in PINN exist so far. As Wang et al. [2020] already 1126

suggested, further work in that direction might be beneficial. 1127

The choice of loss weights is a challenging problem encountered all over the field of parameter 1128

inference and machine learning. In the field of PINNs, it is especially challenging as the interplay 1129

between different kinds of noisy measurement data and possibly faulty differential equations has to be 1130

considered. In this manuscript, we showcased one example where a change in weights leads to enormous 1131

differences in the inference process. Furthermore, we chose an algorithm by Wang et al. [2020] to 1132

automatically compute the loss weights of the different loss terms. However, the implemented algorithm 1133

only performs well if the different terms have been approximately weighted correctly in the beginning. In 1134

future work, alternative methods should be applied. One alternative is an algorithm proposed by Xiang 1135

et al. [2021]. They suggested a method that automatically sets the loss weights based on a maximum 1136

likelihood estimation. A completely different, yet still interesting approach was developed by McClenny 1137

and Braga-Neto [2020]. Their algorithm trains multiple networks at once, attempting to learn the 1138

different weights by minimizing the total loss while maximizing the different weights. 1139

One of the next steps is to test the algorithm developed in this manuscript on real data. However, 1140

there are multiple problems to consider. First, usually Ca2+ data is measured in light intensity. In 1141

contrast, the model by Oschmann et al. [2017] used in this manuscript works with ion concentrations. 1142
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Measured signals can therefore not be transferred without further consideration. Second, the current 1143

implementation relies on knowledge about the used glutamate stimulation. Depending on the 1144

experiment, this information might not be readily available. Approaches not further investigated in this 1145

study might be to infer the glutamate at each time step similarly to the different parameters or to model 1146

the extracellular glutamate as an ODE, allowing inference similar to the inference of for example the IP3 1147

concentration. The last problem is concerned with the different occurrence patterns of Ca2+ transients. 1148

As already mentioned earlier in this section, the Oschmann et al. model does not account for extended 1149

Ca2+ waves or for randomness. This might lead to faulty inference results and future work should 1150

therefore attempt to find ways to solve this problem. Furthermore, it remains to be explored how 1151

parameter inference would work for multiple compartments. 1152

9 Conclusion 1153

Astrocytes are an important type of glial cell that are responsible for a multitude of functions in the 1154

central nervous system. However, due to their complexity and diversity, their pathways often remain 1155

unknown. To help with the general understanding of their functionality, many computational models 1156

have been developed. One of these models is the computational model of a single astrocytic 1157

compartment by Oschmann et al. [2017] that was used throughout this study. The model focuses on the 1158

separation of two pathways. The first pathway is related to the binding of glutamate through mGluR, 1159

causing the production of IP3 and associated Ca2+ exchanges between the ER and the cytosol. The 1160

second pathway consists of NCX, NKA, and glutamate transporters that drive the exchange of Ca2+, 1161

Na+, and K+ between cytosol and extracellular space. Both pathways react with changes in behavior 1162

when glutamate stimulation is present. While this model has been useful in studying the influence of the 1163

different pathways on Ca2+ transients, it is generally difficult to set its parameter correctly. In this work, 1164

we implemented a deep learning algorithm-based parameter inference algorithm to aid with finding these 1165

parameters. 1166

The first version of my algorithm was an extension of the algorithm proposed by Yazdani et al. [2020]. 1167

The algorithm aims at learning the behavior of different state variables in dependence on time using 1168

PINNs. In the first step, we extended the algorithm with regularization losses, gradient clipping, and 1169

learning rate reduction to increase stability. With the resulting implementation, we were able to infer 1170

single parameters on noiseless data, as long as most dynamics were observed. However, the success of the 1171

algorithm was heavily dependent on setting exactly the correct network parameters. Otherwise, the 1172

neural network failed to converge or became unstable over time. 1173

In the next step, we added two methods to aid with gradient pathologies as initially suggested by 1174

Wang et al. [2020]. The first method is concerned with the dynamic weighting of different loss terms. 1175

Since their paper focuses on methodologies for systems with one equation and the Oschmann et al. 1176

model consists of seven equations, we adapted their suggestion in three different ways and tested the 1177

different strategies against each other. The most successful strategy (Strategy C) weighted the gradient 1178

of the sum of all ODE losses against each data loss separately. With this method, we was able to 1179

stabilize the inference of parameters without having to guess the appropriate learning rate reduction 1180

schedule perfectly. The second suggestion of Wang et al. [2020] was the addition of Transformers. In this 1181

manuscript, we did not find that their addition improves performance. 1182

A major problem of the first two versions of my parameter inference algorithm was that the neural 1183

network only learned the time dependence but did not know about eventual changes in glutamate 1184

stimulation. Therefore, it would not have been possible to train the neural network on sets of 1185

measurement data with differing glutamate stimulation. To counteract this problem, we followed an 1186

adaptation of PINNs from control theory (PINC). The respective algorithm was proposed by Antonelo 1187

et al. [2021] and consists of splitting the data into several intervals according to changes in control input 1188

(glutamate). The neural network input was extended with nodes for the control input value and the 1189

initial conditions of the current interval. By adding the possibility of PINC to my algorithm, we sped up 1190

convergence times. In parameter inference experiments with two parameters, we showed that the PINC 1191

version achieves better results than the version without control input. However, we also observed that 1192
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PINC might result in inconsistent inference results if noisy data is used. 1193

Analysis of different currents underlying the Oschmann et al. model revealed problems with NCX 1194

and the Na+- and K+ leaks. The influence of the leak currents on the resulting dynamics is likely too 1195

high. At the same time, NCX is barely affected by the current Na+ levels. Improving the dependencies 1196

within the Oschmann et al. model might improve the stability of the parameter inference algorithm. 1197

With the end version of my algorithm, we were able to infer parameters from artificial, noisy data. 1198

The more dynamics were observed, the more stable the inference results became. In contrast to the 1199

original paper by Yazdani et al. [2020], we were not able to leave more than three dynamics unobserved 1200

without the results becoming unusable. Therefore, more work is necessary to make the parameter 1201

inference algorithm applicable in practice. Possible directions include further improvements in the 1202

automatic weighting of different loss terms [McClenny and Braga-Neto, 2020, Xiang et al., 2021] or the 1203

stabilization of the gradient descent function using more advanced methods than Adam [Polson et al., 1204

2015]. 1205

References

Mahmood Amiri, Narges Hosseinmardi, Fariba Bahrami, and Mahyar Janahmadi. Astrocyte- neuron
interaction as a mechanism responsible for generation of neural synchrony: A study based on modeling
and experiments. Journal of computational neuroscience, 34:489–504, 06 2013. doi:
10.1007/s10827-012-0432-6.

Eric Aislan Antonelo, Eduardo Camponogara, Laio Oriel Seman, Eduardo Rehbein de Souza, Jean P.
Jordanou, and Jomi F. Hubner. Physics-informed neural nets-based control. CoRR, abs/2104.02556,
2021. URL https://arxiv.org/abs/2104.02556.

Alfonso Araque, Vladimir Parpura, Rita P. Sanzgiri, and Philip G. Haydon. Tripartite synapses: glia,
the unacknowledged partner. Trends in Neurosciences, 22(5):208–215, 1999. ISSN 0166-2236. doi:
https://doi.org/10.1016/S0166-2236(98)01349-6. URL
https://www.sciencedirect.com/science/article/pii/S0166223698013496.

Alfonso Araque, Giorgio Carmignoto, Philip G. Haydon, Stéphane H.R. Oliet, Richard Robitaille, and
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