Skip to main content
[Preprint]. 2023 May 18:2023.05.16.540982. [Version 1] doi: 10.1101/2023.05.16.540982

Algorithm 2.

Overview over the deep learning algorithm adapted for control inputs

 1: Load observed data
 2: Initialize deep learning models, optimization model, learning rate strategy
 3: Detect and label intervals   ▷ Section 6.3.2
 4: for n_epochs do
 5: mean_loss0
 6: initial_conditions[x(t=0)]
 7: for i1,,n_intervals} do
 8:   inpTi,gluTi, initial_conditions[i1]
 9:   est ← model.predict(inp)
10:   initial_conditions ← initial_condition + est
11 end for
12
13 while t, x=load_batch() do
14:   inp[t,glut,initial_conditions[i]]  ▷ Where tTi+,Ti+1
15:   xˆ=model.predict(t)
16:   Compute Losses
17:   Compute θ
18:   if clip_gradients then
19:    clip_gradients(θ)
20:   end if
21:   optimization_step()
22:   mean_lossmean_loss+
23: end while
24:  register_lr(mean_loss) ▷ Reduces LR if necessary
25: end for
26: Save results