Skip to main content
[Preprint]. 2023 May 18:2023.05.16.540982. [Version 1] doi: 10.1101/2023.05.16.540982

Algorithm 1.

Overview over the deep learning algorithm described in this section

 1: Load observed data
 2: Initialize deep learning models, optimization model, learning rate strategy
 3: for n_epochs do
 4: mean_loss0
 5: while t, x=load_batch() do
 6:   if σAux is True then
 7:    t[0]+t
 8:    x[x(t=0)]+x
 9:   end if
10:   xˆ=model.predict(t)
11:   Compute Data   ▷ Equation 27
12:   Compute ODE iff σODE   ▷ Equation 28
13:   Compute Aux iff σAux   ▷ Equation 29
14:   Compute pˆ, xˆ iff σpˆ  ▷ Equations 30,31
15:   λDataData+σODEλODEODE+σAuxλAuxAuxσxˆxˆ+σpp
16   Compute θ
17:   if clip_gradients then
18    clip_gradients(θ)
19:   end if
20:   optimization_step()
21:   mean_lossmean_losss+
22: end while
23:  register_lr(mean_loss) ▷ Reduces LR if necessary
24: end for
25: Save results