Skip to main content
[Preprint]. 2023 May 22:2023.05.18.541381. [Version 1] doi: 10.1101/2023.05.18.541381

Algorithm 1.

Multimodal OT Autoencoder (two-modality case)

Data matrices X(t,s), training iterations M, batch size B, autoencoder f1, g1, f2, g2 with weights θ, learning rate α, loss weight tuning parameters λrecon, λot, OT update frequency K.
Initialize all γs(t,t+1), 1tT-1 matrices with zero matrices.
for iteration=1,2,,M do
  Sample cells ={(t)}t=1T where each subset (t) has B cells.
  Compute Lrecon, Lot, Lmodality
  Compute L=λreconLrecon+λotLot+Lmodality
  Perform gradient descent step on autoencoder weights θθ-αθL
  if M%K==0 then
   Update γs(t,t+1), 1tT-1, s=1,2 using current embeddings.
  end if
end for