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Abstract 27 

Internalizing and externalizing traits are two distinct classes of behaviors in psychiatry. 28 

However, whether shared or unique brain network features predict internalizing and 29 

externalizing behaviors in children and adults remain poorly understood. Using a sample of 30 

2262 children from the Adolescent Brain Cognitive Development (ABCD) study and 752 adults 31 

from the Human Connectome Project (HCP), we show that network features predicting 32 

internalizing and externalizing behavior are, at least in part, dissociable in children, but not in 33 

adults. In ABCD children, traits within internalizing and externalizing behavioral categories are 34 

predicted by more similar network features concatenated across task and resting states than 35 

those between different categories. We did not observe this pattern in HCP adults. Distinct 36 

network features predict internalizing and externalizing behaviors in ABCD children and HCP 37 

adults. These data reveal shared and unique brain network features accounting for individual 38 

variation within broad internalizing and externalizing categories across developmental stages. 39 
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Introduction 52 

A classic distinction in child and adolescent psychiatry has been the study of 53 

“internalizing” and “externalizing” behaviors1. These two broad classes of psychopathology were 54 

first proposed by T.M. Achenbach from a factor analysis of symptoms in children and 55 

adolescents with psychiatric illness2. Internalizing behaviors are internally directed towards the 56 

individual and manifest in their extreme form as sadness, withdrawal, somatic complaints, and 57 

anxiety, while externalizing behaviors are directed towards the external environment and involve 58 

disruptive, aggressive, impulsive, and defiant behaviors3. The expressions of internalizing and 59 

externalizing behaviors exhibit cross-generational associations between parents and children4–6. 60 

These behaviors have also been linked with reduced school engagement and an increased risk 61 

for suicide attempts in childhood and adolescence7–9, as well as worse work performance and 62 

lower cognitive abilities in adulthood10,11. However, the neural underpinnings associated with 63 

internalizing and externalizing behaviors across distinct developmental stages remain poorly 64 

understood.  65 

Throughout development, functional connectivity patterns within and between large-66 

scale brain networks can predict individual differences in cognition12, impulsivity13 and 67 

psychiatric symptoms14,15. While individual-level variability in the functioning of large-scale brain 68 

networks can predict individual differences within broad categories of cognition, personality and 69 

mental health in both children and adults16,17, macroscale patterns of brain functioning are 70 

dynamic across the lifespan18–20. The transition from childhood through adolescence to 71 

adulthood reflects critical neurodevelopmental stages characterized by a protracted period of 72 

synaptic pruning, intracortical myelination, cortical thinning, and functional network 73 

segregation18,21. Therefore, it is unclear if the specific brain-behavior relationships observed in 74 

childhood mirror those identified in adulthood. Furthermore, although shared network features 75 

account for individual variation within broad classes of behavior16, individual-specific patterns of 76 

functional network connections may predict even finer-grained categories, such as internalizing 77 

and externalizing behaviors. Here, we aimed to examine the extent that functional network-78 

based predictors of internalizing versus externalizing behaviors were similar across a large 79 

sample of children and their parents. We further tested whether such patterns can be observed 80 

in an independent sample of young adults.  81 

In the present study, we predicted internalizing and externalizing measures of 82 

psychopathology in a sample of children (and their parents) from the Adolescent Brain Cognitive 83 

Development (ABCD) study22 using children’s functional connectivity patterns across four brain 84 

states: resting-state, monetary incentive delay (MID) task23, stop signal task (SST)24 and 85 
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emotional N-Back task25. We further explored functional connectivity predictors of internalizing 86 

and externalizing behavior in an independent cohort of young adults from the Human 87 

Connectome Project (HCP)26, using resting-state fMRI connectivity matrices. Both single- (KRR) 88 

and multi-kernel ridge regression (multiKRR) models revealed network-based features that were 89 

predictive of behaviors within the same category were more correlated with each other than with 90 

those across different categories in ABCD children and parents, while KRR models showed a 91 

lack of categorical distinction in HCP adults.  Moreover, predictive network features were distinct 92 

across the two samples. These results support internalizing and externalizing behaviors as 93 

distinct factors of psychopathology and suggest that brain-based predictive features may 94 

change across the lifespan. 95 

  96 
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Results 97 

ABCD Results 98 

 We used fMRI data acquired across three task states, including monetary-incentive 99 

delay (MID), stop-signal task (SST) and N-back, as well as resting state fMRI from N=11,875 100 

typically-developing children (ABCD 2.0.1 release22). Our analyses considered 33 dimensional 101 

measures from the available mental health assessments collected from child participants and 102 

their parents27, comprised of 15 measures of internalizing problems, 10 measures of 103 

externalizing problems, 2 measures of thought problems and 6 measures of attention problems 104 

(Supplementary Table 1). The final analytical sample consisted of n=2,262 unrelated children 105 

who passed fMRI quality control and had complete data (see Methods).  106 

 107 

Multi-kernel ridge regression predicts most behavioral measures 108 

 We defined 400 cortical and 19 subcortical regions-of-interest (ROIs) based on Schaefer 109 

Parcellation28,29 and computed a 419 by 419 functional connectivity (FC) matrix for each brain 110 

state. Following prior work16, we used multi-kernel ridge regression (multiKRR) models to 111 

predict each behavioral measure from child-specific FC matrices concatenated across brain 112 

states. To evaluate predictive accuracy, we performed nested cross-validation procedures with 113 

120 folds (see Methods). Pearson’s correlation between predicted and actual behavioral scores 114 

and coefficient of determination (COD; see Supplementary method S3) were used as accuracy 115 

metrics. Statistical significance of prediction accuracy was assessed by permutation testing. 116 

Prediction accuracies -- given by Pearson’s correlation -- of the models trained on 117 

children’s functional connectivity data are shown in Fig. 1A (for behavioral predictions in ABCD 118 

children) and Fig. 1B (for behavioral predictions in ABCD parents). Most behavioral measures 119 

were predicted better than chance after FDR correction (q<0.05), except for child somatic 120 

complaints and somatic problems, parent intrusive behavior, parent ADHD problems and parent 121 

inattention (see Methods). Parent ADHD problems became significantly predicted after FDR 122 

correction when COD was used as the accuracy metric. Prediction accuracies were broadly 123 

stable across both metrics (see Supplementary Fig. 1 for COD results). Notably, these findings 124 

demonstrate that patterns of FC specific to each child can significantly predict their parent’s self-125 

reported internalizing and externalizing behaviors (Fig. 1B).  126 
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 127 

Figure 1. Cross-validated prediction performance using the multi-kernel ridge regression 128 

(multiKRR) model, using functional connectivity matrices concatenated across four brain states 129 

(resting state, MID, SST and N-back) from children’s neuroimaging data to predict (A) parent-130 

reported child behavior and (B) self-reported parent behavior. Prediction performance was 131 

calculated as the mean Pearson’s correlation between observed and predicted values across 132 

120 cross-validation folds for each behavioral measure from the ABCD dataset. For each 133 

boxplot, the top and bottom edges represent upper and lower quartiles of correlation coefficient 134 

(r) distributions, and the horizontal lines mark the corresponding median. Outliers are plotted as 135 

circles and were defined as data points outside of the interquartile range. The whiskers extend 136 

to the most extreme data points not considered as outliers. Asterisks (*) denote above-chance 137 

significance after correcting for multiple comparisons (FDR q<0.05).  138 

  139 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.05.20.541490doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.20.541490
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Predictive brain network features are more similar within behavioral categories 140 

 There is broad consistency in the brain network features predictive of mental health-141 

relevant traits16. Here, we sought to determine if internalizing and externalizing behaviors 142 

exhibited unique predictive network markers in childhood. At each cross-validation fold, we 143 

quantified “feature importance” (i.e., how important a given network-based predictor was to the 144 

model) of each interregional FC edge predicting each behavior using Haufe-transformed (see 145 

Methods) predictive feature weights30, yielding a 419 by 419 predictive feature matrix for each 146 

behavior and for each brain state.  147 

Next, we analyzed whether predictive feature weights computed from multiKRR model 148 

outputs were more similar among behaviors within than between categories (Fig. 2). The 149 

predictive feature weight vector for each behavioral measure was averaged across all four brain 150 

states and correlated with all other measures. Focusing on each of the four internalizing and 151 

externalizing categories (Child Internalizing, Child Externalizing, Parent Internalizing and Parent 152 

Externalizing), the difference between mean correlation within each category (“within-category 153 

mean correlation”) and mean correlation with all other three categories (“between-category 154 

mean correlation”) was computed 10000 times and used to generate a null distribution of mean 155 

differences (Fig. 3; see Methods). Mean within-category correlations of predictive feature 156 

weights were significantly higher than mean between-category correlations (FDR qs≤0.002; Fig. 157 

3). The above analyses were rerun using KRR models using only resting-state fMRI and yielded 158 

similar results (Supplementary Fig. 2-3). Notably, the similarity pattern of predictive feature 159 

weights across behavioral measures was highly correlated with the similarity pattern of these 160 

behavioral measures on the behavioral level (Supplementary Fig. 4; r=0.97). 161 
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 162 

Figure 2. Predictive-network features are similar within behavioral categories. Pearson’s 163 

correlation (r) of predictive feature weights between all pairs of behavioral measures 164 

significantly predicted by multiKRR models in the ABCD study. Behavioral measures from the 165 

same behavioral categories are grouped together. Warmed colors indicate stronger positive 166 

correlations of the mean predictive feature weights between a pair of behavioral measures, 167 

indicating that these behavioral measures were predicted by similar functional connectivity 168 

patterns.  169 
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  171 

Figure 3. Correlations of predictive feature weights computed from multiKRR outputs were 172 

significantly stronger across behavioral measures within the same category than between 173 

different categories. Differences between within- and between-category mean correlations for 174 

child and parent internalizing and externalizing categories were significantly greater than the null 175 

distributions (FDR qs ≤0.002). Correlation values were converted to z-scores using Fisher’s r-to-176 

z transformation prior to averaging. Histograms display null distributions of mean differences 177 

generated through 10000 permutations with shuffled behavioral labels. Dashed lines represent 178 

observed mean differences for each of the four categories.  179 
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Distinct brain network features in children predict internalizing and externalizing 182 

behaviors in both children and their parents 183 

Prior work suggests the presence of shared network features across broad categories of 184 

mental health16. Our analyses revealed unique parcel-level FC profiles predicting distinct 185 

aspects of psychopathology. Next, we examined the extent that some predictive-network 186 

features may be shared across behavioral categories. Predictive feature matrices were 187 

averaged across all behavioral measures within each category, resulting in 32 predictive feature 188 

matrices (one for each behavioral category and each brain state). To limit the number of 189 

multiple comparisons, predictive feature weights were averaged within and between 18 190 

networks (following the 17-network partition in Yeo et al., 201131 plus one subcortical network28) 191 

at each permutation. Permutation testing was performed on mean predictive feature weights 192 

from each of the resulting 171 unique network blocks. We also conducted a conjunction analysis 193 

to extract the predictive feature weights that were not only statistically significant but also 194 

exhibited consistent directionality (positive or negative) across all brain states, and then 195 

averaged these predictive feature weights across all brain states (Fig. 4A). These analyses 196 

yielded predictive feature weights that are both shared across behavioral measures within a 197 

category and across brain states (Fig. 4B). Predictive feature weights were summed across 198 

each row in Fig. 4A and plotted on brain surface in Fig. 4C for the positive weights and Fig. 4D 199 

for the negative weights. These figures reveal that both shared and unique FC patterns predict 200 

distinct behavioral categories in both children and their parents. 201 

To examine the extent to which these predictive features are similar across behavioral 202 

categories in children and their parents, we next calculated the proportion of overlapping 203 

network blocks which significantly predicted each pair of behaviors (Fig. 4E). Two network 204 

blocks were counted as overlapping if sums of predictive feature weights within these network 205 

blocks exhibited consistent directionality. Of note, the observed predictive features were not fully 206 

distinct across children and parents. The largest proportion of overlap was 0.66 between parent 207 

internalizing and externalizing categories, while the lowest proportion of overlap was 0.42 208 

between child internalizing and parent externalizing categories. Proportions of overlap between 209 

other four category pairs ranged from 0.50 to 0.60, demonstrating the presence of both common 210 

and distinct patterns of predictive-network features across categories. As one example, the 211 

proportion of network blocks that exhibit the same directionality across child and parent 212 

internalizing categories was 0.54.  213 
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 215 

 216 

Figure 4. Shared and unique functional network features predict internalizing and externalizing 217 

behaviors in children and their parents. (A) Matrices of predictive feature weights, averaged 218 

across all behavioral measures within each child and parental internalizing and externalizing 219 

categories, and averaged across all brain states. Only weights that were statistically significant 220 

and that exhibited the same directionality across all brain states are shown. Rows and columns: 221 

predictive weights based on FC estimates of all pairwise cortical regions. For visualization 222 
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purposes, all predictive feature weights were divided by their standard deviation. (B) Predictive 223 

feature weights averaged based on network assignment in panel (A). (C) Positive predictive 224 

feature weights summed across rows of panel (A) for each cortical region. A more positive value 225 

indicates that stronger functional connectivity associated with a given cortical parcel predicts 226 

higher behavioral scores in a behavioral category. (D) Negative predictive feature weights 227 

summed across rows of panel (A) for each cortical region. A more negative value indicates that 228 

weaker functional connectivity associated with a given cortical region predicts higher behavioral 229 

scores in a behavioral category. In both panels (C) and (D), the color of each cortical region 230 

indicates the percentile of predictive feature weights among 400 regions. (E) The 2D grid 231 

displays the proportion of network blocks that exhibit the same directionality across each pair of 232 

child behavioral categories relative to the behavioral category represented by each column. 233 

Here, each within- and between-network block was coded as 1, 0 or -1 depending on whether 234 

sum of predictive feature weights within that block is greater than, equal to or lesser than 0, 235 

resulting in an 18 by 18 matrix for each behavioral category. The number of network blocks 236 

having the same non-zero entries across both matrices associated with each pair of behavioral 237 

categories was counted and divided by the total number of non-zero significantly predictive 238 

network blocks. 239 

 240 
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Single-kernel ridge regression predicted most behavioral measures in adults 242 

 To examine brain-based predictive network features in adults, we used resting-state 243 

fMRI data from the HCP WU-Minn S1200 sample (n=752) and analyzed 18 dimensional 244 

measures from the Achenbach Self-Report32. There were 8 measures of internalizing problems, 245 

5 measures of externalizing problems, 1 measure of thought problems and 4 measures of 246 

attention problems (Supplementary Table 2; see Methods). All analysis steps were performed 247 

as above, except that single-kernel ridge regression (KRR) models were used to predict each 248 

behavioral measure from subject-specific resting-state FC due to the lack of task fMRI data in 249 

the HCP. Given that the HCP was not collected across different sites, we implemented 60 250 

random initiations of 10-fold nested cross-validation. 251 

Prediction accuracies – given by Pearson’s correlation – of the KRR models across all 252 

behaviors are shown in Supplementary Fig. 6. Although most behavioral measures were 253 

predicted better than chance after FDR correction (q<0.05), only two out of eight behavioral 254 

measures under the internalizing category survived FDR correction (Supplementary Fig. 6). 255 

When COD was used as the accuracy measure, only withdrawn, aggressive behavior, and 256 

attention problems reached better-than-chance accuracy after FDR correction (Supplementary 257 

Fig. 7). 258 

 259 
Predictive brain network features are similar across behavioral categories in adulthood 260 

 As above, we examined similarity patterns of predictive feature weights calculated from 261 

KRR model outputs across behaviors within and between different categories (Fig. 5). In 262 

contrast to the ABCD analyses, predictive feature weights were highly correlated across 263 

categories (Fig. 5; Supplementary Fig. 9).  We then conducted a permutation test similar to the 264 

ABCD analyses, focusing on adult internalizing and externalizing categories. Mean within-265 

category correlations of predictive feature weights were not significantly different from mean 266 

between-category correlations (FDR qs>0.12; Fig. 5B). These results suggest that predictive 267 

network features associated with internalizing and externalizing behavior in adults are broadly 268 

consistent between behavioral categories. Although network features predicting intrusive 269 

behavior were weakly correlated with those predicting other measures, it is not surprising given 270 

the weak correlations between intrusive behavior and other measures on the behavioral level. 271 

The observed similarity pattern of predictive feature weights across behaviors was moderately 272 

correlated with the similarity pattern of these measures on the behavioral level (Supplementary 273 

Fig. 8; r=0.59).   274 
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 275 
 276 

 277 

Figure 5. Predictive brain network features are similar across conceptually-linked behavioral 278 

categories in adulthood. (A) The correlation matrix displays Pearson’s correlation r of predictive 279 

feature weights between all pairs of behavioral measures significantly predicted in the HCP 280 

study. Behavioral measures are grouped within associated behavioral categories. Higher 281 

intensity colors indicate higher positive (red) and negative (blue) correlations of the mean 282 

predictive feature weights between a pair of behavioral measures. (B) Differences between 283 

mean correlations of predictive feature weights across behavioral measures within the same 284 

category and between different categories were not significantly greater than the null 285 
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distributions in the adult internalizing and externalizing categories (FDR qs>0.12). Correlation 286 

values were converted to z-scores using Fisher’s r-to-z transformation prior to averaging. 287 

Graphing conventions are similar to that of Figure 3.  288 

  289 

 290 

  291 
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Predictive feature weights are largely distinct across ABCD and HCP datasets 292 

To investigate if functional network features predicting internalizing and externalizing 293 

behaviors are distinct across development, we assessed the similarity of predictive network 294 

features computed from KRR model outputs between ABCD and HCP datasets. We found that 295 

FC features predicting internalizing and externalizing problems in ABCD children and HCP 296 

adults were only weakly correlated (Fig. 6). We then ran permutation tests to compare the 297 

difference in the mean correlation within each category and the mean correlation between each 298 

category and the corresponding category in the other age group. As the adult internalizing 299 

category contained only two significantly predicted measures, we only focused on child 300 

internalizing and externalizing and adult externalizing behaviors. The difference was significantly 301 

greater than its null distribution (FDR qs≤0.0146) for the two child categories but failed to reach 302 

statistical significance for the adult externalizing category (FDR q=0.0601; Fig. 6B). From the 303 

predictive feature matrices associated with child and adult internalizing and externalizing 304 

categories, we computed the proportion of overlapping network blocks which significantly 305 

predicted each pair of categories (Fig. 6C). Proportions of overlap were distinctly higher for pairs 306 

of behavioral categories within the same dataset than between the two datasets. These results 307 

suggest that although shared brain network features account for individual variation within broad 308 

categories of internalizing and externalizing problems in childhood, functional network predictors 309 

may change throughout the lifespan, exhibiting distinct fingerprints across developmental 310 

stages.  311 

Despite the broad distinction between FC patterns predicting internalizing and 312 

externalizing behaviors across these two datasets, shared predictive patterns may still be 313 

present within select edges. Here, the shared predictive network features associated with both 314 

child and adult internalizing categories primarily involved the default, control and visual 315 

networks, while the shared predictive network features associated with child and adult 316 

externalizing primarily involved somato/motor, ventral and dorsal attention networks 317 

(Supplementary Fig. 10).  318 

  319 
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Figure 6. Distinct functional network features predict internalizing and externalizing behaviors in 321 

children from the ABCD study and adults from the HCP study. (A) The correlation matrix 322 

displays the Pearson’s correlation r of predictive feature weights between all pairs of behavioral 323 

measures significantly predicted by KRR models in the ABCD and HCP studies. Measures from 324 

the same behavioral category are grouped together. Colors indicate positive (red) and negative 325 

(blue) correlations of the mean predictive feature weights between behavioral measures and 326 

populations. (B) Predictive feature weights associated with child internalizing and externalizing 327 

categories were significantly more correlated within categories than with the corresponding adult 328 

categories (FDR qs≤0.0186). The permutation test was not applicable for the adult internalizing 329 

category because only one correlation can be computed between two behavioral measures in 330 

the category. Correlation values were converted to z-scores using Fisher’s r-to-z transformation 331 

prior to averaging. Graphing conventions are similar to that of Figure 3. (C) The 2D grid displays 332 

the proportion of network blocks that exhibit the same directionality across each pair of child and 333 

adult behavioral categories relative to the behavioral category represented by each column.  334 

 335 

  336 
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Discussion 337 

In this study, we first used estimates of individual-specific, functional connectivity from a 338 

large, diverse sample of children to predict internalizing- and externalizing-related behavioral 339 

measures in children and their parents. Predictive feature weights were more correlated across 340 

behaviors within the same categories than with those from different categories. Of note, our 341 

analyses revealed that brain data specific to each child can be used to predict self-reported 342 

internalizing and externalizing behaviors in their parents. We repeated these analyses in an 343 

independent sample of healthy young adults and the opposite pattern was observed, where 344 

predictive feature weights were similarly correlated across distinct mental health-linked 345 

behavioral categories. Moreover, predictive feature weights associated with internalizing- and 346 

externalizing-related behavioral measures were distinct across children and adults, suggesting 347 

that brain-based predictors of internalizing and externalizing behaviors may change across the 348 

lifespan.  349 

Internalizing and externalizing symptoms reflect distinct factors across various mental 350 

disorders, irrespective of demographic and collection method33–37. Predictive network features 351 

are similar across behaviors within the broad categories of mental health16. Although large-scale 352 

networks can be mechanistically informative for studying neurocognitive processes38,39 and 353 

psychiatric phenotypes15,40–42, the similarity of whole-brain FC patterns predicting measures of 354 

internalizing and externalizing behavior has not been directly assessed. Through the use of both 355 

KRR and multiKRR models16,43, we were able to predict most mental health measures in 356 

children and their parents from children’s resting-state functional connectome. Here, we 357 

demonstrated that the whole-brain patterns of functional connectivity in children can be used to 358 

predict internalizing and externalizing measures in their parents. Our results highlight that the 359 

predictive utility of functional connectomes may extend beyond the individual, and provide a 360 

robust entry point for future work on shared environmental and contextual factors, broader 361 

behavioral patterns within family systems, and/or the heritability of internalizing and 362 

externalizing traits.  363 

Consistent with prior work by Chen et al. 2022 (which used the same dataset), we 364 

observed that predictive features are generally similar across measures of internalizing and 365 

externalizing behaviors. However, above and beyond this broad pattern of similarity, predictive 366 

feature weights were more correlated within than between behavioral categories in ABCD 367 

children. These findings are consistent with theoretical models that consider internalizing and 368 

externalizing behaviors as distinct constructs of psychopathology under a general 369 

psychopathology p factor44,45. Behavioral measures associated with different categories are 370 
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characterized by both common and distinct network predictors in children. On average, higher 371 

behavioral scores in both child internalizing and externalizing categories were predicted by more 372 

positive FC between default, control and limbic networks, between somato/motor and salience 373 

networks and more negative FC between default and somato/motor networks. Beyond these 374 

shared features, there was substantial heterogeneity in the FC patterns predicting internalizing- 375 

and externalizing-related behaviors. These results align with previous neuroimaging studies 376 

implicating frontoparietal46,47, default47–49, salience49,50, limbic49 and somato/motor49,51 network 377 

disruptions across psychiatric disorders.  378 

Contrary to the similarity pattern observed in ABCD children, mean correlations of 379 

predictive feature weights across all pairs of behavioral measures within internalizing and 380 

externalizing categories were not significantly different from mean correlations between different 381 

categories in HCP adults. Our findings suggest that diffuse functional network patterns may 382 

predict a more general psychopathology factor in adults, while more specific FC patterns may 383 

differentially predict behaviors associated with specific categories of psychopathology in 384 

children. One consideration is that KRR models used in HCP analyses reached better-than-385 

chance predictive accuracy for only two out of eight measures assigned to adult internalizing 386 

category. This may have biased the results for the permutation test assessing statistical 387 

significance of mean correlation differences within and between adult internalizing and 388 

externalizing categories. In addition to different correlation patterns across behavioral categories 389 

between the two datasets, we also observed distinct FC features predicting same categories of 390 

internalizing and externalizing behaviors in children compared to adults. Weak correlations of 391 

predictive feature weights associated with internalizing and externalizing behavior across the 392 

two samples may be attributable to development of functional network organization from 393 

childhood through adolescence and then adulthood19,20,52–54. However, such differences may 394 

also be attributable to site differences between the two collection efforts. Of note, our 395 

interpretations are limited by the cross-sectional nature of the available data. Future work 396 

should further characterize the longitudinal trajectories of brain development and associated 397 

brain-based predictions across the lifespan. Another limitation of our study is that we did not test 398 

our models separately in each sex. Previous studies have suggested brain-based predictive 399 

models often fail to generalize across sexes55, and future work should test sex-/gender- specific 400 

models of behavior56.   401 

Taken together, our study found that predictive network features cluster within the same 402 

categories of internalizing and externalizing behavior in ABCD children. Intriguingly, the utility of 403 

brain-based predictive models in children extended to capture behaviorally relevant signals in 404 
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their parents. Finally, although most behaviors were predicted better than chance in children 405 

and adults, analyses revealed distinct network predictors across datasets. Future work will 406 

benefit from the longitudinal study of common and distinct brain-based predictive features 407 

across childhood, adolescence, and adulthood. 408 

  409 
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Methods 410 

Participants 411 

 11,875 typically-developing children and their parents across 21 sites in the United 412 

States participated in the ABCD study at baseline (ABCD release 2.0.1). The final analytical 413 

sample consisted of 2,262 unrelated children who passed strict preprocessing quality control, 414 

had complete fMRI data across all brain states and complete scores across all behavioral 415 

measures. Similar to Chen et al., 2022, we combined the 22 ABCD sites into 10 “site-416 

categories” to reduce sample size variability across sites (Supplementary Table 5). Subjects 417 

within the same site were also in the same site-category. Detailed demographic information can 418 

be found in Supplementary Table 6. 419 

 1,206 healthy adults participated in the HCP study (HCP S1200 Data Release). After 420 

pre-processing quality control of imaging data, participants were filtered from Li's set of 953 421 

participants57 based on the availability of a complete set of structural and resting-state fMRI 422 

scans, as well as all behavioral scores of interest. Our main analysis comprised 752 adult 423 

participants, who fulfilled all selection criteria17. Detailed demographic information can be found 424 

in Supplementary Table 7. 425 

 426 

Neuroimaging 427 

Data acquisition 428 

 For the ABCD study, all T1w images and fMRI data was acquired using protocols 429 

harmonized across three 3 tesla(T) scanner platforms (i.e., Phillips, Siemens Prisma and 430 

General Electric 750) at 21 sites. Twenty minutes of resting-state fMRI data, consisting of four 431 

5-minute runs, was collected from each ABCD child participant. For each of the three tasks 432 

(MID, SST and N-Back)23–25, fMRI data was acquired over two runs with 2.4mm isotropic 433 

resolution with a TR of 800ms. The structural T1 scans were acquired with 1mm isotropic 434 

resolution with a TR of 2500ms. For full details of imaging acquisition can be found elsewhere58.  435 

 The fMRI data in the HCP data was acquired using an optimized protocol with 2mm 436 

isotropic resolution and a TR of 700ms. Each HCP subject goes through one structural MRI 437 

session and two fMRI sessions. Each fMRI session consists of two 15-minute resting-state 438 

scans with opposite phase encoding directions (L/R and R/L). The structural T1 scans were 439 

acquired using 0.7mm isotropic resolution and a TR of 2400ms. Full details of the acquisition 440 

protocol can be found elsewhere26. 441 

 442 

Data processing 443 
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 Minimally preprocessed T1w images59 in the ABCD study were further processed using 444 

FreeSurfer v5.3.060–65. The cortical surface meshes were then registered a common spherical 445 

coordinate system62,63. Subjects who failed recon-all QC were subsequently excluded59. The 446 

minimally preprocessed fMRI data59 were subsequently processed in the following manner. The 447 

first four frames were removed59. Slice time correction was performed with the FSL library66,67. 448 

Motion correction was performed using rigid body translation and rotation with the FSL package. 449 

The resulting fMRI images were then aligned with the processed T1w images68 with FsFast 450 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast ), and only runs with registration costs less 451 

than 0.6 were retained. Framewise displacement (FD)67 and voxel-wise differentiated signal 452 

variance (DVARS)69 were computed by fsl_motion_outliers. Volumes with FD > 0.3 mm or 453 

DVARS > 50, along with one volume before and two volumes after, were flagged as outliers. A 454 

bandstop filter was applied to remove respiratory pseudomotion70. Uncensored segments of 455 

data having fewer than 5 contiguous volumes were also flagged as outliers and censored71. 456 

Runs with more than half of the volumes flagged as outliers were discarded. Participants with 457 

less than 4 minutes of data for each fMRI state (rest, MID, N-Back, SST) were excluded from 458 

further analysis. Nuisance regressors, including global signal, six motion correction parameters, 459 

averaged ventricular signal, averaged white matter signal, and their temporal derivatives (18 460 

regressors in total), were regressed out of the fMRI time series from the unflagged volumes. 461 

Data were interpolated across censored frames72, band-pass filtered at 0.009 Hzf0.08 Hz, 462 

projected onto FreeSurfer fsaverage6 surface space, and smoothed using a 6mm full-width half 463 

maximum kernel.  464 

For the HCP study, minimally preprocessed T1w images73 went through bias- and 465 

distortion- correction using the PreFreeSurfer pipeline and registered to MNI space. Cortical 466 

surface reconstruction was conducted using FreeSurfer v5.2 using recon-all adapted for high-467 

resolution images. The reconstructed surface meshes were then registered to the Conte69 468 

surface template74. After preprocessing, the fMRI data were corrected for gradient-nonlinearity-469 

induced distortions. The fMRI time series in each frame were then realigned to the single-band 470 

reference image to correct for subject motion using rigid body transformation67,75 with FSL. The 471 

resulting single-band image underwent spline interpolation to correct for distortions and was 472 

then registered to the T1w image68. Native fMRI volumes went through nonlinear registration to 473 

the MNI space and mapped to the standard CIFTI grayordinate coordinate space. Further 474 

details about the preprocessing and processing pipelines of structural and functional images 475 

can be found elsewhere73.  476 

 477 
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Functional connectivity 478 

 We used 400 cortical regions of interest29 (ROIs) and 19 subcortical ROIs28. Functional 479 

connectivity (FC) was measured by Pearson’s r correlations between the mean time series of 480 

each pair of ROIs. Censored frames were ignored when computing functional connectivity. In 481 

the ABCD study, the average FC matrix across all runs in each subject from each state (rest, 482 

MID, N-back, SST) was used for subsequent analyses. To match processing across resting and 483 

task states, task activations were not regressed from the task-state data. For the HCP study, the 484 

average FC matrix across all runs in each subject was only computed from the resting state and 485 

used for subsequent analyses.  486 

 487 

Measures of internalizing and externalizing behaviors 488 

 We included 25 dimensional measures of internalizing and externalizing in our analyses, 489 

selected from all available mental health relevant assessments taken from child participants and 490 

their parents27 in the ABCD study. This consisted of 15 internalizing measures and 10 491 

externalizing measures. Thought and attention problems are related to both internalizing and 492 

externalizing psychopathology76,77. Accordingly, we included 2 measures of thought problems 493 

and 6 measures of attention. Participants without available data across all behavioral measures 494 

were excluded from analysis. The complete list of the included variables can be found in Tables 495 

S1 and S2. Behavioral measures were grouped into four categories: Internalizing, Externalizing, 496 

Thought Problems and ADHD Problems for both children and their parents, resulting in eight 497 

behavioral categories in total (Supplementary Table 1).  498 

In data from the HCP, we analyzed 18 dimensional measures of internalizing, 499 

externalizing, thought and attention problems from the Achenbach Self-Report (ASR) 500 

questionnaire, resulting in four behavioral categories (Supplementary Table 2).  501 

 502 

Statistical analysis 503 

 Consistent with prior work16, we used multi-kernel ridge regression (multiKRR) with l2 504 

regularization to predict each behavioral measure from participant-specific FC matrices across 505 

all brain states (rest, MID, N-back, SST) jointly in the ABCD study. Behavioral measures in the 506 

HCP study were predicted from resting-state FC using kernel ridge regression (KRR) with l2 507 

regularization. Details about KRR and multiKRR models can be found in the Supplement (see 508 

Supplementary methods S1 and S2). Age and mean FD were entered as covariates. Both 509 

models assume that participants with more similar FC patterns have more similar behavioral 510 

measures. Models were implemented with nested cross-validation procedures similar to Ooi et 511 
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al., 2022. Head motion (mean FD and DVARS) were regressed from each behavioral measure 512 

prior to cross-validation.  513 

In the ABCD analyses, we performed leave-3-site-clusters-out nested cross-validation 514 

for each behavioral measure. At each fold, a different set of 3 site-categories served as the test 515 

set, and the remaining 7 site-categories were used as the training set, resulting in 120 folds in 516 

total. In the HCP analyses, we implemented 60 random initiations of 10-fold nested cross-517 

validation. Participants from the same family were assigned to either training or testing sets and 518 

were never split across training and test sets in any cross-validation fold.  519 

Across both datasets, model and regularization parameters were estimated from the 520 

training set at each fold. The estimated parameters were then applied to the unseen participants 521 

from the test set and evaluated for accuracy by both correlating predicted and actual 522 

measures78, and by coefficient of determination (COD). To assess whether model prediction 523 

performed better than chance, statistical significance of prediction accuracy was assessed by a 524 

permutation test whereby the entire cross-validation procedure was rerun on behavior measures 525 

randomly reshuffled across participants in each dataset. Care was taken to avoid shuffling 526 

between families or sites.  527 

 528 

Model Interpretation 529 

 To interpret the predictive importance of each FC feature, we used an approach from 530 

Haufe and colleagues (2014) to transform predictive feature weights associating each FC edge 531 

to the behavioral measure. Predictive feature weight was computed by the covariance between 532 

the predicted behavioral measure and the FC edge. This resulted in a 419 x 419 predictive 533 

feature matrix for each brain state and each behavioral measure. A positive (or negative) 534 

predictive feature weight indicates that higher FC predicts greater (or lower) behavioral values. 535 

Statistical significance of these predictive feature weights was tested with permutation tests and 536 

corrected for multiple comparison using FDR (q<0.05). To reduce the number of multiple 537 

comparisons, predictive feature weights were averaged within and between 18 large-scale 538 

functional networks28,29 before conducting the permutation test.  539 

  540 
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