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Abstract19

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mecha-20

nisms in context-specific ways. Although there are computational methods for extracting gene21

regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem,22

essential for accurate cell type identification, has been mostly treated as a standalone challenge.23
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Here we present scTIE, a unified method that integrates temporal multimodal data and infers24

regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to em-25

bed cells from all time points into a common space using iterative optimal transport, followed26

by extracting interpretable information to predict cell trajectories. Using a variety of synthetic27

and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration28

while preserving more biological signals than existing methods, particularly in the presence of29

batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from dif-30

ferentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory31

elements highly predictive of cell transition probabilities, providing new potentials to understand32

the regulatory landscape driving developmental processes.33

Introduction34

In eukaryotic cells, gene expressions are intricately regulated through complex interactions of35

transcription factors (TFs), various regulatory elements and target genes. Deciphering the func-36

tions of gene regulatory networks (GRNs) in shaping cell identity and cell fate is one of the37

central quests in understanding the mapping from genomic blueprints to phenotypes. Over the38

past decades, much effort has been devoted to developing statistical and computational meth-39

ods for inferring GRNs from tissue-level bulk data containing genome-wide profiling of gene40

expression, TF binding, and 3D chromatin structure. More recently, the advent of single-cell se-41

quencing technologies has propelled the study of GRNs into a new era, in which context-specific42

regulation mechanisms can be investigated. Such GRNs describe gene regulatory interactions43

that occur in a specific biological context, which may encompass different cell types, lineages,44

tissues, or environmental conditions. Alongside new opportunities, the sparse and noisy nature45

of these single-cell data also brings new challenges to the statistical and computational analyses.46

47

A growing number of methods have been developed to extract GRNs from data generated by48

assays of single-cell RNA-sequencing (scRNA-seq) and single-cell transposase-accessible chro-49

matin sequencing (scATAC-seq). Most of these methods infer the relationships between TFs50

and target genes by estimating their interactions with cis-regulatory elements (CREs) as an inter-51

mediate, using information including TF motif enrichment, marginal or conditional correlations52

between genes and CRE accessibility, and physical proximity between different elements [1,53

2, 3, 4, 5]. These methods typically work with multimodal data that provide joint profiling of54
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scRNA-seq and scATAC-seq from the same cells, or unpaired data from a matched population55

of cells, possibly measured over a time course. However, they do not directly address the data56

integration problem accompanying such data, in which noise, sparsity, and batch effects can ob-57

scure identification of cell types and affect the downstream inference of context-specific GRNs.58

Furthermore, to compare how GRNs dynamically evolve in developmental data, features (e.g.,59

genes, CREs) that are different between time points (or pseudotime points) are identified using60

differential expression (DE) / accessibility (DA) analyses. While this captures marginal correla-61

tions, the features found are not necessarily predictive of the developmental changes.62

63

On a separate front, an increasing number of computational methods have been proposed to64

perform data integration for single-cell multiomics data from unpaired measurements [6, 7, 8,65

9]. As more technologies capable of multimodal profiling start to emerge [10, 11, 12], integra-66

tion methods designed for paired data [13, 14, 15, 16] have also attracted significant research67

interests. However, most of these integration methods do not directly address the immediate68

downstream problem of inferring GRNs; one exception is GLUE [6], although the GRNs in-69

ferred there remain global and not context-specific. One difficulty lies in the fact that most of70

these methods rely on finding a low-dimensional representation of the datasets across modalities71

and data batches, and how to extract interpretable biological signals from blackbox methods such72

as neural networks is a challenging problem. Neural networks offer a conceptual advantage over73

methods built on linear models, including cross correlation analysis and non-negative matrix fac-74

torization, as their superior representation power can capture complex nonlinear interactions in75

the feature space. However, this comes with the drawback that the relationships between the76

measured features (e.g., genes) and cellular phenotypes in trained models become more difficult77

to interpret. Although alternative architectures have been proposed involving linearizing part of78

the neural network [17], a tradeoff remains between the network’s representation power and in-79

terpretability.80

81

Here, we propose scTIE, an autoencoder-based method for integrating multimodal profiling82

of scRNA-seq and scATAC-seq data over a time course and inferring context-specific GRNs.83

To the best of our knowledge, scTIE provides the first unified framework for the integration of84

temporal data and the inference of context-specific GRNs that predict cell fates. We achieve this85

through three main innovations in the architecture design of the autoencoder and the interpreta-86

tion of a blackbox neural network method. Firstly, scTIE uses iterative optimal transport (OT)87
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fitting to align cells in similar states between different time points and estimate their transition88

probabilities. scTIE incorporates OT into the loss function of the autoencoder so that the align-89

ment of cells is updated iteratively throughout training to achieve a desirable balance between90

time point alignment and cell type separation. This is in contrast to many widely used applica-91

tions of OT in trajectory inference of scRNA-seq data [18, 19], where most of the methods solve92

OT only once on suitably constructed cell distance matrices. Secondly, scTIE removes the need93

for selecting highly variable genes (HVGs) as input through a pair of coupled batchnorm layers94

to account for large variations in gene expression levels, making it more robust and generalizable.95

Thirdly, scTIE provides the means to extract interpretable features from the common embedding96

space by linking the developmental trajectories of cell representations to their measured features97

(genes and peaks). We formulate a trajectory prediction problem using the estimated transition98

probabilities from OT and use gradient-based saliency mapping [20, 21] to identify genes and99

peaks that are potentially driving the cellular state changes.100

101

To demonstrate the performance of scTIE on developmental data, we have chosen to focus102

on multimodal time-course data, as this emerging form of data provides better opportunities to103

understand the key transcriptional regulatory activities driving a developmental process. To as-104

sess scTIE’s integration performance against other existing methods, we constructed a variety105

of synthetic datasets using a mouse early organogenesis multiome dataset. We show that scTIE106

effectively aligns cells from different time points and removes batch effect, providing an optimal107

tradeoff between time alignment, modality alignment and cell type separation. We further gen-108

erated an exemplar dataset comprising paired scRNA-seq and scATAC-seq measurements from109

∼ 11, 000 differentiating mouse embryonic stem cells (mESCs) over a time course. Applying sc-110

TIE, we show its superior capacity to capture biological signals from each modality and achieve111

better day alignment when compared to other methods, resulting in identification of distinct cell112

subpopulations. Finally, using developmental transitions from anterior primitive streak as a case113

study, we demonstrate scTIE’s ability to construct lineage-specific GRNs consisting of regula-114

tory elements with a high predictive power of cell fate and identify key regulatory signals that115

would be missed by DE or DA-based analysis.116
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Results117

Overview of scTIE118

scTIE uses modality-specific encoders and decoders to project high dimensional input data from119

all time points into a lower dimensional common embedding space and reconstruct them in the120

original space (Fig. 1). A modality alignment loss is used to ensure the projected feature vectors121

from the same cell are close in distance. Each encoder-decoder pair is designed to preserve the122

original dimension of the input data with minimal information loss. For scATAC-seq, accessibil-123

ity peaks are used as input without conversion to gene activity scores. The encoder and decoder124

for scRNA-seq use an additional pair of coupled batchnorm layers to handle heterogeneity in125

gene expression levels and achieve high-fidelity reconstruction of the signals without the need126

for selecting HVGs. Between consecutive time points, scTIE models cell trajectories using the127

principle of OT based on the current embeddings and computes an OT loss using the transport128

cost matrix. The OT loss is incorporated into the total loss function to update the embedded129

features, aligning cells by their estimated transition probabilities in the trajectories; the cost ma-130

trix itself is also updated iteratively throughout training. Finally, scTIE finetunes the learned131

embeddings to build a supervised model for predicting cellular transition probabilities for sub-132

groups of cells. Genes and peak regions highly predictive of the cellular transitions are selected133

by backpropagating the gradients, allowing us to construct GRNs responsible for developmental134

changes.135

scTIE outperforms existing methods in integrating temporal multimodal136

data.137

We first evaluated the data integration performance of scTIE against recent methods designed to138

integrate paired multimodal data, including Seurat [15], scAI [16], multiVI [14] and MOFA [13].139

We generated four synthetic datasets by introducing batch effects and noise into a mouse early140

organogenesis multiome dataset [22] (Fig. 2A, Supplementary Fig. S3). As shown in the UMAP141

plots of the data with synthetic batch effects introduced in RNA and noise introduced in ATAC142

(Fig. 2A), scTIE effectively removed the batch effects while also better revealing the cell type143

signals.144

145

Next, we compared the performance of these methods from three aspects, namely batch ef-146
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fect removal, time point alignment and their ability to capture cell type signals. We quantify147

the quality of batch removal and time point alignment using purity scores, which calculate the148

proportion of cells from the same batch/sampling time among neighbors of given cells. A lower149

purity score indicates a better mixing of batch/time points. We measured the cell type preserva-150

tion using adjusted rand index (ARI) with the cell type annotations provided in the original paper151

as the ground truth. We find that scTIE outperforms the other methods in the overall performance152

across the three metrics (Fig. 2 B-C and Supplementary Fig. S1). Furthermore, scTIE’s superior153

performance is robust against the number of neighbors used in the purity score calculation (Sup-154

plementary Fig. S2). We observe similar trends across the other three synthetic scenarios, where155

scTIE consistently exhibits better performance than the other methods (Supplementary Fig. S3).156

Together, we demonstrate the superiority of scTIE in data integration, enabling better capture of157

biological signals through batch effect removal and time point alignment.158

scTIE enables identification of cellular subpopulations via modality and159

time point alignment with robust performance.160

Encouraged by scTIE’s performance in data integration, we next generated a temporal single-cell161

multimodal dataset and leveraged scTIE for the integration of cells across time points and anno-162

tation of cell types. We performed single-cell multiome sequencing from mESCs treated with163

Activin A/Lithium Chloride and measured on Day 2, 4 and 6, using the 10x Chromium Single164

Cell Multiome platform. After quality control filtering (Supplementary Fig. S4), we obtained165

high quality measurements of RNA and ATAC from a total of 11,440 cells, with a median detec-166

tion of 4,130 genes expressed per cell and a median of 11,267 peaks detected per cell.167

168

By clustering on the joint embeddings produced by scTIE, we identified 17 clusters with169

either distinct transcription or chromatin accessibility profiles that include cell types from all170

the three germ layers as well as from extra-embryonic layers of embryonic development (Fig.171

3A-C). We annotated these clusters based on the key markers identified in the two previous stud-172

ies [23, 24] (Fig. 3C), and confirmed them by label transfer using a public reference [25, 23]173

(Supplementary Fig. S5). Further explorations of the motif enrichment of regions with DA in174

specific clusters highlight the cluster-specific TFs of the annotated cell types (Fig. 3D-E). Addi-175

tionally, we quantitatively assessed the clustering results using evaluation metrics. Our findings176

demonstrate that scTIE better preserves biological signals in each modality and achieves better177
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alignment in days compared with the existing methods, further supporting our annotation of the178

cells using the integrated data from scTIE (Supplementary Figs. S8-S9).179

180

Notably, scTIE identifies three distinct clusters of definitive endoderm (Cluster 3, 4 and 7)181

(Supplementary Fig. S6A). We find that Cluster 4 uniquely expresses several Wnt pathway di-182

rect targets (Vcan, Nrcam and Ccnd2) and Wnt TF (Lef1), and has lower expressions in Wnt183

inhibitors Dkk1 and some definitive endoderm markers (Hhex and Sox17) (Supplementary Fig.184

S6B). The activation of Wnt signaling of this group of cells could be linked to primordial lung185

specification progenitors [26]. Cluster 3 and Cluster 7 have similar expression profiles to each186

other. Compared with Cluster 3, we find Cluster 7 with majority of cells from Day 6 has lower187

expressions in Nodal signaling genes Nodal and Tdgf1, but higher expressions in genes that neg-188

atively regulate the Nodal pathway (Cer1 and Lefty1) (Supplementary Fig. S6B).189

190

An inspection of the epiblast subsets further demonstrates that scTIE enables cellular sub-191

population identification (Supplementary Fig. S7A). We find that one of the epiblast clusters192

(Cluster 12) has upregulation of genes related to Hypoxia (Adm, Anxa2, Ddit4 and Gbe1), which193

could enhance the defintive endoderm differentiation, as suggested in [27, 28] (Supplementary194

Fig. S7B). In addition, we find that Cluster 1 is enriched with anterior epiblast markers (Pou3f1,195

Enpp3, Pten and Slc7a3), while Cluster 10 highly expresses posterior epiblast markers (Lhx1,196

Ifitm1) (Supplementary Fig. S7B) [29], with downregulation of the TFs Pou5f1 and Sox2 but197

upregulation of the TFs Foxa1 and Foxa2 (Supplementary Fig. S7C).198

199

Finally, we examine the stability of our results in both modality alignment and cluster iden-200

tification, with respect to key tuning parameters in scTIE, including the weight of OT in the loss201

function, the number of nodes in hidden layer and the updating frequency of OT. We find that202

the weight of the OT loss is an important parameter to reach a balance between the alignment203

of modalities and time points, with a larger weight resulting in a better alignment in time points204

(Supplementary Fig. S11A) but poorer performance in modality integration (Supplementary Fig.205

S10A, D). In this sense, the choice of this parameter can be guided by the performance in modal-206

ity alignment, since the pairing information for all cells is known and serves as the ground truth.207

The two other tuning parameters have a small impact on our results (Supplementary Fig. S10B-208

C, E-F, Supplementary Fig. S11B-C).209

210
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Together, we demonstrate that scTIE is able to capture distinct cellular subpopulations by211

preserving information from both epigenomic and transcriptomic profiles, while also aligning212

the cells from different time points.213

scTIE embeddings capture interpretable biological features.214

To interpret the embedding space projected by scTIE, we deconvoluted the latent representation215

by backpropagating the gradient of each dimension in the embedding layer with respect to gene216

and peak input, followed by ranking the features. We then computed the enrichment scores of217

the cell type marker list for the feature rankings of each embedding dimension (see Methods).218

We find that each dimension exhibits distinct patterns of enrichment of cell type markers, and219

at the same time the cell types from the same lineage share similar enrichment patterns across220

the dimensions, indicating that scTIE captures diverse and biologically meaningful information221

from the data (Fig. 4A). We further observe that the enrichment results of RNA and ATAC share222

similar patterns, illustrating that scTIE is able to link the transcriptomic profiles with the chro-223

matin accessibility through the common embeddings (Fig. 4A).224

225

The embedding gradients can be further interpreted in terms of known biological functions,226

based on their Gene ontology (GO) enrichment. As illustrated in Fig. 4B, we find that the227

embedding dimensions enriched with definitive endoderm cell type markers can be associated228

with different pathways. Interestingly, we observe that dimension 39 is uniquely enriched with229

Activin receptor signaling, as confirmed by the top ranking genes including Lefty1, Fst, and230

Nodal from this pathway (Fig. 4C). Consistently, the nearest genes of the top ranking peaks231

also include genes associated with the Activin pathway, such as Nodal, Lefty1 and Fgf9. Since232

treatment by Actinvin is a key component of our differentiation protocol (see Methods), it is233

comforting to see that the relevance of this pathway is captured by the fitted model. Together,234

we demonstrate that scTIE is able to project the two modalities into a joint embedding space that235

captures interpretable biological signals of the data.236

scTIE uncovers cell fate-specific regulatory networks.237

scTIE constructs lineage-defining GRNs by combining information across different dimensions238

of the embedding layer to predict the cell transition probabilities between time points. As a239

case study, we investigate the transitions of cells from anterior primitive streak on earlier days240
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into endoderm, mesoderm, as well as remaining as anterior primitive streak on later days. The241

primitive streak is a transient embryonic structure which marks bilateral symmetry, helps con-242

fer anterior-posterior spatial information during gastrulation, and initiates germ layer formation243

[30]. A distinct group of cells located at anterior primitive streak, the node, forms the axial meso-244

dermal structures and definitive endoderm cells [31].245

246

In each of the above three possible cell fates, we fine-tuned the trained embeddings using a247

prediction layer with weight regularization and backpropagate the gradients from the prediction248

layer to select the top 200 genes and 500 peak regions as the most predictive features of the249

lineage. Compared with the conventional approach that uses DE / DA analysis to select the top250

features, scTIE selects genes and peak regions with significantly better prediction performance251

(Fig. 5A). The superior prediction performance is consistent across a range of tuning parameters,252

including the regularization weights and the number of top features, evaluated via cross valida-253

tion (Supplementary Fig. S12).254

255

To annotate the top peaks, we overlapped the selected peaks with the published enhancer256

database from 12 tissues of seven developmental stages from 11.5 days after conception until257

birth [32], quantified by the Jaccard index. We find that the top peaks associated with mesoderm258

transition potential are enriched with facial prominence and limb enhancers at E11.5, while en-259

doderm transition-related peaks identified by scTIE show higher enrichment and distinct overlap260

with stomach enhancers at E14.5, E15.5 and P0 (Fig. 5B). In contrast, the peaks selected by DA261

analysis show enrichments in tissues that are much less specific to predicted lineages of meso-262

derm or endoderm (Supplementary Fig. S13). Together, these results illustrate that scTIE is able263

to identify peaks that are specific to lineage transition.264

265

The identification of genes and peaks that are predictive of cell transition further allows us266

to infer GRN for each of the lineages: anterior primitive streak, endoderm and mesoderm (see267

Methods). In the GRN of anterior primitive streak (Fig. 5C, left panel), we identified a few268

TFs that play key roles in jointly governing anterior mesendoderm and the node development269

(Lhx1, Otx2 and Smad4) [33, 34], as well as a TF related to axial mesendoderm morphogene-270

sis and patterning (Mixl1) [35]. Interestingly, when focusing on the endoderm GRN (Fig. 5C,271

middle panel), we find that besides identifying TFs that are central regulators for the formation272

of definitive endoderm development (Sox17, Gata4, Gata6, and Gsc) [36, 37, 38, 39, 40], scTIE273
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also captures TFs that are associated with early mesendoderm differentiation (Runx1) [41] and274

morphogenetic movement (Lhx1) [42].275

276

Lastly, we examined the mesoderm GRN (Fig. 5C, right panel) which identifies a few key277

TFs (Hhex, Sox17, Smad3, Zic3, Twist1 and Nfat5) that are associated with mesoderm lineages.278

Notably, most of these TFs have insignificant p-values under DE analysis (Table S1), illustrating279

that scTIE captures key regulatory signals in this lineage that would be missed otherwise. More280

specifically, the mesoderm GRN highlights TFs that are associated with cardiac development281

such as Zic3 in early mesodermal patterning [43, 44]; Hhex that is involved in mediating the282

Sox17 for cardiac mesoderm formation in mESC [45] and Nfat5 for cardiomyogenic during283

mesodermal induction through regulating the canonical Wnt pathway [46]. We also identify TFs284

that are essential for mesoderm formation and patterning (Smad3) [47] and cranial mesoderm285

development (Twist1) [48].286

Discussion287

While the rapidly increasing collection of single-cell multiomics data provides a wealth of infor-288

mation for examining context-specific regulatory mechanisms, accurate characterization of cell289

identities remains the first hurdle to be overcome in such tasks. scTIE provides a unified frame-290

work for the integration and joint modeling of temporal multimodal data and the subsequent291

visualization, cell type identification and inference of key regulatory modules predictive of the292

developmental transitions of cells. Incorporating OT into the training of an autoencoder, scTIE293

alternates between updating the alignment of cells at different time points and using the current294

alignment for training the projections into the common embedding space, thus achieving a better295

balance between integrating time points and maintaining cell type specific signals. As we have296

demonstrated on the real and synthetic datasets, scTIE outperforms existing paired methods in297

terms of integration performance.298

299

Different from existing integration methods that also utilize the notion of a common em-300

bedding space, scTIE directly exploits the information in this space produced by the nonlinear301

projections of a neural network, linking it to interpretable features such as genes and peak re-302

gions. scTIE extracts context-specific gene regulatory relationships through the identification of303

features that are predictive of cell transition probabilities, which quantify how likely a collection304
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of cells on earlier days will transit to a certain cell state on later days, relative to other cells. These305

sets of cells can be flexibly defined, allowing users to investigate any cell transition process of306

interest. In addition to cell transition probabilities derived from OT, the current framework can307

also be adapted to select features that are predictive of other types of response variables, such308

as pseudotime and perturbation, which potentially enables the construction of differential GRN309

under continuous cell differentiation and in perturbed conditions.310

311

scTIE is designed for temporal multimodal data, which is ideal for studying single-cell ge-312

nomics in developmental trajectories. Paired measurements from the same cells remove the need313

for computational pairing, which can introduce errors into the downstream GRN analysis if cells314

of different cell types are paired, and the issue of cell type imbalance between different modali-315

ties. The integration of unpaired developmental data across multiple time points remains an open316

problem itself. For datasets taken from a matched population, a loss function performing global317

alignment between modalities, such as the one used in [9], can be potentially incorporated into318

the training of scTIE. However, the problem is more challenging if cells are sampled at different319

time points or develop at a different rate across the modalities, and we will pursue this in future320

work.321

322

Although a large number of methods exist for inferring pseudotime ordering of cells from a323

static snapshot of a developmental process, pseudotime inference assumes that a continuum of324

cellular states is observed at the sampled time, and thus may not capture the entire transition pro-325

cess [49]. An interesting extension would be combining pseudotime inference and experimental326

time points to create a finer temporal resolution. However, we note that this would also increase327

the computation time of scTIE, since iterative OT estimation is performed between consecutive328

time points; efficient and accurate OT algorithms remain an active area of research.329

330

We have focused on scRNA-seq and scATAC-seq as common modalities from multimodal331

profiling technologies. Other modalities such as methylation and protein levels [50, 51, 52] can332

be easily incorporated into scTIE through appropriate encoder-decoder pairs. Since transcrip-333

tional regulation involves interactions of protein complexes, histone modifications and other mi-334

croenvironmental factors, we expect the addition of such information will allow us to build a335

more accurate prediction model for cellular state changes. Furthermore, emerging single-cell336

perturbation assays [53] can either be used to validate the top candidates found in our predictive337
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model, or built into the neural network architecture as a prior knowledge graph [6].338

339

In summary, scTIE provides an integrative framework for analyzing temporal multimodal340

data, which is an emerging form of data we expect will become more readily available as in-341

terests in characterizing GRNs at single-cell resolution continue to rise. On real and synthetic342

developmental datasets, scTIE is shown to provide effective integration of cells from all time343

points and select key regulatory elements with superior performance in predicting cellular state344

changes. We envision that advances in single-cell technologies generating new forms of tempo-345

ral data will enable us to further expand the functionalities of scTIE, paving the way towards a346

holistic understanding of cellular transitions and responses in development and disease.347
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Methods348

Synthetic data construction349

The 10x Genomics multiome data of mouse early organogenesis, along with its cell type an-350

notation, was obtained from the Gene Expression Omnibus database under accession number351

GSE205117 [22]. The dataset comprises 59,132 cells from a time course of mouse embryonic352

development, spanning 5 time points from E7.5 to E8.75.353

To construct synthetic data that could be processed by most of the methods within their354

computational capacity, we subset the data to 24,188 cells by selecting only one sample at each355

time point. We filtered out genes expressed in less than 1% of cells and peaks expressed in less356

than 5% of cells, resulting in 15,754 genes and 81,108 peaks. To introduce noise and batch357

effects to the data, we used the downsampleReads() function in the DropletUtils R package358

to downsample the reads. We generated four synthetic scenarios: (1) subsample 10% for all cells359

in ATAC; (2) subsample 10% for all cells in ATAC and 50% for all cells in RNA; (3) subsample360

50% for half of cells in RNA to create the synthetic batch effect in the data; and (4) subsample361

10% for all cells in ATAC, subsample 50% for half of the cells in RNA and 25% for the other362

half of the cells.363

mESC data generation364

Cell culture365

Mouse embryonic stem cell line R1 was obtained from ATCC. The cells were first expanded on366

an MEF feeder layer previously irradiated. Then, subculturing was carried out on 0.1% bovine367

gelatin-coated tissue culture plates. The cells were propagated in mESC medium consisting of368

Knockout DMEM supplemented with 15% Knockout Serum Replacement, 100 µM nonessen-369

tial amino acids, 0.5 mM beta-mercaptoethanol, 2 mM GlutaMax, and 100 U/mL Penicillin-370

Streptomycin with the addition of 1,000 U/mL of LIF (ESGRO, Millipore).371

Cell differentiation372

mESCs were differentiated using the hanging drop method [54]. Trypsinized cells were sus-373

pended in chemically defined medium CDM [36] to a concentration of 37,500 cells/mL. CDM374

consists of 75% Iscove’s modified Dulbecco’s medium (IMDM, Invitrogen), 25% Ham’s F12375
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medium (Invitrogen), 1X N2 supplements (Invitrogen), 0.05% bovine serum albumin (BSA, In-376

vitrogen), 2 mM Glutamax-1 (Invitrogen), 0.5 mM ascorbic acid (Sigma-Aldrich), and 4.5 x 104
377

M MTG (Sigma-Aldrich). 20 µL drops (∼750 cells per drop) were then placed on the lid of378

a bacterial plate and the lid was upside down. After 48 h incubation at 37◦C incubator with379

5% CO2, Embryoid bodies (EBs) formed at the bottom of the drops were collected and placed380

in the well of a 6-well ultra-low attachment plate (Corning) with fresh CDM medium contain-381

ing 50 ng/mL Activin A (R&D Systems, 338-AC-050/CF) and 2 mM Lithium Chloride (LiCl,382

Sigma-Aldrich) for up to 6 days, with the medium being changed daily.383

Single cell multiome library384

We followed 10x Genomics single cell multiome library preparation protocol. The EBs were385

collected at Day 2, 4, and 6 after Activin A/Lithium Chloride treatment. For each time point,386

the cells were first treated with StemPro Accutase Cell Dissociation Reagent (Thermo Fisher) at387

37◦C for 10-15 min with pipetting. Single cell suspension was obtained by passing through 37388

µM cell strainer (STEMCELL Technologies) twice. After measuring cell concentration, approxi-389

mately 1 million of cells were centrifuged at 300 rcf for 5 min. Nuclei were isolated by following390

the protocol provided by 10x Genomics (Nuclei isolation for single cell multiome ATAC + Gene391

expression sequencing, CG00365, Rev A). The final nuclei concentration was adjusted to 3000392

cell/µL in 1X Nuclei Buffer (10x Genomics). The sample was immediately submitted to Stanford393

Genomics Service Center (SGSC) for single cell sorting using 10x Chromium Controller (target394

cells: 5000 per replicate, total 2-3 replicates per time point). The singe cell multiome library was395

generated using Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Reagent396

Bundle Kit (10x Genomics, PN-1000283).397

Data preprocessing398

10x Genomics Cell Ranger arc v2.0.0 was used to process the raw fastq files for each multiome399

single-cell dataset separately. The reference genome and transcriptome for alignment and annota-400

tion was version arc-mm10-2020-A-2.0.0. To integrate all filtered count matrices for scRNA-seq401

and scATAC-seq from different replicates and time points, the cellranger-arc aggr command was402

applied with default depth normalization method.403

Next, we performed quality control on the cell level. We removed cells based on the following404

criteria in scRNA-seq: (1) with the total number of UMI (nUMI) less than 6000 on Day 2, 3000405
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on Day 4 and Day 6; (2) with nUMI greater than 100,000; (3) with the number of genes less406

than 2000 on Day 2, 1800 on Day 4 and 1500 on Day 6 and (4) mitochondrial reads greater than407

25%. We further removed cells based on the following criteria in scATAC-seq: (1) with less than408

500 total ATAC fragments and (2) with less than 500 peaks detected. After quality control, we409

retained 11440 cells (Day 2: 2896 cells; Day 4: 2796 cells and Day 6: 5748 cells). We then410

performed the quality control on the feature level, removing the genes that are not expressed in411

any cells and the peaks that are expressed at least 5% of cells, resulting in 26717 genes and 61744412

peaks as input in scTIE.413

Architecture and training of scTIE414

scTIE uses an autoencoder structure to project high dimensional feature vectors (i.e., gene ex-415

pression levels and accessibility peaks) from all time points into a lower dimensional common416

embedding space and reconstruct the features in the original high dimensional space. Each417

modality has its own encoder and decoder (Table 1). For RNA, the architecture has an addi-418

tional pair of coupled batchnorm layers, where the final reconstructed output uses the moving419

average µ and standard deviation σ stored in the first batchnorm layer of the encoder to perform420

rescaling. This accounts for the high variability in gene expression levels without the need for421

selecting HVGs, and allows us to significantly improve the performance in reconstruction cor-422

relation, modality and day alignment, and clustering quality (Supplementary Fig. S14). The423

pairing between feature vectors from the same cell is enforced through a modality loss function424

minimizing their distance in the embedding space. An OT matrix is used to construct cell trajec-425

tories between each pair of consecutive time points. In contrast to existing methods using OT for426

trajectory inference, we integrate an OT loss into the autoencoder training process and estimate427

the OT matrix iteratively throughout. A larger weight on the OT loss leads to better alignment428

between days (Supplementary Fig. S11A).429

Let X(t,s) denote the data matrix from time point t and modality s, where t = 1, . . . , T and430

s = 1, 2 for RNA and ATAC respectively. Each time point t provides measurements for Nt431

cells; thus in this case, X(t,1) ∈ RD1×Nt with D1 = number of genes and X(t,2) ∈ RD2×Nt with432

D2 = number of peak regions. In each iteration, a mini-batch of data is sampled by taking equal-433

sized subsets of cells from each time point, that is, B = {B(t)}Tt=1, where each subset B(t) has B434

cells. Three loss functions are applied to the mini-batch.435

1. Reconstruction loss. (fs, gs) represents the encoder-decoder pair for modality s. Compared
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with the architecture for ATAC, the RNA part has a pair of coupled batchnorm layers,

starting with a batchnorm layer in the encoder to remove scale variations in genes and

prevent the gradients from being dominated by a small number of highly expressed genes

(Table 1). Let x(t,1)
i denote the gene expression vector from cell i at time t and x̃

(t,1)
i denote

the normalized output from the first batchnorm layer, then x̃
(t,1)
i = (x

(t,1)
i − µ)/σ, where µ

and σ are the moving average and standard deviation of the genes saved in the batchnorm

layer throughout training. The reconstruction loss is applied to the normalized data and the

output from the decoder, defined as

L(1)
recon =

1

TB

T∑
t=1

∑
i∈B(t)

∥x̃(t,1)
i − g1(f1(x

(t,1)
i ))∥22.

For ATAC, the first layer in the encoder is a fully connected layer and the reconstruction436

loss is computed on the input x(t,2)
i and output g2(f2(x

(t,2)
i )) as usual. The overall Lrecon is437

the sum of L(1)
recon and L

(2)
recon.438

2. Optimal transport loss. We leverage OT to effectively align cells from all time points439

in the embedding space. For notational convenience, we will suppress the dependence440

on modality s for now, with understanding that the following steps are performed for441

each modality. For any two adjacent time points t and t + 1, a transport cost matrix442

C(t,t+1) ∈ RNt×Nt+1 can be computed using the current embeddings, where the (k, l)-th443

entry is given by C(t,t+1)(k, l) = ||f(x(t)
k ) − f(x

(t+1)
l )||2 for the k-th cell from t and the444

l-th cell from t + 1. With the cost matrix, Waddington-OT [18] is then used as the algo-445

rithm to estimate a transport matrix γ(t,t+1) ∈ RNt×Nt+1 . Each row in γ(t,t+1) sums to 1,446

representing the transition probabilities of a cell in time step t to all the other cells in time447

step t + 1. Given T time steps, we need to maintain a total of T − 1 transport matrices448

throughout the autoencoder training process. For a given mini-batch B in each iteration,449

a submatrix version of C(t,t+1) is computed using the rows and columns specified in B450

and is denoted by C̃(t,t+1). Similarly, a mini-batch version γ̃(t,t+1) of γ(t,t+1) is calculated451

by taking the appropriate submatrix and rescaling the rows to unit sum. The batch-wise452

feature alignment loss (for each modality s) is defined as453

Lot =
1

T − 1

T∑
t=1

(
B∑

k=1

B∑
l=1

(C̃(t,t+1) ⊙ γ̃(t,t+1))(k, l)

)
,

where ⊙ is the Hadamard product. The final Lot is the sum over modalities s.454
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3. Modality alignment loss. For each mini-batch, the modality alignment loss is simply de-455

fined as the L2 distance between feature vectors from the same cell in the embedding space,456

which is to be minimized:457

Lmodality =
1

TB

T∑
t=1

∑
i∈B(t)

∥f1(x(t,1)
i )− f2(x

(t,2)
i )∥22 .

The total loss in each iteration is L = λreconLrecon + λotLot +Lmodality where the λ’s are tuning458

parameters controlling the relative weighting of the losses. For every K epochs, the transport459

matrices (for each modality s) γ(t,t+1)
s , 1 ≤ i ≤ T − 1 are updated by computing OT on the460

current embedding features.461

Training details462

scTIE took a collection of peak matrices from scATAC-seq data and raw couns matrices from463

scRNA-seq data from multiple time points as input. For ATAC, the peak matrices were trans-464

formed to binary matrices, where one represents any non-zero original values. For RNA, the465

raw count matrices were sized-factor normalized and then log-transformed. For the overall mul-466

timodal training, we first pre-trained the RNA autoencoder f1, g1 for 500 epochs (excluding467

Lmodality). Then, we fixed the weights of the pretrained RNA model to train the ATAC model468

for 300 epochs with the overall loss L. Finally, the two models were jointly trained for 200469

epochs using the full algorithm as detailed in Algorithm 1. The final joint embeddings were470

calculated by taking the averages of f1(x
(t,1)
i ) and f2(x

(t,2)
i ) for each cell i from time t, followed471

by computing the final γ(t,t+1) from the joint embeddings. Throughout training, we used Adam472

as the optimizer with learning rate set to 0.1, batch size B = 256, tuning parameters λrecon = 1,473

λot = 0.1, and OT was updated every 10 epochs.474
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Algorithm 1 Multimodal OT Autoencoder (two-modality case)
Data matrices X(t,s), training iterations M , batch size B, autoencoder f1, g1, f2, g2 with weights

θ, learning rate α, loss weight tuning parameters λrecon, λot, OT update frequency K.

Initialize all γ(t,t+1)
s , 1 ≤ t ≤ T − 1 matrices with zero matrices.

for iteration = 1, 2, . . . ,M do

Sample cells B = {B(t)}Tt=1, where each subset B(t) has B cells.

Compute Lrecon, Lot, Lmodality

Compute L = λreconLrecon + λotLot + Lmodality

Perform gradient descent step on autoencoder weights θ ← θ − α∇θL

if M%K == 0 then

Update γ
(t,t+1)
s , 1 ≤ t ≤ T − 1, s = 1, 2 using current embeddings.

end if

end for

Cell type annotation of mESC data475

Cell clustering of scTIE476

To identify the clusters on the common embedding of scTIE, we first constructed a shared nearest477

neighbor graph using buildSNNGraph in R package scran [55] (v 1.23.0), with the number478

of nearest neighbor set as 15 with weighted scheme set as jaccard. Next we performed Lei-479

den community detection [56] on the shared nearest graph with resolution 1.8 and number of480

iterations 50, implemented in R package leidenAlg (v 1.0.3), resulting in 17 clusters in total.481

Motif enrichment482

We used Signac [57] to calculate the over-represented motif of each cluster based on the dif-483

ferential accessible peaks. The motif position frequency matrices are obtained from cisBP [58].484

We used limma-trend [59] to perform differential accessibility analysis between the cells in485

one cluster and the remaining cells, where the top 500 peaks of each cluster with log fold change486

greater than 0.1 and adjusted p-value less than 0.001 are selected. We then performed the motif487

enrichment analysis using FindMotifs to find motifs over-represented in the selected set of488

peaks.489
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Benchmarking and evaluation metrics490

Settings used in other methods491

We benchmarked the performance of scTIE against four other methods designed for single-cell492

paired multimodal data integration: Seurat, scAI, MultiVI and MOFA. We compared scTIE’s493

performance in terms of visualisation of the latent space, alignment of the days and clustering in494

the latent space against these methods.495

• Seurat. R package Seurat v4.1.0 [15] was used. We ran Seurat (WNN) using FindMul-496

tiModalNeighbors, with the reduction list input as the first 50 components of LSI497

reduced dimension of scATAC-seq (with the first dimension excluded) and 50 top PCs of498

scRNA-seq, with other parameters set as default.499

• scAI. R package scAI v1.0.0 [16] was used. We ran scAI using run scAI by setting the500

rank of the inferred factor set as 64 and nrun = 5, with other parameters set as default.501

• MultiVI. Python package scvi v0.15.0 [14] was used. We ran MultiVI using MULTIVI502

by setting the fully paried = True, n hidden = 256 and n latent = 64, with503

other parameters set as default. The model was then trained with max epochs = 200.504

• MOFA. R package MOFA2 v1.7.0 [13] was used. We ran MOFA using run mofa by505

setting the number of factors as 64, with other parameters set as default.506

Benchmarking of mESC data507

Modality alignment: We used two metrics to measure scTIE’s performance in the alignment of508

the two modalities, namely FOSCTTM and paired data proportion.509

• FOSCTTM. FOSCTTM refers to Fraction of Samples Closer than True Match, which is510

first introduced in MMD-MA [60] to quantify the alignment of multi-omics data. To eval-511

uate the modal alignment of scTIE using FOSCTTM, we first calculated the Euclidean512

distance between the ATAC embedding and RNA embedding. Then for each modality we513

calculated one FOSCTTM score, which summarizes the proportion of cells that are closer514

to the ground truth matched cells based on the distance matrix. Finally we summarized the515

FOSCTTM scores from the two modalities into one score by taking the average.516
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• Paired data proportion. Paired data proportion (used in Cobolt [7]) calculated the pro-517

portion of cells whose ground truth matched cells are included within a certain number518

of neighbors, based on the Euclidean distance between the ATAC embedding and RNA519

embedding. We varied the number of neighbors from 1 to the total number of cells in the520

data.521

Day alignment: We quantified the alignment of data sampled on different days using neighbor-522

hood purity using neighborPurity in R package bluster (v1.5.1), which calculated the523

proportion of cells from the same day among a certain number of neighbors, based on the UMAP524

coordinates generated from the common latent embeddings.525

526

Comparison with single-modality clustering: We benchmarked clustering results from scTIE527

against other paired data integration methods by evaluating how similar the results are compared528

to clustering dimension-reduced scRNA-seq (PCA space) or scATAC-seq (LSI space) alone. On529

the latent space of each method or the dimension-reduced space from scRNA-seq or scATAC-530

seq, we performed Leiden clustering on the shared nearest neighbor graphs constructed, with531

the same parameter settings as mentioned in Section Cell clustering. Note that for Seurat, we532

performed Leiden clustering directly on the weighted nearest neighbor graph it outputs. We used533

two metrics to quantify the results, Adjusted Rand Index and silhouette coefficient.534

• Adjusted Rand Index (ARI). We computed the ARI scores of clustering results from each535

data integration method and clustering results from scRNA-seq or scATAC-seq alone.536

• Silhoutte coefficient. For each clustering result, we computed the silhouette coefficient537

based on the Euclidean distance calculated from the UMAP coordinates generated from538

the dimension-reduced scRNA-seq or scATAC-seq.539

For both metrics, higher values indicate a method better captures the clustering information in a540

single modality.541

Benchmarking of synthetic data542

We benchmarked the data integration performance of scTIE with the other paired data integration543

methods in terms of three evaluation metrics: (1) ARI scores of the cell type annotation provided544

by the original study and the Leiden clustering results from each method; (2) neighborhood purity545

of days; and (3) neighborhood purity of batch for scenarios with synthetic batch effects.546
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Enrichment analysis for embedding dimensions547

Upon completion of training, scTIE has projected the high dimensional feature vectors (genes548

and peaks) into a 64 dimensional embedding space. Treating each dimension as a representation549

unit, for each cell type, we backpropagate the gradient of each unit with respect to gene and peak550

input to select features with the largest impact. More specifically, for each cell in cell type G,551

we pass its gene expression vector through the autoencoder to obtain its embedding vector y and552

compute ∂yj
∂xi

for each dimension j and gene input node i. The gradients are averaged over all cells553

in G to obtain the mean gradient for each gene. We then take the variability of gene expression554

into account by multiplying each mean gradient by its corresponding gene standard deviation,555

so that the final gradients are equivalent to gradients after the first batchnorm layer. Finally, we556

rank the genes by their gradient values and calculate the enrichment scores of the top 200 genes557

from the DE analysis of cell type G, where the DE analysis is performed using limma-trend558

[59] between the cells in one cluster and the remaining cells. Similar steps are performed for the559

peaks and the top 500 peaks are selected for enrichment score calculation.560

We used fgsea function in the R package fgsea [61] to perform the gene set enrichment561

analysis (GSEA) on the pathways related to mouse embryonic stem cells (as listed in Fig. 4B).562

Significant pathways are defined with adjusted p-value less than 0.05.563

GRN inference564

Selecting features with high predictive power565

By building a prediction framework on the obtained transition probabilities, scTIE selects genes566

and peaks jointly with high predictive power for developmental outcomes. In the mESC data, we567

consider how a group of cells from earlier days, denoted as G0, develops into two other groups568

G1 and G2 on later days.569

The transition probabilities are obtained from γ(t,t+1) (t = 1, 2 in our data) so that each cell i

in G0 is associated with a probability vector (pi1, pi2) indicating its probabilities of becoming G1

and G2 (See Section Cell transition probability calculation). We finetune a one-layer classifier

on the pretrained features in the embedding space of cells in G0 to predict their transition prob-

abilities. A simple linear classifier is sufficient to partition the cell feature space into G1 and G2

when the pretrained features are representative enough. Concretely, let q be the linear classifier

and B be a mini-batch of cells from G0 of size B, we employ a batch-wise KL divergence loss

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2023. ; https://doi.org/10.1101/2023.05.18.541381doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541381
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined

Lkl =
1

B

∑
j∈B

DKL(q(f(xj))||Pj),

where f is the trained encoder, Pj = (pj1, pj2). This loss enforces the classifier q to output570

transition probability distributions close to those in Pj’s. We also include the modality alignment571

loss Lmodality, with weight default set as 0.1. The classifier is trained with Adam setting learning572

rate to 0.001, training epochs to 200, batch size to 256 and L1 regularization.573

After training, gradients from the two classification nodes are backpropagated to each gene574

(or peak) input the same way as in computing embedding gradients. The gene gradients are then575

scaled by multiplying with the gene-wise standard deviations. A positive gradient for gene (or576

peak) j with respect to the node for G1 means increasing the input feature value tend to increase577

the cells’ probabilities of becoming G1, while a negative value indicates more contribution to G2.578

The final feature ranking is based on the average gradients by repeating this procedure 20 times579

with different seeds.580

Selection of G0, G1, G2581

As a case study in this paper, we focus on the transition of cells from anterior primitive streak on582

Day 2 and Day 4 into endoderm, mesoderm, as well as remaining as anterior primitive streak on583

Day 4 and Day 6.584

First, we considered the cells that are annotated as anterior primitive streak (Cluster 6) on Day

2 and Day 4 as G0. G1 and G2 are then selected from the cells on Day 4 and Day 6 that are more

likely to be the descendants of G0, as quantified by the descendant scores. The descendant scores

are defined similarly as in WOT [18]. Recall γ(t,t+1) is the Nt by Nt+1 transition probability

matrix between time points t and t + 1, let st ∈ RNt be the vector of descendant scores for all

cells at time point t, then we can calculate

st+1 = stγ
(t,t+1), where st(i) =


1

|G0| , if cell i is in G0,

0, otherwise.
.

This formula can then be pushed forward again to calculate the descendant scores for the next585

time point t + 2, and so on. For all cells in G0 at time point t (here t = 1 or 2), we calculated586

the descendant scores st+k of all cells at the later time point t + k, for k = 1, ..., T − t. We587

then considered the cells with descendant scores greater than the median of all cells at a certain588
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time point as the potential descendants, i.e., cells with st+k(i) > median(st+k). Among these589

descendant cells, we selected three pairs of G1 and G2 corresponding to the three cell fates we590

have analyzed: G1 that are annotated as (1) anterior primitive streak or (2) definitive endoderm591

or (3) mesoderm; for each selection of G1, G2 always represents the remaining descendant cells.592

Cell transition probability calculation593

For each cell i ∈ G0 on Day t, and G1, G2 on Day k ∈ K, where K = {k : t < k ≤ T}, the

transition probability vector (p(t)i1 , p
(t)
i2 ) are calculated as the following,

p
(t,k)
i1 =

∑
y∈G1

γ(t,k)(i, y),

p
(t,k)
i2 =

∑
y∈G2

γ(t,k)(i, y),

p
(t,k)
ij =

p
(t)
ij∑
j p

(t)
ij

, j = 1, 2,

p
(t)
ij =

1

|K|
∑
k

p
(t,k)
ij .

(pi1, pi2) is then the concatenated vector of (p(t)i1 , p
(t)
i2 ).594

Evaluation of cell transition probability prediction595

To evaluate the predictive power of the selected features to the transition probability, we per-596

formed support vector machine (SVM) with radial kernel to predict the transition probability597

using Day 2 and 4 anterior primitive streak gene expression of the top selected genes and peak598

matrix of the top selected peaks. The performance are quantified by root mean squared error599

(RMSE) from a 20 repeated 5 fold cross validation. We benchmarked the predictive power of the600

features selected by gradients with different regularization weights (0, 1, 10, 100), against the601

features selected by DE/DA analysis using limma-trend [59].602

Gene regulatory network construction603

To construct the gene regulatory network for each cell fate (anterior primitive streak, definitive604

endoderm and mesoderm), we focus on the top 500 genes based on the gradient ranking. For each605

gene, we consider the open chromatin regions that are within 250kb upstream and downstream of606
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its transcription start site (TSS) as well as ranked top 2000 according to the gradients as the distal607

candidate functional regions, which results in 396, 404 and 339 gene-peak pairs for the three cell608

fates respectively. We next filter the pairs based on the gene-peak correlation, calculated from the609

pseudo-cells. The pseudo-cells are constructed using the following strategies: We first randomly610

selected 100 cells from the anterior primitive streak cells on Day 2. For each cell, we looked for611

its 5 nearest neighbors based on the euclidean distances of the common embeddings. Then we612

calculate the Pearson correlation of the gene-peak pairs. This procedure is repeated 20 times and613

the gene-peak pairs with an absolute average correlation greater than 0.2 are retained (APS: 35,614

DE: 38 and MES: 17 pairs remained).615

To link the peak region with the TF, we identified the enriched TF using matchMotifs func-616

tion in R package motifmatchr of the peaks from the selected gene-peak pairs based on CIS-BP617

database [58]. We only consider if the TF are the top 500 genes. Finally, by linking the TF-region618

and peak-gene relationships, we construct the TF-gene regulatory networks that are associated619

cell fate probabilities.620
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Figure 1: Overview of scTIE, a unified framework for the integration of temporal data and the

inference of context-specific GRNs that predict cell fates. The input of scTIE consists of the gene

expression matrix of scRNA-seq and peak matrix of scATAC-seq from single-cell multiome data

over a time course.
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Figure 2: (A) Joint visualization using UMAP of the synthetic dataset with batch effect in RNA

and noise in ATAC, colored by cell type annotations (first row), sampling days (second row)

and synthetic batch information (third row). Each dot represents a cell in the embedding space.

(B) Bar plots showing the evaluation metrics of different data integration methods, including

ARI values for clustering with annotations (left); 1 - average purity scores of sampling days

with the number of neighbors equal to 50 (middle) and 1 - average purity scores of the synthetic

batch with the number of neighbors equal to 50 (right). Higher values indicate better agreement

with annotations and mixing of batches/days. (C) Radar plot summarizing the three evaluation

metrics shown in (B), where each line represents the performance of one method, and each axis

represents an evaluation metric, starting from the minimum value of all methods. It is noted that

scAI was not included in this benchmarking due to its long computational time (> 2 days).
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Figure 3: (A) Joint visualization of ESC dataset using UMAP, colored by sampling day and cell

type annotations. Each dot represents a cell in the embedding space. (B) Cell type compositions

per time point. (C) Dot plots of mean expression of RNA data. Rows represent cell types

and columns indicate each genes. The color scale represents the expression level, and the size

indicates proportion of positively expressed cells. The five most significantly expressed genes

for each cluster are included. (D) Heatmap of the TF motif enrichment (z-scores) of ATAC data.

Rows represent cell types and columns indicate TFs. The five most significantly enriched TFs

for each cluster are included. (E) Scatter plots of the mean RNA expression levels by clusters

(x-axis) and the average TF motif enrichment scores of ATAC (y-axis) for the selected TFs. The

dots are colored by the cell type annotations, with color legend consistent with Fig. 3A.
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Figure 4: (A) Enrichment scores of the gradient ranking in each embedding dimension using the

RNA (top panel) and ATAC (bottom panel) marker list for each cell type. (B) Gene ontology

enrichment of selected pathways on the gradient ranking of a subset of embedding dimensions.

(C) Gradient rankings for RNA (top panel) and ATAC (bottom panel) of embedding dimension

39, where genes/peaks are ranked based on the gradient values. The labeled points are genes in

the selected gene set (Activin receptor signaling pathway).

34

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2023. ; https://doi.org/10.1101/2023.05.18.541381doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541381
http://creativecommons.org/licenses/by-nc-nd/4.0/


Anterior primitive streak Definitive endoderm Mesoderm

0.070

0.075

0.080

0.085

0.090

0.075

0.080

0.085

0.04

0.05

0.06

0.07

R
M

S
E

scTIE DE

A

E
11

.5

E
12

.5

E
13

.5

E
14

.5

E
15

.5

E
16

.5 P
0

Facial−prominence
Forebrain

Heart
Hindbrain
Intestine

Kidney
Limb
Liver
Lung

Midbrain
Neural−tube

Stomach

E
11

.5

E
12

.5

E
13

.5

E
14

.5

E
15

.5

E
16

.5 P
0

E
11

.5

E
12

.5

E
13

.5

E
14

.5

E
15

.5

E
16

.5 P
0

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007B

Foxo1

Zfp770

Foxp4

Rreb1

Sp4

Otx2

Gata4

Prdm5

Zfp146
Bach1Mecom

Pou2f1
Lhx1

Mixl1

Smad1

Usf1

Zic2

Smad4 Mlxip

Mixl1

Perp

Pkd1l1

Lhx1Tnrc6c

Actn1

Slc22a23

Otx2

Myo10

Krt8

Pdia5

Rps6ka2

Fance

Prkce

Socs5

Gata6
Wnt8a

Rnmt

Ppp1r14b

Slc27a2

Skil

Fdps

Dennd2c

Cer1

Kit

Podxl

Itpr1

Abhd2

Usp3

Sema3f

Anterior primitive streak

Bcl11aFoxp2

Foxp4

Gata4

Nfya

Rora

Smad3

Sp5

Zeb1

Ebf2

Lef1
Zzz3

Mecom
Sp4

Nfat5

Sox4Nr6a1

Nfia

Bbx

Zic3

Twist1

Sox17

Aatf

Nin
Actn1

Egflam

Sub1

Tiam2

Mtch1

Ltbp1
Gata6

Polr2g

Cer1

N4bp2

Tpst2

Atp6v1f

Ifitm3
Mesoderm

Lhx1

Mxd1

Ahctf1

Foxq1

Gata4

Maz

Sp5

Tcf7l2

Plagl2

Runx1

Hmg20b

Nfia

Sox4

Gata3

Otx2

Sox17

Maf

Gsc

Kmt2a

Gmeb1
Cxcr4

Lefty1

Lrig3

Upp1

Lhx1

Atp5h

Itsn2

Elmo1

Otx2

Pick1

Krt8

Fam162a

Tiam2

Cldn6

Pkdcc

Gata6

Gng3

Cyp26a1

Tubb4b

Frzb

Chst1

Smc4

Cer1

Kif2c

Pcdh7Kit
Flt1

Ube2s
Spint2

Atp6v1b2

Gata6

Correlation
Negative
Positive

Node type
Gene

TF

Definitive endoderm
C

Anterior primitive streak Definitive endoderm Mesoderm

Figure 5: (A) Performance of cell fate probability prediction. (B) Similarity of top gradient peaks

with enhancers of 12 tissues at seven developmental stages from known enhancer databases. (C)

GRN of three cell fates.
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Encoder

Batchnorm (26717)

Linear (26717, 1000)

Batchnorm (1000)

LeakyReLU (0.2)

Linear (1000, 1000)

Batchnorm (1000)

LeakyReLU (0.2)

Linear (1000, 64)

Decoder

Linear (64, 500)

Batchnorm (500)

LeakyReLU (0.2)

Linear (500, 1000)

Batchnorm (1000)

LeakyReLU (0.2)

Linear (1000, 26717)

Batchnorm (26717)

Multiply by σ and add µ

Encoder

Batchnorm (61744)

Linear (61744, 1000)

Batchnorm (1000)

LeakyReLU (0.2)

Linear (1000, 1000)

Batchnorm (1000)

LeakyReLU (0.2)

Linear (1000, 64)

Decoder

Linear (64, 500)

Batchnorm (500)

LeakyReLU (0.2)

Linear (500, 1000)

Batchnorm (1000)

LeakyReLU (0.2)

Linear (1000, 61744)

Table 1: Autoencoder architecture for RNA (left) and ATAC (right).
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Supplementary Figure S1: Joint visualization using UMAP of the synthetic dataset with batch ef-

fect in RNA and noise in ATAC for three data integration methods (Seurat, multiVI and MOFA),

colored by cell type annotations (first row), sampling day (second row) and synthetic batch in-

formation (third row). Each dot represents a cell in the embedding space.

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2023. ; https://doi.org/10.1101/2023.05.18.541381doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541381
http://creativecommons.org/licenses/by-nc-nd/4.0/


★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★
★

★

★

★

★

★
★

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5

1 - Purity (Batch)

1
 -

 P
u

ri
ty

 (
D

ay
)

Method

★

★

★

★

Seurat

multiVI

MOFA

scTIE

Number of neighbours

★

★
★
★

25

50

75

100
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Supplementary Figure S3: Evaluation results for variations of synthetic data settings: (A-C) Read

downsampling in ATAC & Read downsampling + Batch effect in RNA: (A) Bar plots showing the

evaluation metrics of different data integration methods, including ARI values for clustering with

annotations (left); 1 - average purity scores of sampling day (middle) and 1 - average purity scores

of the synthetic batch (right). (B) Radar plot summarizing the three evaluation metrics shown

in (A), where each line represents the performance of one method, and each axis represents an

evaluation metric, starting from the minimum value of all methods. (C) Scatter plot showing 1 -

average purity scores of batch (x-axis) versus 1 - average purity scores of sampling day (y-axis)

as the number of neighbors changes, where the size of stars represents the number of neighbors

and color of the stars represents the method. (D-E) Bar plots showing the evaluation metrics of

different data integration methods, including ARI values for clustering with annotations (left);

1 - average purity scores of sampling day (right) for (D) Read downsampling in ATAC and (E)

Read downsampling in both ATAC and RNA.
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Supplementary Figure S4: (A) Box plots showing the distribution of RNA quality metrics of

each sample, color by the sampling day, including number of genes detected (left), number of

total UMI (log10) (middle) and Mitochondrial (MT) gene fraction per cell (right). (B) Box plots

showing the distribution of ATAC quality metrics of each sample, color by the sampling day,

including number of peaks detected (log10) (left) and transcription start site (TSS) enrichment

(middle). (C) Line plot showing the distribution of ATAC quality metrics of each sample, colored

by sampling day, including normalized TSS enrichment score of each sample at each position

relative to the TSS (first row) and fragment size distribution (second row). (D) Bar plots indicates

the number of cells after quality control in each sample, colored by sampling day.
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Supplementary Figure S5: Heatmap comparing the clustering results and the transferred labels

by scClassify [25] using Mittnenzweig data as reference [23]. Color indicates the proportion of

cells classified as a certain cell type label in the reference for one cluster.
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Supplementary Figure S6: (A) UMAP of definitive endoderm, colored by clustering results (left)

and sampling day (right). (B) UMAP visualisations of 14 selected markers of clusters.
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Supplementary Figure S7: (A) UMAP of epiblast, colored by clustering results (left) and sam-

pling day (right). (B) Violin plots showing the RNA expression of 12 selected markers. (C)

UMAP visualisation of 4 selected TF, higlighted by the motif enrichment scores derived from

ATAC using chromVar (top row) and RNA expression (bottom row).
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Supplementary Figure S8: UMAP visualization of the dataset for Seurat, scAI, multiVI and

MOFA, colored by annotated cell types (first row) and sampling days (second row).
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Supplementary Figure S9: (A) 1 - Average purity scores of sampling day for each cell type

(Number of neighbors = 50). Row indicates cell types and column indicates methods. Higher

values indicate better mixing between days. (B) Average purity scores of sampling day based on

different number of neighbors, colored by different methods. Lower values indicate better mixing

between days. (C) The bar plots show the ARI values comparing the clustering from different

data integration methods with clustering on RNA (left) and ATAC alone (right); higher values

indicate better agreement. Note that here RNA and ATAC clustering results are the ground truth

for the left panel and right panel respectively, therefore they have ARI equal to 1. (D) Box plots

show the silhouette coefficient comparing the clustering from different data integration methods

based on distance matrices computed from the RNA (left) and ATAC (right) UMAP coordinates.

Higher values indicate better agreement. Note that for the left panel, RNA clustering result has

the highest silhouette coefficients because clustering derived from RNA is used as the ground

truth; similarly for the right panel.
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Supplementary Figure S10: Robustness of scTIE with respect to the tuning parameters in modal-

ity alignment. (A-C) Proportion of ground truth pairs within certain number of nearest neighbors,

with different (A) OT weight; (B) Number of nodes in hidden layer; (C) OT update frequency.

(D-F) Barplots of FOSCTTM (fraction of samples closer than the true match) values, with dif-

ferent (D) OT weight; (E) Number of nodes in hidden layer; (F) OT update frequency.
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developmental stages from known enhancer databases.
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Supplementary Figure S14: scTIE performance comparison with and without the coupled batch

norm layers in RNA: (A) Proportion of ground truth pairs within a given number of nearest

neighbors; (B) Average purity scores of sampling days based on different numbers of nearest

neighbors; (C) The bar plots show the ARI values comparing the clustering from different set-

tings of scTIE with the clustering on RNA (left) and ATAC alone (right); higher values indicate

better agreement. (D) Box plots show the silhouette coefficients comparing the clustering from

different settings of scTIE based on distance matrices computed from the RNA (left) and ATAC

(right) UMAP coordinates. Higher values indicate better agreement. (E) Correlation of scTIE re-

constructed RNA expression with the original RNA expression of highly variable genes (HVG).
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Gradient ranking DE ranking DE adj p-value

Sox17 126.00 1252.00 0.46

Smad3 260.00 2074.00 0.81

Zic3 150.00 1317.00 0.49

Twist1 441.00 184.00 0.00

Nfat5 368.00 2197.00 0.84

Hhex 393.00 2650.00 0.98

Table S1: Comparison of the gradient rankings, DE rankings and adjusted p-values under DE for

key TFs in mesoderm lineage.
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