1 Helicobacter pylori attachment-blocking antibodies

2 protect against duodenal ulcer disease

3

Jeanna A. Bugaytsova^{1,2}⁺, Kristof Moonens^{3,4,37}⁺, Artem Piddubnyi^{1,2,5}⁺, Alexei 4 Schmidt^{1,6,38}⁺, Johan Olofsson Edlund^{1,7}, Gennadii Lisiutin^{1,8}, Kristoffer Brännström^{1,7,39}, 5 Yevgen A. Chernov¹, Kaisa Thorel⁹, Iryna Tkachenko^{1,10}, Oleksandra Sharova^{1,11}, Iryna 6 7 Vikhrova^{1,11}, Anna Butsyk^{1,10}, Pavlo Shubin^{1,10} Ruslana Chyzhma^{1,2,5}, Daniel X. Johansson¹², Harold Marcotte^{1,6,13}, Rolf Sjöström¹, Anna Shevtsova¹, Göran Bylund¹, 8 Lena Rakhimova^{1,40}, Anders Lundquist^{14,15}, Oleksandra Berhilevych¹⁰, Victoria 9 Kasianchuk¹⁰, Andrii Loboda¹¹, Volodymyr Ivanytsia⁸, Kiell Hultenby¹⁶, Mats A. A. 10 Persson¹⁷, Joana Gomes^{18,19}, Rita Matos^{18,19}, Fátima Gartner^{18,19,20}, Celso A. 11 Reis^{18,19,20,21}, Jeannette M, Whitmire²², D, Scott Merrell²², Qiang Pan-Hammarström¹³, 12 13 Maréne Landström³⁸. Stefan Oscarson²³. Mario M. D'Elios²⁴. Lars Agreus²⁵. Jukka Ronkainen²⁶, Pertti Aro²⁶, Lars Engstrand^{27,41}, David Y. Graham²⁸, Vladyslava 14 Kachkovska²⁹, Asish Mukhopadhvav³⁰, Sujit Chaudhuri³¹, Bipul Chandra Karmakar³⁰, 15 Sangita Paul³⁰, Oleksandr Kravets³², Margarita Camorlinga³³, Javier Torres³³, Douglas E. 16 Moskalenko^{2,5}. Rainer Haas^{35,36}. Berg³⁴. Roman Han Remaut^{3,4}. 17 Lennart Hammarström^{13*}, Thomas Borén^{1,2,42*} 18

19

¹Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå,
 Sweden

²SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University,
 40022 Sumy, Ukraine

¹ ³Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, 1050

- 2 Brussels, Belgium
- ³ ⁴Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- ⁴ ⁵Department of Pathology, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- ⁵ ⁶Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at
- 6 Karolinska University Hospital, SE14186 Huddinge, Sweden
- ⁷ ⁷The Biochemical Imaging Center Umeå (BICU), Umeå University, SE90187 Umeå,
- 8 Sweden
- ⁹ ⁸Department of Microbiology, Virology and Biotechnology, Odesa Mechnikov National
- 10 University, 65082 Odesa, Ukraine
- ¹¹ ⁹Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy,
- 12 University of Gothenburg, Gothenburg, Sweden
- ¹⁰Department of Public Health, Medical Institute, Sumy State University, 40007 Sumy,
- 14 Ukraine
- ¹⁵ ¹¹Department of Pediatrics, Medical Institute, Sumy State University, 40018 Sumy,
- 16 Ukraine
- ¹⁷ ¹²Department of Clinical Neuroscience, Karolinska Institutet at Center for Molecular
- 18 Medicine, Karolinska University Hospital, Solna, SE17176 Stockholm, Sweden
- ¹³Department of Biosciences and Nutrition, Karolinska Institutet, SE14183, Huddinge,
- 20 Sweden
- ¹⁴Department of Statistics, USBE, Umeå University, SE90187 Umeå, Sweden
- ¹⁵Umeå Center for Functional Brain Imaging, Umeå University, SE90187 Umeå, Sweden
- ¹⁶Departments of Laboratory Medicine, Division of Biomolecular and Cellular Medicine,
- 24 Karolinska Institutet at Karolinska University Hospital, SE14186 Huddinge, Sweden

1	¹⁷ Department of Clinical Neuroscience, Karolinska Institutet at Center for Molecular
2	Medicine, Karolinska University Hospital, Solna, SE17176 Stockholm, Sweden
3	¹⁸ i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135
4	Porto, Portugal
5	¹⁹ IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto,
6	4200-135 Porto, Portugal
7	²⁰ Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto,
8	Portugal
9	²¹ Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
10	²² Department of Microbiology and Immunology, USUHS, Bethesda, MD 20814, USA
11	²³ Centre for Synthesis and Chemical Biology, School of Chemistry, University College
12	Dublin, Belfield, Dublin 4, Ireland
13	²⁴ Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134 Firenze,
14	Italy
15	²⁵ Division of Family Medicine and Primary Care, Karolinska Institutet, SE14183 Huddinge,
16	Sweden
17	²⁶ University of Oulu, Center for Life Course Health Research and Primary Health Care
18	Center, Tornio Finland
19	²⁷ Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE17177
20	Stockholm, Sweden
21	²⁸ Department of Medicine, Molecular Virology and Microbiology, Baylor College of
22	Medicine, Michael E. DeBakey VAMC, 2002 Holcombe Blvd. Houston, TX, 77030 USA
23	²⁹ Department of Internal Medicine, Medical Institute, Sumy State University, 40007 Sumy,
24	Ukraine

- ³⁰Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
- 2 P 33, CIT Road, Scheme XM, Kolkata 700010, India
- ³¹Department of Gastroenterology, AMRI Hospital, Salt Lake City. Kolkata, West Bengal
- 4 700098, India
- ⁵ ³²Department of Surgery, Traumatology, Orthopedics and Physiology, Medical Institute,
- 6 Sumy State University, 40007 Sumy, Ukraine
- ⁷ ³³Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, CMN SXXI,
- 8 Instituto Mexicano del Seguro Social, Mexico City, Mexico
- ⁹ ³⁴Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- ³⁵German Center for Infection Research (DZIF), Munich Site, 80336 Munich, Germany
- ³⁶Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer-
- 12 Institute, Faculty of Medicine, LMU Munich, Germany
- ³⁷Present address: Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde,
- 14 Belgium
- ¹⁵ ³⁸Present address: Department of Medical Biosciences, Umeå University, SE90185
- 16 Umeå, Sweden
- ³⁹Present address: Pfizer Worldwide R&D, BioMedicine Design, 10 555 Science Center
- 18 Drive, San Diego CA, 92121 USA
- ⁴⁰Present address: Department of Odontology, Umeå University, SE90187 Umeå,
- 20 Sweden
- ⁴¹Present address: Science for Life Laboratory, SE17165, Solna, Sweden
- ²² [†]These authors contributed equally
- ⁴²Lead contact
- 24 *Correspondence to: <u>Thomas.Boren@umu.se</u> (T.B.)

Lennart.Hammarstrom@ki.se (L.H.)

- Keywords: *Helicobacter pylori*, BabA, adhesin, ABO blood group antigens, glycan
 mimicry, duodenal ulcer disease, gastric cancer, broadly blocking antibody.
- 5 **Abbreviations**: scFv: single chain fragment variable, mAb: monoclonal antibody, bbAb:
- 6 broadly blocking antibody, Rf: Risk factor. CBD: carbohydrate binding domain, GM: glycan
- 7 mimicry, DU: duodenal ulcer disease, GA: gastritis.

¹ 2

1 SUMMARY

2

3 The majority of the world population carry the gastric pathogen Helicobacter pylori. 4 Fortunately, most individuals experience only low-grade or no symptoms, but in many 5 cases the chronic inflammatory infection develops into severe gastric disease, including 6 duodenal ulcer disease and gastric cancer. Here we report on a protective mechanism 7 where *H. pylori* attachment and accompanying chronic mucosal inflammation can be 8 reduced by antibodies that are present in a vast majority of *H. pylori* carriers. These 9 antibodies block binding of the H. pylori attachment protein BabA by mimicking BabA's 10 binding to the ABO blood group glycans in the gastric mucosa. However, many individuals 11 demonstrate low titers of BabA blocking antibodies, which is associated with an increased 12 risk for duodenal ulceration, suggesting a role for these antibodies in preventing gastric 13 disease.

1 INTRODUCTION

2

3 Chronic life-long infection by *Helicobacter pylori* is the main cause of chronic active 4 gastritis, which can lead to severe clinical conditions including gastric and duodenal ulcer 5 disease and gastric cancer. All these diseases except gastric cancer have become curable by *H. pylori* eradication ^{1,2}; however, gastric cancer remains a major threat to 6 7 human life with about 1.2 million new cases every year with a poor survival rate, with ~25 8 million deaths since the year 2000 ³⁻⁵. About 5–10% of *H. pylori*-infected individuals 9 experience duodenal ulcer disease, which, although curable, can perforate causing 10 bleeding with a high mortality ⁶. Patients with ulcers or gastric cancer typically carry the 11 more virulent "triple-positive infections" characterized by H. pylori bearing the CagA onco-12 effector protein, the VacA toxin, and the Blood group Antigen Binding (BabA) attachment 13 protein (adhesin) ^{7,8}. BabA is a member of the *H. pylori* outer membrane protein family 14 and binds to the ABO/Lewis b (Leb) blood group antigens expressed in the gastrointestinal lining, including the gastric epithelium ⁹⁻¹². BabA exhibits rapid and diversifying 15 16 selection through amino acid substitutions in its Leb-carbohydrate binding domain (CBD) 17 that adapts its binding preferences for different human populations and ABO blood group phenotypes ^{11,13,14}. The rapid mutation and selection in BabA also allow for adaptation to 18 19 the individual and optimal binding to the different locations and microenvironments in the 20 stomach, including adaptation to shifts in acidity caused by diseases such as peptic ulcer 21 disease and gastric cancer and adaptation by shifts in its binding affinity ¹⁴. As a 22 consequence, BabA exhibits extensive global diversity where nearly every infected 23 individual will harbor a strain of H. pylori possessing a unique BabA sequence. H. pylori 24 infections induce high antibody titers against several dominant antigens, such as its

1 urease enzyme, but these antibodies fail to clear the infection. Hence, *H. pylori* infections 2 instead become persistent and life-long. By contrast, most H. pylori outer membrane 3 proteins, including BabA, are reported to be weakly antigenic ¹⁵⁻¹⁷. Immunoglobulin G is 4 induced by gastro-intestinal (GI) pathogens also in the gut and by H. pylori virulence 5 factors in both the gastric antrum and the corpus mucosa ^{18,19}. Therefore, we tested ~1000 6 patient sera and found that the vast majority exhibited blocking IgG antibodies (Abs) that 7 inhibited BabA-mediated Leb binding. Surprisingly, the patient sera turned out to efficiently 8 block Leb-binding of world-wide H. pylori strains, suggesting the presence of broadly 9 blocking IgG Abs (bbAbs). We also found that patients with duodenal ulcer disease (DU) 10 exhibited low titers of bbAbs. This result suggests that the IgG-mediated blocking activity 11 is protective throughout the GI tract. To identify the bbAb binding epitopes in BabA, we 12 cloned a human antibody, Anti-BabA, denoted as ABbA, from healthy H. pylori carriers 13 and co-crystalized it with BabA. The co-crystal structure showed that ABbA and Leb bind 14 to the same residues in the BabA CBD. Thus, ABbA is resistant to microbial antigen 15 variation and instead performs fulminant glycan mimicry to block and compete with BabA-16 mediated Leb binding to reduce mucosal attachment of H. pylori. Our results indicate that 17 the host's blocking antibody response has co-evolved with *H. pylori* as a way of tolerating 18 chronic infection and reducing the risk for overt gastric disease by mitigating mucosal 19 inflammation. We believe that the bbAbs reported here offer translational applications in treatment and predictive diagnostics for individuals at risk for severe gastric disease. 20

21

22 **RESULTS**

23

Human serum antibodies block ABO/Leb binding and attachment of *H. pylori* bacteria to the gastric mucosa

3 To test if human immune responses during chronic *H. pylori* infection raise factors that 4 reduce bacterial adherence, we tested sera from six individuals, four of whom were ELISA 5 positive for *H. pylori* and two of whom were *H. pylori* negative. We found that three of the 6 four positive sera samples fully inhibited or reduced epithelial attachment of the clinical 7 isolate *H. pylori* J166 to the human gastric mucosa (**Figure 1A**). Two tests were used to 8 identify the nature of the serum samples' inhibitory activity. First, the inhibitory activity was 9 scored as the serum dilution at which half maximal H. pylori bacterial binding to Leb was 10 lost, i.e., the 50% Inhibition Titer (IT50). Hence, the IT50s tightly reflected the strength of 11 the serum samples in inhibition of *H. pylori* attachment to the gastric mucosa (**Figure 1B**). 12 Second, the IgG antibodies were specifically desorbed from the serum sample, which 13 resulted in >95% loss of the inhibitory activity (Figure 1C), suggesting that the broadly 14 blocking activity resides in the IgG antibody fraction. These results show that individuals 15 with *H. pylori* infection can raise attachment-blocking IgG antibodies that inhibit Leb 16 binding and thus reduce *H. pylori* adherence to the gastric mucosa.

17

18 Worldwide high prevalence of serum IT50s.

The results from **Figure 1A** suggest that many individuals infected by *H. pylori* might be positive for Leb IT50s. Thus, in a pilot study we tested a group of 38 asymptomatic carriers of *H. pylori* infection from the Karolinska University Hospital (KI), Sweden, and found that 22 (58%) of the sera reduced Leb binding with IT50s that ranged 100-fold, from ~10 to >2000 (**Figure 1D**). To determine if most individuals who are ELISA-positive for *H. pylori* raise antibodies that inhibit Leb binding, we tested 742 individual serum samples from

1 both healthy individuals and from patients with gastric disease. For the IT50 tests, we 2 used two *H. pylori* strains, 17875/Leb and J166, described in **Tables S1B-E**), with high ¹¹ 3 vs. low (Figure S1D and Figure S2B) Leb-binding affinity, respectively. First, we tested a group of 322 volunteers, all ELISA positive, i.e., *H. pvlori* carriers, from the Kalixanda 4 5 Study of the Swedish general adult population, an essentially "gastric healthy" cohort ²⁰. 6 We found that the Kalixanda serum samples similarly ranged 100-fold in IT50s and 7 identified 270 (84%) IT50-positive sera whereas the remaining 16% did not demonstrate 8 IT50s above background and were defined as negative (Figure 1E). Notably, the IT50s 9 demonstrated a strong correlation with the presence of antibodies against the onco-10 marker CaqA (Figure S1Eii), whereas the IT50-positive sera did not correlate with the H. 11 pylori ELISA titers (Figure S1Eiii). Second, for comparison, 420 patients with H. pylori 12 infection and gastric disease from Ukraine, the US, and Mexico were tested, and 56%, 13 59%, and 72% were IT50-positive, respectively (Figure S1F). Leb binding tests showed 14 that 81% (26/32) of the Mexican H. pylori clinical isolates bound to Leb (Table S2B), and 15 the corresponding sera IT50s correlated with Leb binding (Wilcoxon p = 0.036) (Figure 16 **S1G**). Thus, the worldwide high prevalence of IT50s against Leb binding closely mirrors 17 the 60%–80% world-wide prevalence of Leb binding among H. pylori isolates ¹¹.

18

19 Serum IT50s increase with age.

The IT50s in the Kalixanda population increased from mid-age to high-age in both women and men, with two exceptions – in the 31–40-year age group men had 4-fold higher IT50s (Wilcoxon rank, p = 0.028) (**Figure 1F**). It is noteworthy that the IT50 augmentations coincided with men's age of onset of DU ^{20,21}, where the age-matched increased IT50s might constitute protective antibody responses, as only 5% of the Kalixanda individuals

had macroscopic gastric lesions ²⁰. To test if the IT50 increases with age also at the 1 2 individual level, we tested serum samples collected from two individuals in the timespans 3 from 39 to 65 years of age and from 62 to 80 years of age, respectively. Similar to the 4 Kalixanda cohort, both individuals' IT50s increased by age and reached a high plateau at 5 ~55–65 years of age. In contrast, the ELISA levels did not change, which agreed with the 6 lack of correlation between ELISA and IT50 (Figure 1G and Figure S1Eiii). This suggests 7 that the IT50s do not level out or decrease at higher age either on the population level or 8 on the individual level. To understand how early IT50s develop, we tested children from 3 9 to 17 years of age (all ELISA-positive *H. pylori* carriers). We found that 47% (17/36) of the 10 sera demonstrated IT50s from 5 years of age (Figure 1H). The combined results showed 11 that antibodies that inhibit Leb binding are formed already at an early age in response to 12 *H. pylori* infections and are present and active throughout the lifespan.

13

14 The serum IT50 antibodies bind to structural BabA epitopes.

To characterize the epitope preferences for the antibodies that block Leb binding, we tested serum samples from each of the KI/Sweden, Ukraine, US, Mexico, and Kalixanda populations. The sera samples from all six global populations detected the Blood group Antigen Binding (BabA) protein, but only under semi-native conditions, suggesting that the antibodies do not recognize the denatured, linear epitopes but preferentially bind to structural epitopes in BabA (**Figure 1I** and **Figure S1H**).

Thus, testing of the 780 global individual *H. pylori* carriers suggested that (1) blocking antibodies (IT50s) are present in a vast majority of individuals, (2) IT50 levels are highly individual and do not correlate with the ELISA level, (3) the IT50 responses are more prominent against the oncogenic CagA-positive *H. pylori* infections, (4) the IT50s are

active over the lifetime of the individual, and (5) the IT50s are raised against world-wide
 conserved structural BabA epitopes instead of antigenic variable linear epitopes.

3

4 The serum IT50 is derived from the activity of broadly blocking antibodies

5 To determine if the individual IT50 can also block Leb-binding of global, phylo-distant H. 6 pylori strains, six Swedish serum samples (stars in Figure 1D) were tested against 12 H. 7 *pylori* isolates from Europe, Asia, and the Americas, including the IT50 reference strains 8 17875/Leb and J166 (Figures 2A and 2B). All six serum samples inhibited Leb binding of 9 all 12 strains, i.e., all individual sera exhibited broadly blocking antibody activity (Figure 10 **2A**). The IT50s against strain 17875/Leb reflected the general inhibition strength of the six serum samples. Notably, the two LOW inhibitory sera preferentially inhibited the H. pylori 11 12 strains J166 and I9, which were lower in Leb binding affinity (Figure S1D and ¹⁴). 13 Reciprocally, the four HIGH inhibitory sera were less discriminating in inhibiting the 12 14 strains (Figure S2A). The results on the sera broadly blocking antibody activities help 15 explain why the series of 780 global serum samples were so efficient in inhibiting strains 16 17875/Leb and J166 (Figures 1 and S1) that both originate from Europe (Figure 2B and 22 17

18

19 *H. pylori* with higher-affinity Leb-binding is a risk factor for overt gastric disease

To understand how Leb binding affinity affects the serum inhibition of *H. pylori* attachment to the gastric mucosa, we exposed strains 17875/Leb and J166, with high *vs.* low Leb binding affinity, respectively, to serum from individual 1 from **Figures 1A and 1B**. A 25fold dilution of the serum reduced the attachment of strain J166 10-fold compared to strain 17875/Leb (p < 0.0001) (**Figure 3A**). Thus, the low-affinity Leb-binding strain J166 was

1 more efficiently inhibited by serum antibodies in terms of both Leb binding (Figure 2A) 2 and attachment to the gastric mucosa (Figure 3A). Thus, we re-analyzed the series of 3 Swedish *H. pylori* isolates from patients with GA or DU for their Leb affinity ¹¹ because the CagA, VacA, BabA "triple positive" virulence markers are present in almost all DU and 4 5 gastric cancer strains ^{7,8}. Indeed, the DU strains demonstrated higher binding affinity 6 (Wilcoxon $p \le 0.05$) (Figure 3B and Table S2A). Similarly, the Mexican Leb-binding DU 7 isolates demonstrated higher binding strength compared to the GA isolates (Wilcoxon 8 signed-rank test, p = 0.0015) (Figure S3A).

9

10 Low IT50 is a risk factor for overt gastric disease

11 Because more blocking antibodies, i.e., higher IT50s, are required to prevent the HIGH-12 affinity Leb-binding H. pylori strains from adhering to the gastric mucosa, and because the 13 "triple-positive strains" with BabA of HIGH Leb-binding strength constitute a risk factor for 14 overt gastric disease, we next tested if a low individual IT50 can be regarded a risk factor 15 for overt gastric disease. Importantly, during gastric cancer (GC) progression and loss of 16 gastric acidity, the *H. pylori* infections often fade and disappear, with a parallel decrease 17 or loss of antibodies against *H. pylori*²³. Thus, the IT50s from patients with GC could be 18 erroneously low. Instead, DU patients were chosen for this investigation because the 19 chronic *H. pylori* infection can readily adapt to the acidified environment. Hence, we 20 selected a series of 79 serum samples from age-matched patients with DU or Non-21 Atrophic "healthier" Gastritis (NAG) from Mexico. First, the IT50s ranged several 100-fold, 22 but the NAG sera displayed generally higher IT50s (Figure S3B), whereas the general 23 ELISA titers were similar (Figure S3C). Second, we calculated the full range of odds ratios 24 (ORs) and their p-values for sera samples with high vs. low IT50 for the NAG vs. DU

1 group. By using sliding windows and ROC diagrams, we identified IT50 ~30 as a risk 2 factor (Rf) for DU, by strain 17875/Leb, where the highest OR of 4.75 coincided with the 3 highest significance (Figures 3C and 3Di). We also tested the high-affinity Leb-binding Mc1204 isolate from the cognate Mexican group and identified IT50 ~15 as an Rf where 4 5 the highest OR of 3.74 coincided with the highest significance (Figures 3Dii and S3Di). 6 i.e., the two strains produced similar low IT50s as Rfs. The critical ORs were confirmed 7 by ROC diagrams (Figure S3E) and by permutation tests (Figure S3F). This series of 8 results suggest that individuals with low IT50 serum levels are at a higher risk for DU. 9 Notably, the 1:15 serum dilution required to completely block attachment to the gastric 10 mucosa of the high affinity binding strain 17875 (Figure 3A) corresponded to IT50~10 11 when tested using 17875. Thus, the IT50 serum titers must exceed the critical Rf IT50 12 \sim 30 in order to provide for the IT50 \sim 10 level of adherence blocking efficacy in the gastric 13 mucosal lining. To understand how the Rf IT50 ~30 relates to gastric disease in 14 populations worldwide, we next aligned the IT50s of all individuals from Kalixanda, 15 Ukraine, USA, and Mexico. This identified a ~30% higher prevalence of individuals with 16 protective IT50s >30 in the healthier Kalixanda general adult population compared to the 17 global gastric disease patients and hence a predisposition for lower IT50 among 18 individuals with gastric disease (Figure 3E and Table S4). Our results suggest that DU 19 patients often carry the high-affinity Leb-binding *H. pylori*, i.e., the strains that require 20 higher IT50 sera for blocking of Leb binding and hence reduction of *H. pylori* attachment; however, the DU group of patients often presented with lower and thus insufficient IT50 21 22 titers of protective bbAbs.

23

24 **Cloning and identification of the bbAbs**

1 For a better understanding of the mAbs that correspond to the human sera IT50s, we next 2 cloned and expressed the natural blocking mAbs from their original source, i.e., from 3 individuals with high IT50s. First, peripheral blood mononuclear cells were collected from 4 the three volunteer donors with the highest IT50s – namely, individuals 6, 10, and 16 in 5 Figure 1D. Their antibody repertoires were then cloned into a phage-display library, and 6 14 single-chain variable fragment (scFv)-phages were bio-panned and isolated using the 7 17875/Leb BabA protein as the affinity matrix (denoted as ABbAs (Anti-BabAs). Six of the 8 clones (43%) had identical sequences, so this mAb was denoted ABbA(1) (Figure S4A). 9 To determine if ABbA(1) functionally corresponds to the inhibitory antibodies in serum, 10 two tests were performed with an expressed ABbA(1)-scFv²⁴. First, the ABbA(1)-scFv was found to strongly inhibit Leb binding with an inhibitory concentration 50% (IC50) of 27 11 12 ng/mL (Figure S4B). Second, ABbA(1)-scFv was found to bind specifically to 17875/Leb 13 bacteria but not to the isogenic *babA*-minus mutants (Figure S4C). Thus, ABbA(1) 14 exhibited both the necessary affinity and specificity properties. Then, for improved stability 15 and avidity, ABbA(1)-scFv was expressed as a human IgG1 antibody, denoted ABbA(1)-16 IgG mAb (and named ABbA). Three tests were performed to determine if ABbA itself 17 demonstrated broadly blocking Ab activity. ABbA was tested against the series of 12 18 global *H. pylori* strains (from **Figure 2A**). Notably, ABbA reduced both the Leb binding 19 (Figure 4A) and the attachment to human gastric mucosa (Figure 4B) of the majority 20 (9/12) of world-wide *H. pylori* strains from **Figure 2A** and hence exhibited a broadly 21 blocking activity. Thus, ABbA can protect the mucosa from *H. pylori* attachment. Third, to 22 understand the epitope preferences that might explain the broadly blocking ABbA 23 properties, we applied the semi-native-immunoblot method and found that ABbA bound 24 only to folded structural BabA epitopes and not to denatured linear epitopes. Thus, the

1 ABbA mAb binds BabA similarly to the human (polyclonal) serum antibodies from infected 2 individuals (Figure 4C vs. Figure 1I and Figure S1H). Finally, the efficacy, specificity, 3 and affinity of the IgG mAb was assessed by five different tests. First, the ABbA-IgG 4 efficacy increased ~15-fold in IC50 concentration compared to ABbA-scFv (Figure S4B). 5 Second, ABbA bound specifically to BabA but did not recognize the non-Leb-binding BabB 6 paralog (Figure S4D). Third, electron microscopy showed that ABbA bound specifically 7 to BabA on the surface of *H. pylori* bacteria (Figure S4E). Fourth, ITC tests demonstrated 8 an affinity (Kd) to BabA of 10 nM (Figures S4Fi and S4Fii). Fifth, SPR tests showed the 9 notably ~5-fold higher affinity to BabA of 2 nM (Figure S4G), which is a valid affinity for 10 mAbs with potential for translational applications. Thus, the ABbA mAb exhibited similar 11 high-affinity binding and specificity for BabA as the polyclonal patient sera with a 12 remarkably efficient broadly blocking activity for worldwide *H. pylori* strains. How then 13 does IT50 relate to the pool of bbAbs similar to ABbA in the blood circulation? Titration of 14 a dilution series of ABbA mixed with sera from an IT50-negative individual showed that 15 an IT50 = 70 equals ~1 µg/mL of ABbA (Figure 4D). Because human sera contains ~10 16 mg/mL IgG, the ABbA pool constitutes 1/10,000 part of the total IgG content or ~5mg 17 mAbs, similar to ABbA out of the ~50g of total serum IgG in circulation. This series of 18 results suggest that ABbA exhibits similar high-affinity binding for BabA as the polyclonal 19 patient sera and that ABbA shows a remarkably broad binding-blocking and attachment-20 blocking activity for worldwide *H. pylori* strains.

21

ABbA performs glycan mimicry in its broadly blocking binding to structural
 epitopes

1 The ABbA binding epitope in BabA was identified in five consecutive steps. First, a BabA 2 library was panned for ABbA binding, which identified a minimal 260aa fragment that 3 included the full CBD (Figures 5A and S5A). Second, for detailed binding epitope 4 mapping, a series of rabbit sera were raised against short peptides that sequentially 5 overlapped with the CBD domain of strain 17875/Leb (Figure 5Bi). Only a single serum 6 sample, denoted TB4, successfully outcompeted both the ABbA and the Leb binding 7 (Figures 5Bii and 5Biii, respectively). The dual inhibition ability of TB4 serum suggested 8 that the Leb-binding epitope architecture in the CBD tightly overlaps with the ABbA-9 binding epitopes because the critical Leb-binding DSS-Triad residues in the CBD 10 Entrance loop are all present in the TB4 peptide and thus constitute binding epitopes for 11 the TB4 serum (Figure 5Biv). However, in contrast to the bbAb activity of ABbA, the TB4 12 serum only blocked Leb binding of the cognate strain 17875/Leb and poorly inhibited 13 worldwide isolates (Figure 5A vs. Figure S5C). This fundamental difference relates to the 14 high degree of antigenic variation in the Entrance loop (Figure S5D). These results argue 15 that human antibody responses against linear epitopes are not efficient in protecting 16 against adaptive microbes that exhibit high mutation and amino acid substitution rates, in 17 contrast to ABbA, which is less sensitive to antigenic variation due to its preference for 18 structural binding epitopes. Third, for identification of the ABbA binding epitope in BabA, 19 the ABbA co-complex crystal structure with BabA was determined to 2.76 Å resolution 20 (Materials & Methods and Table S5). The BabA body domain is formed by a 4+3-helix 21 bundle with a four-stranded β -plate insertion that forms the CBD located at the top of the 22 body domain (Figure 5Ci). In the CBD, the CL2 cysteine loop and the Key-loop (DL1) and 23 Entrance-loop (DL2) all contribute with binding sites for Leb (Figures 5Cii and 5D and 24 **S5E**). The principal determinant of ABO/Leb antigens, the α 1.2 secretor fucose, is bound

1 by a pocket formed by the conserved CL2 loop, whereas Leb's reducing end is bound by 2 the DSS-Triad in the Entrance-loop ^{13,25} (Figures 5Cii and S5F). In the co-crystal 3 structural model, ABbA binding targets these same three areas where the variable heavy 4 (VH) residue W102 perfectly inserts into the α 1.2 secretor fucose loci whereas VH residue 5 L31 resides in a pocket formed by V231 in a position equivalent to the α 1.4 Lewis fucose. 6 In addition, VH binds to both D206 and N208 in the Key-loop and to the DSS triad (Figures 7 5Cii and 5D). Thus, ABbA competes with Leb in binding to BabA through functional glycan 8 mimicry and binds the majority of amino acid residues in the CBD that are critical for Leb 9 binding. Notably, ABbA W102 and L31 provide surrogates for the secretor and Lewis 10 fucose by filling the two hydrophobic pockets, glycan mimicry 1 (GM1) and 2 (GM2), 11 respectively, where the hydrophobic determinants of the L-enantiomeric fucose residues 12 reside. Furthermore, in the third glycan mimicry domain (GM3), ABbA binds the DSS-13 Triad. Fourth, the glycan mimicry property was tested by mutagenesis, where BabA with 14 the DSS-Triad replaced with AAA was expressed in H. pylori. The AAA mutant 15 demonstrated complete loss of both ABbA and Leb binding. A single DSS vs. DAS mutant 16 similarly lost all ABbA and Leb binding (Figures S5G and S5H).

Thus, the triple-locus glycan mimicry performance of ABbA provides a universal fit to the CBD despite its polymorphic landscape, and this works "hand-in-glove" to protect the ABbA mAb from immune escape and to help explain its broadly blocking properties.

20

21 Functional identification of the world-wide extended ABbA binding epitope.

To better understand the global broadly blocking repertoire of BabA epitopes for ABbA, we tested the ABbA efficiency in inhibition of Leb binding with 146 *H. pylori* world-wide clinical isolates. First, the IC50 of ABbA was found to range >100-fold, from efficient

1 inhibition in 48% of strains (IC50s <1 nM) to no inhibition in 18% of the strains (IC50s 2 >100 nM) (Table S6). Second, the ABbA binding strength was tested by ¹²⁵I-labeled ABbA 3 and was also found to range 100-fold (Table S6). Third, the IC50 and ABbA binding strength were found to strongly correlate (Figure S6A). Thus, less ABbA is needed for 4 5 inhibition of Leb binding of the clinical isolates that exhibit stronger ABbA binding. Fourth, 6 the ABbA and Leb binding strengths were found to correlate among worldwide strains 7 (Figure S6B). However, the ABbA binding strength was higher for European, medium for 8 Asian, and lower for the Indigenous American/Latin American H. pylori isolates (p < 0.001) 9 (Figures 6A and S6C). This difference could be a consequence of the phylogenetic 10 distance between the Old and the New World and hence be related to BabA antigenic 11 variation, or it may be a consequence of functional adaptation to the difference in 12 predominant ABO blood group phenotypes. This idea was supported by the finding that 13 the Indigenous American/Latin American blood group O or A specialist binding strains 14 were 7-fold more prevalent in the ABbA low binding strength group (p < 0.001) (Figure 15 6B). Furthermore, 81% of the Indigenous American/Latin American specialist strains were 16 low, whereas 38% were high in ABbA binding strength (Figure 6C), i.e., *H. pylori* strains 17 with adaptation to the specialist preference in binding were more prevalent in the ABbA 18 low binding strength group (p < 0.0017). To better understand the global diversity in ABbA 19 glycan mimicry, we aligned the BabA sequences according to their ABbA binding strength 20 (**Table S7**). The alignment showed that low ABbA binding strength was associated with 21 amino acid substitutions located in BabA's Leb-binding landscape, where charged 22 residues are replaced with small neutral or large hydrophobic amino acids (Figure 6D vs. 23 **Figure 5D**). The high substitution level in these epitope positions corresponds to their high 24 positive selection activity, i.e., positions where nucleotide mutations preferentially result in amino acid substitutions ¹¹. These findings suggest that the lower ABbA binding
strength and hence reduced epitope fit in the New World/Americas is a consequence of
functional adaptation of the BabA binding preferences to the ABO blood group phenotypes
in the local populations. Thus, rapid adaptation in BabA binding preference with critical
amino acid residue replacements can lower the binding strength of the bbAbs with
subsequent reduced immuno-protection, which is in line with the pandemic GC prevalence
in South America ²².

8

9 Binding of the bbAbs to *H. pylori* is acid sensitive

10 In the gastric mucosa, H. pylori adherence needs to be synchronized with the 11 desquamation and rapid turnover of the gastric epithelium. Close to the cell surfaces the 12 pH is buffered by the bicarbonate system, but the pH quickly drops in the mucus layer 13 towards the stomach lumen and its extremely acidic gastric juice. In the mucus layer, H. 14 *pylori* adheres to the Leb glycosylated desguamated epithelial cells and large mucins ²⁶ until the bacteria reach the critical acidic zone where BabA binding is inactivated and H. 15 16 pylori breaks free from the Leb entanglement. Unusually well adapted to its environment, 17 BabA binding is fully reversible after acid exposure, which allows for the detached H. pylori 18 bacteria to return to the buffered environment where they reattach to the epithelium. In 19 other words, *H. pylori* use the pH gradient for recycling of infection and thus are constantly 20 functionally bio-panning for the next generation of fittest H. pylori¹⁴. Two tests were 21 performed to determine if BabA has adapted acid sensitivity in binding to also evade 22 bbAbs. First, ABbA-IgG and ABbA-scFv were pH titrated for binding, and both showed a 23 pH50 = 3.5 (the pH at which half the maximal ABbA binding was lost). Thus, ABbA binding 24 is most similar in acid sensitivity to Leb binding by 17875/Leb (which also has pH50 = 3.5)

(Figure 6E) and hence similar to the median pH50 = 3.7 for clinical *H. pylori* isolates ¹⁴. 1 2 Second, to characterize the general acid sensitivity in serum antibodies that bind to H. 3 *pylori* bacterial cells, the purified serum IgGs from individuals 1 (Figures 1A and 1B) and 10 (Figure 1D) were similarly pH50 titrated. The IgGs from both individual 1 and 10 were 4 5 almost a full pH unit more acid sensitive in *H. pylori* binding (pH50 = 4.3/4.4) compared to 6 ABbA (Figure 6E). The glycan mimicry performed by ABbA constitutes the most plausible 7 explanation for the identical acid resistance in Leb and ABbA binding, with the "hand-in-8 glove-fit" to critical Leb binding residues such as the DSS-triad in the CBD with the aspartic 9 acid (D) responding quickly to pH changes due to its acidic pKa \sim 3.5.

10

11 **DISCUSSION**

12

13 Human responses to *H. pylori* infection are well recognized to raise high levels of humoral 14 and cell-mediated immunity, and although these antibodies form the basis for the clinical 15 diagnostics, the immune responses fail to eradicate the infection and also fail to protect 16 against reinfection after antibiotic treatment. H. pylori is inherited over the generations 17 from our parents, i.e., through vertical dissemination in contrast to horizontal pandemics, 18 and thus is persistent over the lifespan. The chronic outcome is understandable 19 considering that *H. pylori*, over the millennia of human infections, has established multiple 20 mechanisms to evade our immune responses through fast and confluent adaptation by high mutation rates and antigenic variation ²⁷ combined with dysregulation of T-cell 21 22 responses (reviewed in ²⁸). The many escape routes are reflected in both the shortcomings of conventional *H. pylori* vaccine development ²⁹ and the high re-infection 23 24 rate in many parts of the world after eradication of infection with antibiotics ^{30,31}.

1 Fortunately, our results demonstrate that in the vast majority of H. pylori-infected 2 individuals the humoral immune system responds with broadly blocking antibodies 3 (bbAbs) (Figures 1 and S1) that target conserved structural epitopes in the Leb-binding 4 domain in the otherwise highly polymorphic BabA adhesin. By doing so, the bbAbs 5 perform functional glycan mimicry and can reduce *H. pylori* mucosal adherence by 6 competing with and weakening the BabA-mediated Leb binding (Figure 5C). Glycan 7 mimicry has been suggested for mAbs that compete with the sialic acid mono-saccharide 8 residue of the influenza haemagglutinin ligand ³². In comparison, ABbA takes full 9 advantage of the glycan mimicry strategy and performs mimicry of the two critical Leb-10 fucose residues located in the bottom and the wall of the CBD and, in addition, mimics the 11 lactose in the Leb-core chain in the upper part of the CBD. Thus, ABbA performs "wall-to-12 wall" triple-locus glycan mimicry, and this strategy allows ABbA to function despite 13 numerous amino acid substitutions in BabA over the lifetime of the individual. As a proof 14 of concept in this work, the triple glycan mimicry enabled ABbA to block most of the worldwide *H. pylori* strains despite the unprecedented high level of polymorphism in BabA. 15 16 Notably, this glycan mimicry mechanism that blocks mucosal adherence does not 17 constitute an Achilles heel for *H. pylori* infections per se because our immune system 18 nevertheless does not manage to eradicate the *H. pylori* infection. Similarly, the ~30% of 19 H. pylori infections in Western-Europe and the United States among individuals with predominant non-atrophic gastritis, where H. pylori does not express BabA and does not 20 bind Leb, are still persistent over the lifespan ^{7,10,33}. However, the glycan mimicry of bbAbs 21 22 can suppress the adherent-inflammatory lifestyle of *H. pylori* among those individuals who 23 carry the triple-positive H. pylori infection, which express BabA/VacA/CagA and are highly 24 associated with DU and GC. In this way, and without being able to eradicate the infectious

1 burden, the humoral immune system can constrain the mucosal inflammatory stress of 2 the *H. pylori* infection, resulting in a more balanced and "commensal" level of bacteria, 3 and importantly, with a resultant lowered risk for severe gastric disease. But how about 4 the GI-protective IgA? Perhaps surprisingly, there is no increased prevalence of severe 5 gastric disease/cancer in IgA-deficient individuals (which is a common affliction affecting 6 about 1/800 individuals), and this argues that IqA and/or secretory IqA are not major intestinal immune protectors against chronic inflammatory *H. pylori* infection ^{34,35}. Humoral 7 8 bbAb mediated protection is further illustrated by the elevated IT50 at older age (Figure 9 **1F**), which might be a compensation for the reduced T-cell reactivity seen in elderly people 10 ^{36,37}. In addition, we show that individuals with low IT50 are at higher risk for DU, which suggests that even though the etiology of DU is the *H. pylori* infection, the cause of DU is 11 12 a consequence of suboptimal humoral responses, i.e., DU is an immunodeficiency 13 disease with insufficiently induced levels of protective bbAbs. The risk for DU is also 14 increased in this group because they often harbor *H. pylori* with greater binding strength 15 with consequential unbalanced and augmented inflammation pressure. It is noteworthy 16 that the higher binding affinities among DU strains might be a consequence of the low and 17 hence less protective IT50 levels among individuals who develop DU disease.

We have previously shown that Leb-binding at buffered pH provides for tight adherence to the gastric epithelium ¹⁴, which allows for access to essential nutrients and iron ^{38,39}. The many decades of unsuccessful development of *H. pylori* vaccines based on conventional antigen compositions can be better understood by our new results on how *H. pylori* makes use of the pH gradient in the mucus layer for a daily "acid wash cleaning" in order to rid itself of antibodies and acid-sensitive complement factors. After which, *H. pylori* can return, fully "immuno-recycled", to its protected niche in the epithelial lining, as

- 1 illustrated in Video S1 (https://play.umu.se/media/t/0 bf1lh9gt). Our results for the
- 2 protective bbAbs suggest translational applications for non-antibiotic treatment regimens
- 3 based on therapeutic bbAbs such as ABbA and predictive diagnostics such as IT50 for
- 4 individuals who are at risk for severe gastric disease.
- 5

1 STAR * METHODS

- 2
- 3 Detailed methods are provided in the online version of this paper
- 4 and include the following:
- 5
- 6 KEY RESOURCES TABLE
- 7 RESOURCE AVAILABILITY
- 8 Lead contact
- 9 Materials availability
- 10 Data availability
- 11 EXPERIMENTAL MODEL AND SUBJECT DETAILS
- 12 Human subjects
- 13 Rabbits
- 14 METHOD DETAILS
- 15 H. pylori Strains and Media
- 16 Blood Group Antigens and Conjugates
- 17 Monoclonal ABbA-IgG
- 18 In situ binding by H. pylori
- 19 Radio-immuno Analysis (RIA)
- 20 Tests of inhibition titer (IT50) and of IC50
- 21 SDS-PAGE and Immunoblot detection.
- 22 Isolation, purification and, expression of ABbA-IgG
- 23 The BabA protein co-crystallized with ABbA-IgG (Fab).
- 24 Genetic complementation by shuttle vector-expressed BabA in *H. pylori*.

- 1 Amplification and analysis of BabA sequences.
- 2 Acid sensitivity in Leb-binding and ABbA binding.
- **3 QUANTIFICATION AND STATISTICAL ANALYSIS**
- 4

5 SUPPLEMENTAL INFORMATION

- 6 Supplemental information can be found online at **XXX**
- 7 Figures S1 to S6
- 8 Video S1 https://play.umu.se/media/t/0 bf1lh9gt
- 9 Materials and Methods
- 10 Tables S1, S2, S3, S4, S5, S6, S7, S8.
- 11

12 ACKNOWLEDGEMENTS

13 We thank T. Ny for valuable discussions; The Biochemical Imaging Centre Umeå (BICU) 14 within the National Microscopy Infrastructure (NMI); The Protein Expertise Platform (PEP) 15 at Umeå University; S. Dübel for providing plasmids. We thank O. Furberg (NoPolo.se) 16 for the digital movie and illustration and M. Borén and E. Morrow for the figure work. This 17 research work was supported by the Swedish Medical Research Council (VR) (2017-18 02183), Cancerfonden (CF) (CAN 2018/807, and 21/1875), the Umeå University 19 Biotechnology Fund, the J.C. Kempe and Seth M. Kempe Memorial Foundation to TB, 20 and the Erling-Persson Family Foundation to TB, LH, and RMo, and was in part performed 21 within The Ukrainian-Swedish Research Center SUMEYA. The authors gratefully 22 acknowledge the financial support of the ERASMUS program (EU funding) for PhD 23 student exchange within the collaboration between Umeå University and Sumy State 1 University (grant 2017-1-SE01-KA107-034386). The work was also supported by the VR 2 (2019-01598) and the CF (20 0964 PjF) and Region Västerbotten (ALF) to ML; the VR, 3 the Swedish Society of Medicine, the Norrbotten County Council, Astra Zeneca R&D, the Orion Research Foundation, and the Finnish Medical Foundation to JR: the US NIH 4 5 (R21AI140038) to DSM; and the Science Foundation Ireland Awards 16/RC/3889 and 6 13/IA/1959 to SO. Structural studies were supported by the Flanders Research 7 Foundation (FWO; grants G033717N and G1521517N). We acknowledge access to the 8 ESRF and are grateful to the staff at the ID29 beamline.

9

10 AUTHOR CONTRIBUTIONS

11 All authors contributed substantially to the work and interpretations of the data. J.A.B., 12 K.M., A.P., A.Sc., J.O.E., G.L., K.B., Y.A.C., K.T., I.T., O.S., I.V., A.B., P.S., R.C., D.X.J., 13 H.M., R.S., A.Sh., G.B., L.R., J.G., R. Ma., F.G., C.A.R., A. Lu., R.H., H.R., R. Mo. 14 performed the research and together with L.H. and T.B. analyzed the data. M.M.D'E., L.A., 15 J.R., P.A., L.E., D.Y.G., V.Kac., A.M., S.C., B.C.K., S.P., O.K. M.C., J.T., J.M.W., D.S.M., 16 Q.P.H., A. Lo., I.V., and O.S. provided serum samples and *H. pylori* strains. SO performed 17 the synthesis of Leb. KH performed the EM. O.B., V.Kas., A. Lo., V.I., M.A.A., and M.L. 18 supervised the research. J.A.B., K.M., A.P., A.Sc., J.O.E., K.T., H.M., A.Lu., H.R., D.E.B., 19 R.Mo., L.H., and T.B. wrote the paper. L.H. and T.B. designed the research. All authors 20 reviewed the manuscript.

21

22 DECLARATION OF INTERESTS

The authors declare the following competing interests: T. Borén and L. Hammarström are
 founders of Helicure AB and, own the IP-rights to the anti-BabA ABbA-IgG1 (US patent

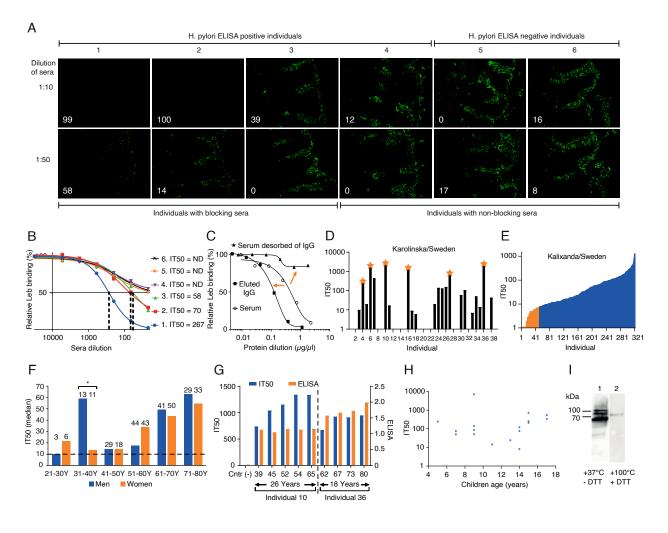
1 US8025880B2) and own the IP-rights to the gastric cancer vaccine and diagnostics

2 described in the two manuscripts by Bugaytsova et al., 2023 (Patent Application SE

- 3 2350423-6).
- 4

5 **REFERENCES**

- Malfertheiner, P., Link, A., and Selgrad, M. (2014). Helicobacter pylori: perspectives and time trends. Nat Rev Gastroenterol Hepatol 11, 628-638. 10.1038/nrgastro.2014.99.
- Graham, D.Y. (2014). History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World J Gastroenterol 20, 5191-5204. 10.3748/wjg.v20.i18.5191.
- Polk, D.B., and Peek, R.M., Jr. (2010). Helicobacter pylori: gastric cancer and beyond.
 Nat Rev Cancer 10, 403-414. 10.1038/nrc2857.
- Liou, J.M., Malfertheiner, P., Lee, Y.C., Sheu, B.S., Sugano, K., Cheng, H.C., Yeoh,
 K.G., Hsu, P.I., Goh, K.L., Mahachai, V., et al. (2020). Screening and eradication of
 Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut *69*,
 2093-2112. 10.1136/gutjnl-2020-322368.
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018).
 Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
 worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424.
 10.3322/caac.21492.
- Soreide, K., Thorsen, K., Harrison, E.M., Bingener, J., Moller, M.H., Ohene-Yeboah, M.,
 and Soreide, J.A. (2015). Perforated peptic ulcer. Lancet *386*, 1288-1298. 10.1016/S0140-6736(15)00276-7.
- Gerhard, M., Lehn, N., Neumayer, N., Boren, T., Rad, R., Schepp, W., Miehlke, S.,
 Classen, M., and Prinz, C. (1999). Clinical relevance of the Helicobacter pylori gene for
 blood-group antigen-binding adhesin. Proc Natl Acad Sci U S A 96, 12778-12783.
 10.1073/pnas.96.22.12778.
- Su, Y.L., Huang, H.L., Huang, B.S., Chen, P.C., Chen, C.S., Wang, H.L., Lin, P.H.,
 Chieh, M.S., Wu, J.J., Yang, J.C., and Chow, L.P. (2016). Combination of OipA, BabA,
 and SabA as candidate biomarkers for predicting Helicobacter pylori-related gastric
 cancer. Sci Rep *6*, 36442. 10.1038/srep36442.
- Boren, T., Falk, P., Roth, K.A., Larson, G., and Normark, S. (1993). Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892-1895. 10.1126/science.8018146.
- Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., Kersulyte, D., Incecik, E.T., Berg, D.E.,
 Covacci, A., Engstrand, L., and Boren, T. (1998). Helicobacter pylori adhesin binding
 fucosylated histo-blood group antigens revealed by retagging. Science 279, 373-377.
 10.1126/science.279.5349.373.
- Aspholm-Hurtig, M., Dailide, G., Lahmann, M., Kalia, A., Ilver, D., Roche, N., Vikstrom,
 S., Sjostrom, R., Linden, S., Backstrom, A., et al. (2004). Functional adaptation of BabA,
 the H. pylori ABO blood group antigen binding adhesin. Science *305*, 519-522.
- 41 10.1126/science.1098801.


1	12.	Linden, S., Nordman, H., Hedenbro, J., Hurtig, M., Boren, T., and Carlstedt, I. (2002).
		Strain- and blood group-dependent binding of Helicobacter pylori to human gastric
2 3		MUC5AC glycoforms. Gastroenterology 123, 1923-1930. 10.1053/gast.2002.37076.
4	13.	Moonens, K., Gideonsson, P., Subedi, S., Bugaytsova, J., Romao, E., Mendez, M.,
5	10.	Norden, J., Fallah, M., Rakhimova, L., Shevtsova, A., et al. (2016). Structural Insights
6		into Polymorphic ABO Glycan Binding by Helicobacter pylori. Cell Host Microbe 19,
7		55-66. 10.1016/j.chom.2015.12.004.
8	14.	Bugaytsova, J.A., Bjornham, O., Chernov, Y.A., Gideonsson, P., Henriksson, S., Mendez,
9	17.	M., Sjostrom, R., Mahdavi, J., Shevtsova, A., Ilver, D., et al. (2017). Helicobacter pylori
10		Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated
11		Adherence. Cell Host Microbe 21, 376-389. 10.1016/j.chom.2017.02.013.
12	15.	Haas, G., Karaali, G., Ebermayer, K., Metzger, W.G., Lamer, S., Zimny-Arndt, U.,
12	15.	Diescher, S., Goebel, U.B., Vogt, K., Roznowski, A.B., et al. (2002). Immunoproteomics
13		of Helicobacter pylori infection and relation to gastric disease. Proteomics 2, 313-324.
14		10.1002/1615-9861(200203)2:3<313::aid-prot313>3.0.co;2-7.
15	16	
10	16.	Kimmel, B., Bosserhoff, A., Frank, R., Gross, R., Goebel, W., and Beier, D. (2000). Identification of immunodominant antigens from Helicobacter pylori and evaluation of
17		6 17
18 19		their reactivities with sera from patients with different gastroduodenal pathologies. Infect
	17	Immun 68, 915-920. 10.1128/IAI.68.2.915-920.2000.
20 21	17.	Meinke, A., Storm, M., Henics, T., Gelbmann, D., Prustomersky, S., Kovacs, Z., Minh, D.B., Noiges, B., Stierschneider, U., Berger, M., et al. (2009). Composition of the
22		ANTIGENome of Helicobacter pylori defined by human serum antibodies. Vaccine 27, 2251 2250, 10 1016/j angeing 2000 01 066
23	10	3251-3259. 10.1016/j.vaccine.2009.01.066.
24	18.	Kamada, N., Sakamoto, K., Seo, S.U., Zeng, M.Y., Kim, Y.G., Cascalho, M., Vallance,
25		B.A., Puente, J.L., and Nunez, G. (2015). Humoral Immunity in the Gut Selectively
26		Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal
27	10	Elimination. Cell Host Microbe 17, 617-627. 10.1016/j.chom.2015.04.001.
28	19.	Futagami, S., Takahashi, H., Norose, Y., and Kobayashi, M. (1998). Systemic and local
29 20		immune responses against Helicobacter pylori urease in patients with chronic gastritis:
30	20	distinct IgA and IgG productive sites. Gut 43, 168-175. 10.1136/gut.43.2.168.
31	20.	Aro, P., Storskrubb, T., Ronkainen, J., Bolling-Sternevald, E., Engstrand, L., Vieth, M.,
32		Stolte, M., Talley, N.J., and Agreus, L. (2006). Peptic ulcer disease in a general adult
33		population: the Kalixanda study: a random population-based study. Am J Epidemiol 163,
34	21	1025-1034. 10.1093/aje/kwj129.
35	21.	Kang, J.Y. (1990). Age of onset of symptoms in duodenal and gastric ulcer. Gut 31, 854-
36	22	857. 10.1136/gut.31.8.854.
37	22.	Munoz-Ramirez, Z.Y., Pascoe, B., Mendez-Tenorio, A., Mourkas, E., Sandoval-Motta,
38		S., Perez-Perez, G., Morgan, D.R., Dominguez, R.L., Ortiz-Princz, D., Cavazza, M.E., et
39		al. (2021). A 500-year tale of co-evolution, adaptation, and virulence: Helicobacter pylori
40	22	in the Americas. ISME J 15, 78-92. 10.1038/s41396-020-00758-0.
41	23.	Ekstrom, A.M., Held, M., Hansson, L.E., Engstrand, L., and Nyren, O. (2001).
42		Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past
43	24	infection. Gastroenterology 121, 784-791. 10.1053/gast.2001.27999.
44	24.	Dubel, S., Breitling, F., Fuchs, P., Braunagel, M., Klewinghaus, I., and Little, M. (1993).
45		A family of vectors for surface display and production of antibodies. Gene <i>128</i> , 97-101.
46		10.1016/0378-1119(93)90159-z.

1	25.	Hage, N., Howard, T., Phillips, C., Brassington, C., Overman, R., Debreczeni, J., Gellert,
2		P., Stolnik, S., Winkler, G.S., and Falcone, F.H. (2015). Structural basis of Lewis(b)
3		antigen binding by the Helicobacter pylori adhesin BabA. Sci Adv 1, e1500315.
4		10.1126/sciadv.1500315.
5	26.	Schreiber, S., Konradt, M., Groll, C., Scheid, P., Hanauer, G., Werling, H.O., Josenhans,
6		C., and Suerbaum, S. (2004). The spatial orientation of Helicobacter pylori in the gastric
7		mucus. Proc Natl Acad Sci U S A 101, 5024-5029. 10.1073/pnas.0308386101.
8	27.	Falush, D., Kraft, C., Taylor, N.S., Correa, P., Fox, J.G., Achtman, M., and Suerbaum, S.
9		(2001). Recombination and mutation during long-term gastric colonization by
10		Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc
11		Natl Acad Sci U S A 98, 15056-15061. 10.1073/pnas.251396098.
12	28.	Salama, N.R., Hartung, M.L., and Muller, A. (2013). Life in the human stomach:
13		persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 11,
14		385-399. 10.1038/nrmicro3016.
15	29.	Sutton, P., and Boag, J.M. (2019). Status of vaccine research and development for
16		Helicobacter pylori. Vaccine 37, 7295-7299. 10.1016/j.vaccine.2018.01.001.
17	30.	Soto, G., Bautista, C.T., Roth, D.E., Gilman, R.H., Velapatino, B., Ogura, M., Dailide, G.,
18		Razuri, M., Meza, R., Katz, U., et al. (2003). Helicobacter pylori reinfection is common
19		in Peruvian adults after antibiotic eradication therapy. J Infect Dis 188, 1263-1275.
20		10.1086/379046.
21	31.	Morgan, D.R., and Torres, J. (2013). The stratification of gastric cancer risk in Latin
22		America. Rev Gastroenterol Mex 78, 125-126. 10.1016/j.rgmx.2013.08.001.
23	32.	Wu, N.C., and Wilson, I.A. (2020). Influenza Hemagglutinin Structures and Antibody
24		Recognition. Cold Spring Harb Perspect Med 10. 10.1101/cshperspect.a038778.
25	33.	Yamaoka, Y., Souchek, J., Odenbreit, S., Haas, R., Arnqvist, A., Boren, T., Kodama, T.,
26		Osato, M.S., Gutierrez, O., Kim, J.G., and Graham, D.Y. (2002). Discrimination between
27		cases of duodenal ulcer and gastritis on the basis of putative virulence factors of
28		Helicobacter pylori. J Clin Microbiol 40, 2244-2246. 10.1128/JCM.40.6.2244-2246.2002.
29	34.	Bogstedt, A.K., Nava, S., Wadstrom, T., and Hammarstrom, L. (1996). Helicobacter
30	-	pylori infections in IgA deficiency: lack of role for the secretory immune system. Clin
31		Exp Immunol 105, 202-204. 10.1046/j.1365-2249.1996.d01-745.x.
32	35.	Mellemkjaer, L., Hammarstrom, L., Andersen, V., Yuen, J., Heilmann, C., Barington, T.,
33		Bjorkander, J., and Olsen, J.H. (2002). Cancer risk among patients with IgA deficiency or
34		common variable immunodeficiency and their relatives: a combined Danish and Swedish
35		study. Clin Exp Immunol 130, 495-500. 10.1046/j.1365-2249.2002.02004.x.
36	36.	Marquez, E.J., Chung, C.H., Marches, R., Rossi, R.J., Nehar-Belaid, D., Eroglu, A.,
37	000	Mellert, D.J., Kuchel, G.A., Banchereau, J., and Ucar, D. (2020). Sexual-dimorphism in
38		human immune system aging. Nat Commun 11, 751. 10.1038/s41467-020-14396-9.
39	37.	D'Elios, M.M., Manghetti, M., De Carli, M., Costa, F., Baldari, C.T., Burroni, D., Telford,
40	57.	J.L., Romagnani, S., and Del Prete, G. (1997). T helper 1 effector cells specific for
41		Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol
42		158, 962-967.
43	38.	Huang, J.Y., Sweeney, E.G., Sigal, M., Zhang, H.C., Remington, S.J., Cantrell, M.A.,
44	20.	Kuo, C.J., Guillemin, K., and Amieva, M.R. (2015). Chemodetection and Destruction of
45		Host Urea Allows Helicobacter pylori to Locate the Epithelium. Cell Host Microbe 18,
46		147-156. 10.1016/j.chom.2015.07.002.
10		11, 100, 10,1010, j.enonin2010, 07, 002.

1	39.	Skoog, E.C., Martin, M.E., Barrozo, R.M., Hansen, L.M., Cai, L.P., Lee, S.J., Benoun,
2	39.	J.M., McSorley, S.J., and Solnick, J.V. (2020). Maintenance of Type IV Secretion
3		Function During Helicobacter pylori Infection in Mice. mBio 11. 10.1128/mBio.03147-
4		20.
5	40.	Falush, D., Wirth, T., Linz, B., Pritchard, J.K., Stephens, M., Kidd, M., Blaser, M.J.,
6		Graham, D.Y., Vacher, S., Perez-Perez, G.I., et al. (2003). Traces of human migrations in
7		Helicobacter pylori populations. Science 299, 1582-1585. 10.1126/science.1080857.
8	41.	Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F.O., Forsberg, L., Roche, N., Angstrom, J.,
9		Larsson, T., Teneberg, S., Karlsson, K.A., et al. (2002). Helicobacter pylori SabA adhesin
10		in persistent infection and chronic inflammation. Science 297, 573-578.
11		10.1126/science.1069076.
12	42.	Aspholm, M., Kalia, A., Ruhl, S., Schedin, S., Arnqvist, A., Linden, S., Sjostrom, R.,
13		Gerhard, M., Semino-Mora, C., Dubois, A., et al. (2006). Helicobacter pylori adhesion to
14		carbohydrates. Methods Enzymol 417, 293-339. 10.1016/S0076-6879(06)17020-2.
15	43.	Solnick, J.V., Hansen, L.M., Canfield, D.R., and Parsonnet, J. (2001). Determination of
16		the infectious dose of Helicobacter pylori during primary and secondary infection in
17		rhesus monkeys (Macaca mulatta). Infect Immun 69, 6887-6892.
18		10.1128/IAI.69.11.6887-6892.2001.
19 20	44.	Liu, H., Fero, J.B., Mendez, M., Carpenter, B.M., Servetas, S.L., Rahman, A., Goldman,
20 21		M.D., Boren, T., Salama, N.R., Merrell, D.S., and Dubois, A. (2015). Analysis of a single
21		Helicobacter pylori strain over a 10-year period in a primate model. Int J Med Microbiol <i>305</i> , 392-403. 10.1016/j.ijmm.2015.03.002.
22	45.	Johansson, D.X., Drakenberg, K., Hopmann, K.H., Schmidt, A., Yari, F., Hinkula, J., and
23	ч.Э.	Persson, M.A. (2007). Efficient expression of recombinant human monoclonal antibodies
25		in Drosophila S2 cells. J Immunol Methods <i>318</i> , 37-46. 10.1016/j.jim.2006.08.017.
26	46.	Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and
27		Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries
28		displayed on phage. J Mol Biol 222, 581-597. 10.1016/0022-2836(91)90498-u.
29	47.	Schmidt, A., Muller, D., Mersmann, M., Wuest, T., Gerlach, E., Garin-Chesa, P., Rettig,
30		W.J., Pfizenmaier, K., and Moosmayer, D. (2001). Generation of human high-affinity
31		antibodies specific for the fibroblast activation protein by guided selection. Eur J
32		Biochem 268, 1730-1738.
33	48.	Welschof, M., Terness, P., Kolbinger, F., Zewe, M., Dubel, S., Dorsam, H., Hain, C.,
34		Finger, M., Jung, M., Moldenhauer, G., and et al. (1995). Amino acid sequence based
35		PCR primers for amplification of rearranged human heavy and light chain
36		immunoglobulin variable region genes. J Immunol Methods 179, 203-214. 10.1016/0022-
37	40	1759(94)00286-6.
38 39	49.	Schier, R., Bye, J., Apell, G., McCall, A., Adams, G.P., Malmqvist, M., Weiner, L.M., and Marks, J.D. (1996). Isolation of high-affinity monomeric human anti-c-erbB-2 single
40		chain Fv using affinity-driven selection. J Mol Biol 255, 28-43. 10.1006/jmbi.1996.0004.
40 41	50.	Koch, J., Breitling, F., and Dubel, S. (2000). Rapid titration of multiple samples of
42	50.	filamentous bacteriophage (M13) on nitrocellulose filters. Biotechniques 29, 1196-1198,
43		2002. 10.2144/00296bm08.
44	51.	Mersmann, M., Schmidt, A., Tesar, M., Schoneberg, A., Welschof, M., Kipriyanov, S.,
45	•	Terness, P., Little, M., Pfizenmaier, K., and Moosmayer, D. (1998). Monitoring of scFv
46		selected by phage display using detection of scFv-pIII fusion proteins in a microtiter scale
47		assay. J Immunol Methods 220, 51-58. 10.1016/s0022-1759(98)00144-6.

1	52.	Subedi, S., Moonens, K., Romao, E., Lo, A., Vandenbussche, G., Bugaytsova, J.,
2		Muyldermans, S., Boren, T., and Remaut, H. (2014). Expression, purification and X-ray
3		crystallographic analysis of the Helicobacter pylori blood group antigen-binding adhesin
4		BabA. Acta Crystallogr F Struct Biol Commun 70, 1631-1635. 10.1107/S2053230X14023188.
5 6	52	
6 7	53.	Kabsch, W. (2010). Xds. Acta Crystallogr D Biol Crystallogr 66, 125-132. 10.1107/S0907444909047337.
8	54.	McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and
9	-	Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.
10		10.1107/S0021889807021206.
11	55.	Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
12		Acta Crystallogr D Biol Crystallogr 60, 2126-2132. 10.1107/S0907444904019158.
13	56.	Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W.,
14		Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D.
15		(2012). Towards automated crystallographic structure refinement with phenix.refine. Acta
16		Crystallogr D Biol Crystallogr 68, 352-367. 10.1107/S0907444912001308.
17	57.	Heuermann, D., and Haas, R. (1998). A stable shuttle vector system for efficient genetic
18		complementation of Helicobacter pylori strains by transformation and conjugation. Mol
19		Gen Genet 257, 519-528. 10.1007/s004380050677.
20	58.	Jimenez-Soto, L.F., Clausen, S., Sprenger, A., Ertl, C., and Haas, R. (2013). Dynamics of
21		the Cag-type IV secretion system of Helicobacter pylori as studied by bacterial co-
22		infections. Cell Microbiol 15, 1924-1937. 10.1111/cmi.12166.
23	59.	Salvà Serra, F., Salvà-Serra, F., Svensson-Stadler, L., Busquets, A., Jaén-Luchoro, D.,
24		Karlsson, R., R. B. Moore, E., and Gomila, M. (2018). A protocol for extraction and
25		purification of high-quality and quantity bacterial DNA applicable for genome
26		sequencing: a modified version of the Marmur procedure. Protocol Exchange.
27	6.0	10.1038/protex.2018.084.
28	60.	Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Unicycler: Resolving
29		bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol
30	(1	<i>13</i> , e1005595. 10.1371/journal.pcbi.1005595.
31	61.	Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., and
32		Phillippy, A.M. (2016). Mash: fast genome and metagenome distance estimation using
33	()	MinHash. Genome Biol 17, 132. 10.1186/s13059-016-0997-x.
34 35	62.	Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., and Muller, M. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC
		(2011). pROC: an open-source package for R and $S+$ to analyze and compare ROC curves. BMC Bioinformatics 12 , 77. 10.1186/1471-2105-12-77.
36 37	63.	Solnick, J.V., Hansen, L.M., Salama, N.R., Boonjakuakul, J.K., and Syvanen, M. (2004).
38	05.	Modification of Helicobacter pylori outer membrane protein expression during
38 39		experimental infection of rhesus macaques. Proc Natl Acad Sci U S A 101, 2106-2111.
40		10.1073/pnas.0308573100.
40 41	64.	Ladner, R.C. (2007). Mapping the epitopes of antibodies. Biotechnol Genet Eng Rev 24,
42	07.	1-30. 10.1080/02648725.2007.10648092.
43	65.	Celli, J.P., Turner, B.S., Afdhal, N.H., Keates, S., Ghiran, I., Kelly, C.P., Ewoldt, R.H.,
44	0.2.	McKinley, G.H., So, P., Erramilli, S., and Bansil, R. (2009). Helicobacter pylori moves
45		through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci U S A 106, 14321-
46		14326. 10.1073/pnas.0903438106.
		· · · · · · · · · · · · · · · · · ·

1 Figures

2

3 Figure 1. High global prevalence of serum inhibition of Leb binding

4 (A) Inhibition (% in white digits) of *in vitro* binding to human gastric mucosa by *H. pylori*

5 (Figure S1A) from six individual serum samples (quantified in Figure S1B).

6 (**B**) The individual sera IT50 was determined by incubation of *H. pylori* J166 with ¹²⁵I-Leb-

- 7 conjugate in a dilution series of serum sample. The dashed vertical lines show the serum
- 8 dilution when Leb binding was reduced by 50%, i.e., the serum dilution that equals the
- 9 IT50. Serum from individuals 4–6 did not produce a 50% reduction (Non-Detected (ND)
- 10 IT50)).

(C) The serum sample from individual 1 lost its blocking activity after IgG affinity
 desorption (right arrow) (Figure S1C). The IT50/blocking activity was recovered in the IgG

3 fraction from the Protein G affinity column (left arrow).

4 (D) The sera IT50s of 38 individuals from KI, Sweden (Table S1A). The stars indicate

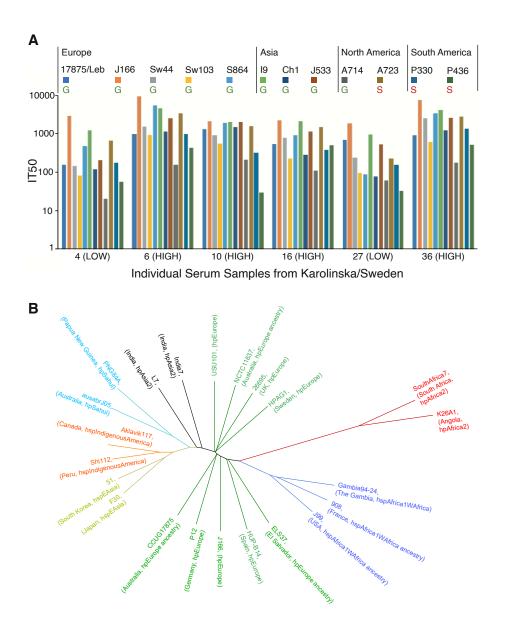
- 5 serum samples analyzed in **Figure 2A**.
- 6 (E) The IT50s of 322 individuals from the Swedish Kalixanda study tested by strain
- 7 17875/Leb with a median IT50 = 41 and a mean IT50 = 89. The J166 strain was more

8 sensitive because of its lower Leb binding affinity and identified 84% of the sera as IT50

9 positive (**Table S1B** and **Figure S2B**).

10 (F) The median IT50s of the 322 Kalixanda individuals according to gender and age. The

11 median IT50 was identical between all the men and the women but increased with age

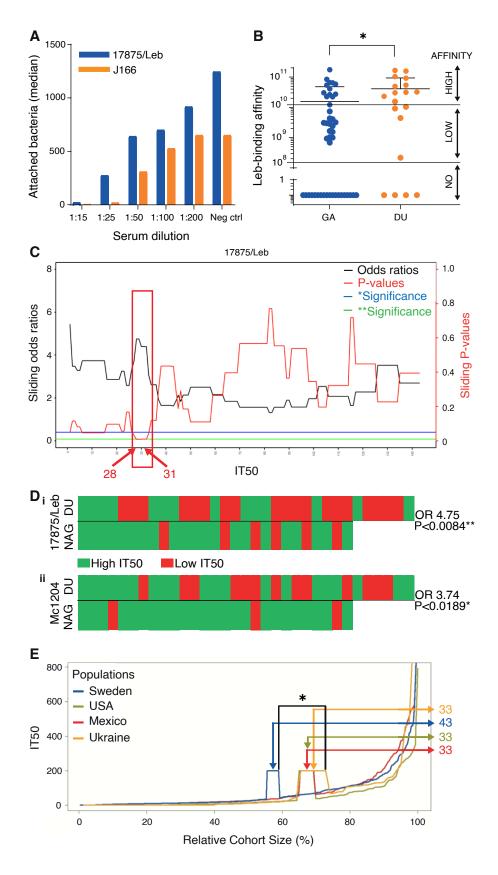

12 (Figures S1E*i* and S1E*iv*).

(G) The IT50s and *H. pylori* ELISAs of individuals 10 and 36 from Figure 1D were followed
 over 26 and 18 years, respectively. The IT50s increased with age during the ~50-year
 observation period in contrast to the almost constant ELISA titers.

(H) The children's IT50s tested by strain 17875/Leb varied similarly to adults by 100–
1000-fold (Table S1F).

(I) Immunoblot detection of purified native BabA protein and its high-molecular-weight
 multimers ¹⁴ in the serum sample of individual 10 from KI, Sweden (Figures 1D and 1G)
 and in the serum samples from world-wide populations (Figure S1H) separated under
 semi-native conditions (1) or denaturing and reducing conditions (2).

22

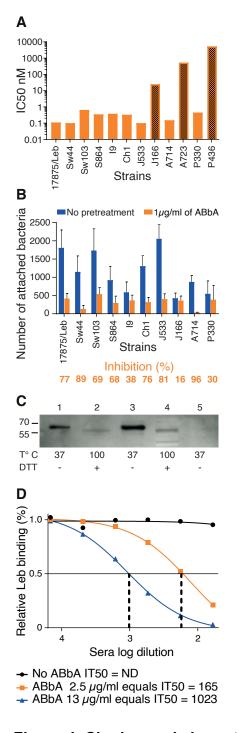

1

2 Figure 2. Broadly blocking serum Abs

3 (A) Serum samples from 6 Swedish individuals were tested against 12 world-wide strains,

- 4 including 9 ABO antigen-binding Generalist (G) and 3 Indigenous American Specialists
- 5 (S) ¹¹. The BabA alignments and heterogenicities are shown in **Figure S2C**, and the strain
- 6 binding characteristics are shown in **Figure S2B**.

- 1 (B) Phylogenetic tree with the *H. pylori* strains CCUG 17875 (17875/Leb, GenBank
- 2 CP090367) and J166²² both from central/southern Europe, TIGR26695, NCTC11637,
- 3 P12, HPAGA1, HUP-B14, USU101
- 4 https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP032818.1, and ELS37 in the hpEurope
- 5 domain (green) and their distance from the African (red and blue, including J99 of African
- 6 phylogeny ⁴⁰), South Asian (black), Oceanian (turquoise), East Asian (yellow), and
- 7 Indigenous American (orange) *H. pylori* strains.
- 8


2 Figure 3. Broadly blocking serum Abs protect against overt gastric disease

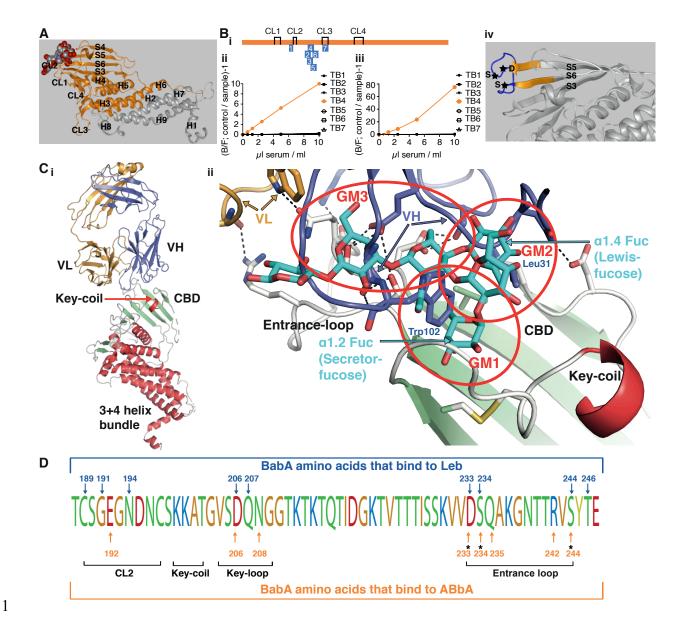
1 (A) The serum sample from individual 1 in **Figure 1A** blocked the in vitro binding, i.e., 2 attachment, of *H. pylori* to human gastric mucosa. In the 1:25 dilution, the 17875/Leb and 3 J166 strains demonstrated 28% and 3% residual attachment, respectively (Figure S3A). (B) Among Leb-binding Swedish DU and gastritis (GA) isolates ¹¹, ~80% (12/15) of DU 4 5 isolates were found to exhibit higher Leb-binding affinity compared to ~50% (13/27) of the 6 GA isolates (Table S2A). (C) The sliding window X-axis and ROC test (Figure S3Ei) show the IT50s for strain 7 8 17875/Leb that were used to calculate the series of ORs (black line) and their 9 corresponding p-values (red line) (IT50s from **Table S3**). The IT50 = 28–31 interval with

- 10 a significant OR is indicated by the red box.
- (**D***i*) Individual sera from the NAG *vs.* DU group, where the critical IT50 ~30 for 17875/Leb was identified as an Rf for DU (IT50 > 30 in green, IT50 < 30 in red) with OR 4.75; 95%CI: 1.58-15.86, and p < 0.0084^{**} .
- (Dii) The *H. pylori* Mc1204 isolate (Table S2B) identified the Rf IT50 ~15 with OR 3.74;
 95%CI: 1.12–14.98, and p < 0.0189* (Figures S3Di and S3Eii) (IT50s from Table S3),
 whereas the low affinity Leb-binding strains J166 and Sw44 (Figure S2B) did not produce
 significant ORs (Figures S3Dii and Diii).

(E) The serum samples from Kalixanda (Sweden), the US, Mexico, and Ukraine were ordered according to their IT50 and relative sample size. The three cohorts with gastric disease (the US, Mexico, and Ukraine) exhibited only 33% of individuals above the Rf IT50 = 30, compared to 43% in the general adult "gastric healthy" Kalixanda (Swedish) cohort (**Table S4**); p = 0.014 and p = 0.056 for the higher *vs.* the lower samples of the intervals.

24

2 Figure 4. Cloning and characterization of ABbA, the broadly blocking human mAb

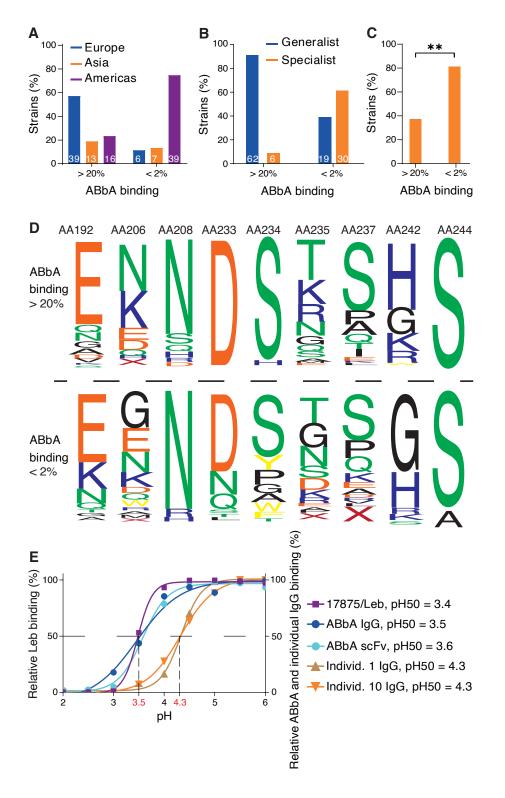

- 3 (A) Tests of the ABbA IC50 for the 12 world-wide *H. pylori* strains from **Figure 2A**. ABbA
- 4 blocked Leb binding of 9 strains but was less efficient with J166 (which has low Leb-
- 5 binding affinity) (Figure S1D) (darker bar 1) and did not block binding of the two

Indigenous blood group O-binding American Specialist strains A723 and P436 (darker
 bars 2 and 3) that both exhibit adaptive substitutions in the CBD that is critical for binding
 to ABO/Leb (Figure S2C) ^{13,14,25}.

(B) Test of the blocking of *H. pylori* attachment by ABbA to human gastric mucosa *in vitro*by the series of *H. pylori* strains from (A), except for A723 and P436. The reduction in
attachment by ABbA inhibition (in orange) and Inhibition (%) closely reflected the ABbA
IC50 for the corresponding strains, where the J166 strain with the higher IC50 was
similarly modestly blocked by ABbA in terms of attachment (16%).

9 (C) ABbA-scFv recognized both purified BabA and BabA in size-separated bacterial
10 whole-cell protein extracts (WCPE) under semi-native conditions (Lanes 1 and 3,
11 respectively) but not under denaturing conditions (Lanes 2 and 4, respectively). As a
12 negative control, WCPE of the 17875*babA1A2*-mutant (with no BabA) was applied under
13 semi-native conditions (Lane 5).
14 (D) Tests of ABbA concentration in terms of inhibition activity as defined by IT50 were

15 performed by two dilution series, which showed that $1 \mu g/mL$ of ABbA equals IT50 ~70.


2 Figure 5. Identification of the structural binding epitope in BabA for the broadly

3 blocking ABbA

- 4 (A) The aa76-335 BabA fragment in orange was superimposed on the 460 aa BabA
- 5 structure (grey) constituting the minimal 260 aa BabA domain required for ABbA binding.
- 6 The Leb glycan in red/grey spheres indicates the CBD location.

1 (Bi) The schematic locations of the seven BabA peptides (TB1-7) derived from strain 2 17875/Leb used to raise rabbit anti-sera. The four disulfide loops (CL) are indicated for 3 orientation (Figure S5B). 4 (Bii) Inhibition of ABbA binding and (Biii) inhibition of Leb binding to 17875/Leb bacterial 5 cells was tested with the seven rabbit sera in the dilution series. 6 (Biv) The TB4 (BabA₂₃₀₋₂₄₇) peptide includes the Entrance loop (blue) to the CBD, where 7 the critical D233-S234-S244 (DSS) residues are indicated by stars, and the proximal parts 8 of the connecting β -strands S5 and S6 are shown in orange. 9 (Ci) Co-crystal of ABbA-Fab and BabA with the locations of the ABbA Light (VL) (orange) 10 and Heavy (VH) (lilac) chains. The CBD (green) and the Key-coil (bright red) are located 11 in the extra-cellular domain i.e., the BabA body domain (red). 12 (Cii) The ABbA/BabA co-crystal structure with Leb (turquoise) superimposed in the CBD 13 region, with the Key-coil (in red from Ci) for orientation. The ABbA-CBD interactions 14 demonstrate three sites of Leb glycan mimicry, including GM1, where ABbA VH (lilac) 15 replaces the α 1-2 "Secretor" fucose in the CL2 pocket; GM2, where ABbA VH replaces 16 the α 1-4 "Lewis" fucose; and GM3, where ABbA VH binds to the DSS triad residues. 17 (D) The 17875/Leb BabA CBD domain with the amino acids positions that bind to Leb 18 and/or to ABbA are indicated by blue vs. orange arrows, respectively.

19

2

Fig 6. The ABbA global binding epitopes and their acid sensitivity in binding.

(A) ABbA binding strength is higher (>20% binding of ¹²⁵I-ABbA) among European
 isolates, whereas it is lower (<2% binding) among the majority of Indigenous

1 American/Latin American isolates (**Table S6**), and the Asian isolates are distributed over

2 both groups.

- 3 (B) Strains with the specialist binding preference are 5-fold more prevalent among strains
- 4 with low ABbA-binding strength (<2% binding) (**Table S6**).
- 5 (C) The great majority of the Indigenous American/Latin American specialist strains have
- 6 low ABbA binding strength (**Table 6B)**, p<0.0017**.
- 7 (D) The BabA web logo is based on the alignment of the series of amino acid positions
- 8 that demonstrate replacements between strains that bind ABbA with high strength (>20%,
- 9 62 strains) vs. low strength (<2%, 43 strains) (Table S6) with a focus on positions E192K,

10 K/N206G, D233N/X, S234G/A/W/Y/X, K/R/Q235D/G, S237E/D/K/R/Q, and K/R/H242G.

- 11 (E) The acid sensitivity profiles, denoted as pHgrams, were determined by incubation of
- 12 *H. pylori* with ¹²⁵I-Leb in the pH 2–6¹⁴. The dashed line shows when half of the Leb binding
- 13 remained, i.e., 17875/Leb pH50 = 3.4. A similar procedure was applied for profiling ABbA-
- scFv, ABbA-IgG, and Fc-purified IgG from individuals 1 (**Figure 1B**) and 10 (**Figure 1D**)
- 15 (**Figure S5I**).

STAR * METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
Rabbit polyclonal Anti-	Alexej Schmidt	This study	
BabA sera	-		
Goat Anti-Rabbit	DAKO	Cat# P044801-2	
Immunoglobulins/HRP			
Goat Anti-Mouse	DAKO	Cat# P044701-2	
Immunoglobulins/HRP			
Human IgG, HRP-linked	Amersham ECL	Cat# NA933-1ML	
whole Ab (from sheep)			
Biotin Anti-Myc tag	Abcam	Cat# ab81658	
antibody [9E10]			
Bacterial strains	I		
Helicobacter pylori	Culture Collection	Cat# 17875	
CCUG17875	University of Gothenburg		
Helicobacter pylori	Culture Collection	Cat# 17874	
CCUG17874	University of Gothenburg		
Chemicals			
BSA	Sigma	Cat# A7030	
EDTA	Thermo Fisher Scientific	Cat# AM9261	
Manganese (II) chloride	Sigma	Cat# 244589-10G	
DAPI	Thermo Fisher Scientific	Cat# 62248	
Urea	Sigma	Cat# U0631-1KG	
Trypsin	Promega	Cat# V5111	
Acetonitrile (ACN)	Thermo Fisher Scientific	Cat# A9554	
DNase I	Sigma	Cat# 4716728001	
b-mercaptoethanol	Gibco	Cat# 21985	
FITC	Sigma	Cat # 46950-250MG-F	
Mayers HTX	Histolab	Cat# 01825	
Eosin Y 0,2%	Histolab	Cat# 01650	
Formaldehyde 4%	Histolab	Cat# 02178	
Buffered			
Lewis b HSA; Lacto-N-	IsoSep AB	Cas# 61/08-0005	
difucohexaose I-APD, HSA			
conjugate			
Dithiothreitol	Sigma	Cat# 10197777001	
Critical commercial assays			
Pierce BCA Protein Assay	Thermo Fisher Scientific	Cat# 23225	
Kit			
Halt Protease Inhibitor	Thermo Fisher Scientific	Cat# 78439	
Cocktail, EDTA-Free			

LabSafe GEL Blue	G-biosciences	Cat# 786-35
7.5% Mini-PROTEAN®	Bio-Rad	Cat# 4561023
TGX™ Precast Protein		
Gels, 10-well, 30 µL		
HiTrap Protein G High	Cytiva	Cat# 17040401
Performance column	-	
Disposable PD-10	Cytiva	Cat# 11768488
Desalting Columns		
Immun-Blot® PVDF	Bio-Rad	Cat# 1620177
Membrane		
SuperSignal™ West Pico	Thermo Fisher Scientific	Cat# 34577
PLUS Chemiluminescent		
Substrate		
Nunc™ 96-Well	Thermo Fisher Scientific	Cat# 262162
Polystyrene Round Bottom		
Microwell Plates		

1 2

3 **RESOURCE AVAILABILITY**

4

5 Lead contact

6 Further information and requests for resources and reagents should be directed to and

7 will be fulfilled by the lead contact, Thomas Borén (<u>thomas.boren@umu.se</u>).

8

9 Materials availability

10 Strains and plasmids generated in this study are available upon request to the lead

11 contact, Thomas Borén (thomas.boren@umu.se).

12

13 Data and code availability

- 14 Genome sequencing data for *H. pylori* CCUG 17875 and its plasmid are available from
- 15 GenBank with the accession number CP090367 and CP0903678, respectively. The
- 16 ABbA-BabA co-crystal coordinates are available by the Accession code: PDB ID 7ZQT.

- All other data are available in the main text or the supplemental information. Any additional 1
- 2 information required to reanalyze the data reported in this paper is available from the lead
- 3 contact upon request.
- 4

5 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

6

8

9

10

11

12

16

17

18

- 7 The Supplementary Materials and Methods includes the following topics:
 - H. pylori Strains and Media
 - **Blood Group Antigens and Conjugates**
 - Serum Samples: Human sera collection, poly clonal rabbit sera, mice sera of infected and vaccinated FVB/n mice, and histological tests of Leb mouse gastric mucosa.
 - Monoclonal ABbA-lqG
- 13 In situ binding by H. pylori In situ binding of H. pylori to human gastric mucosa histo-14 tissue sections, and inhibition of in situ H. pylori binding by human sera and by ABbA-15 lgG.
 - Radio-immuno Analysis (RIA): BabA binding properties, inhibition titers (IT50s), ABbA-Ig inhibition capacity (IC50), and analysis of ¹²⁵I-ABbA and Leb competitive RIA.
 - SDS-PAGE and Immunoblot detection.
- 19 Isolation, purification, and expression of ABbA-IgG: cDNA synthesis and PCR of human variable regions, ScFv-library construction, selection of BabA-binding scFvs by 20 21 phage display, and construction of a human IgG; ABbA-IgG binding properties by 22 isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR); immuno-23 EM and detection of BabA by ABbA; construction of a BabA phage library; and selection 24 of ABbA-IgG-binding BabA fragments. 25
 - The BabA protein co-crystallized with ABbA-IgG (Fab).
- 26 Genetic complementation by shuttle vector-expressed recombinant BabA and 27 DSS mutants in *H. pylori*.
 - Amplification and analysis of BabA sequences.
 - Amino acid positions in the BabA CBD that modulate ABbA binding strength.
 - Acid sensitivity in Leb-binding and ABbA binding.
- 30 31

28

29

32 1. *H. pylori* strains

Laboratory strains: H. pylori 17875/Leb is an isolated single clone of H. pylori 33 34 CCUG17875, and it binds to ABO/Leb antigens with high Leb-binding affinity, but not to 35 sialylated antigens ⁴¹. The 17875babA1A2 strain is a null mutant with the two babA1 and 36 babA2 genes deleted from H. pylori CCUG17875, referred to as the babA1A2-mutant ¹⁰. 37 The *H. pylori* CCUG17874 binds sialylated antigens but not the ABO/Leb antigens ⁴².

38

39 Clinical H. pylori isolates: The H. pylori isolates from Sweden (29 strains), Germany (4 strains), Spain (13 strains), Japan (13 strains), Alaska (11 strains), and Peru (38 strains) 40

- have been previously described ¹¹. The 13 Indian strains 41
- 42 The H. pylori isolates Sw44, Sw103, S864, J533, A714, A723, P330, P436 have been

previously described ¹¹, and the 13 Indian strains including isolate I9 and the J166 strain have been described in ¹⁴ and ⁴³, respectively. The 32 (**Table S2B**) Mexican isolates from the UMAE Pediatria IMSS in Mexico City were isolated from patients with GA (n = 13) or DU (n = 13). The *H. pylori* Ch1 strain was isolated from a Chinese individual with a family history of gastric cancer. *H. pylori* USU101 and a Rhesus macaque passage clone USU101 Δ babA with a natural babA deletion were as described ^{14,44}.

7

8 2. *H. pylori* culture media

9 Cultures were performed with blood agar plates, and *H. pylori* cultures were grown in a 10 mixed-gas incubator under micro-aerophilic conditions as described ⁴².

11

12 **3. Blood group antigen conjugates.**

Two different types of fucosylated blood group antigen conjugates were used, namely 1) semi-synthetic Leb and ALeb-glycoconjugates (Leb-HSA and ALeb-HSA, respectively) with natural purified oligosaccharides covalently linked to human serum albumin (Isosep AB, Tullinge, Sweden) or 2) oligosaccharides synthesized by S. Oscarson (co-author) and conjugated to HSA. The conjugates were used for the radio-immuno assay (RIA) binding

- 18 experiments.
- 19

20 4. Serum samples

21 4.1. Human subjects and sera

22 Procedures involving human subjects were approved by the following boards. The series 23 of sera from the Karolinska Institutet Hospital was approved by ethical permits Dnr 185/93 24 and 2013/1255. The Kalixanda study was approved by the Umeå University ethics 25 committee permit Dno. 98-99, §156/98. The series of adult sera from Sumy, Ukraine, was 26 approved by the local ethics committee of Sumy Council "Sumy Regional Clinical Hospital" 27 permit protocol 2/5, 15 February 2019. The series of pediatric sera from Sumy, Ukraine, were approved by ethical permit protocol №11/1 of the Institutional Bioethics Committee 28 29 of the Medical Institute of Sumy State University from 26 November, 2020. The series of 30 serum samples from Baylor College of Medicine were made anonymous and approved by 31 the IRB at Baylor College of Medicine. The series of serum samples from Mexico City was 32 approved by ethical permit IMSS, Mexico; 2008-785-001. Informed consent was obtained 33 from all human participants or legal guardians of participating minors.

34

35 4.1.1. Karolinska Institute (KI) series.

Serum samples from volunteer donors were tested by *H. pylori* ELISA ³⁴, and 36/72 (50%)
 were positive (**Table S1A**). Additional follow-up serum samples were collected four times
 for individual 16 and three times for individual patient 36 over ~30 years (**Figure 1D**).

- 39
- 40 4.1.2. Kalixanda series.

A total of 322 sera samples were obtained from volunteers, and ELISA analysis demonstrated that all sera were *H. pylori* positive with individual signal intensity, and 74% of the samples were CagA positive ²⁰. Of these, 161 samples were collected from men with a median age of 59 years and 161 samples were collected from women with a median age of 61 years (**Table S1B**).

- 46
- 47 4.1.3. Ukraine, adult series.

A total of 104 sera samples were collected from patients with gastric diseases at Sumy Regional Clinical Hospital. The sera were tested by ELISA, and 79 of them (76%) were defined as *H. pylori* positive. The 20 men and 59 women were from 20 to 79 years of age (**Table S1C**).

5

6 4.1.4. Ukraine, children series.

A total of 135 serum samples were obtained from a children's sera collection at Regional
Children's Hospital and St. Zinaida City Children's Hospital in Sumy, Ukraine. The patients
were tested by ELISA, and 36 of them (27%) were defined as *H. pylori* positive. The 14
girls and 22 boys (39% girls and 61% boys) were from 3 to 17 years of age (Table S1F).

11

12 The Ukrainian sera samples were analyzed with an anti-*H. pylori* ELISA (IgG) test system 13 (EUROIMMUN, a PerkinElmer company, Medizinische Labordiagnostika AG, Lübeck, 14 Germany).

15

16 4.1.5. Mexico series 1.

A total of 200 ELISA-positive serum samples from patients with gastric disease were obtained from Mexico UMAE Pediatria. Of these, 200 *H. pylori* ELISA-positive serum samples were tested. The patient group included 82 men from 30 to 81 years of age and 118 women from 30 to 86 years of age (**Table S1E**).

21

4.1.6. Mexico series 2. A total of 79 serum samples from patients with NAG or DU diagnosis were obtained from Mexico UMAE Pediatria from patients with defined gastric disease. Among these, 35 patients had NAG, including 19 men (33–82 years of age) and 16 women (30–79 years of age), and 44 patients had DU, including 26 men (38–86 years of age) and 18 women (27–79 years of age) (**Table S3**).

27

28 4.1.7. The US series. A total of 141 *H. pylori* ELISA-positive serum samples

from patients with gastric disease at Baylor College of Medicine (Houston, TX, USA) were subjected to further investigation (**Table S1D**).

31

32 Sera and antibodies

4.2. Sera from rabbits immunized with synthesized peptides (Figure 5).

For epitope mapping, rabbit sera were raised against 7 peptides located in the BabA CBD (**Figure S5B**). Peptides were synthesized, and Cys residues were added to peptides 1–6 for keyhole limpet hemocyanin conjugation and used in four consecutive subcutaneous immunizations (Agrisera AB, Vännäs, Sweden). Each rabbit serum sample was quality tested and shown by immunoblot to bind BabA.

- 39
- 40 4.3. Polyclonal rabbit sera for immunoblot detection of BabA and BabB (Figure 41
 41 S3G and Figure S4E*iii* and *iv* and Figure S5F).

BabA and BabB proteins were detected with the polyclonal anti-BabA VITE antibody and
VIRA antibody, respectively, diluted 1:6000 and secondary HRP-goat antibody diluted
1:1000 (DakoCytomation, Denmark A/S) according to ¹⁴.

- 45
- 46 **4.4.** Monoclonal ABbA-IgG (Figure 4, 5, and 6).

1 Monoclonal ABbA-IgG was initially expressed and produced in Schneider cells ⁴⁵ and later

2 by Absolute Antibody Ltd., Oxford Center for Innovation (New Road, Oxford, 0X1 1BY,

3 United Kingdom) using transient expression in HEK293 cells.

4

5 **5** Blocking buffer and blocking solution.

6 "Blocking buffer" contained 1% BSA (SCA Cohn fraction V, SWAB, Sweden) in PBS-Tween = PBS-T (PBS, pH 7.4, 0.05% (v/v) Tween-20). For preparation of "SIA-buffer", 7 8 1% BSA was oxidized by 10 mM sodium periodate in 0.1 M acetic acid buffer (pH 4.5) for 9 1 h. The reaction was stopped by incubating for 30 min in 20 mM sodium bisulfite and 10 0.125 M potassium phosphate. The solution was then dialyzed against deionized water overnight at 4°C. For SIA blocking buffer, the periodate-treated BSA was mixed with PBS-11 12 T. For SIA blocking solution, the periodate-treated BSA was mixed with 150 mM sodium 13 chloride/0.05% Tween. The two different preparations were then filtered through 0.22 µm 14 filters, aliquoted, and kept at -20°C.

15 16

17 THE FOLLOWING METHODS ARE PRESENTED IN EXPERIMENTAL ORDER AND 18 ACCORDING TO THE SECTION HEADINGS 19

20 1. *In situ* binding of *H. pylori* to human gastric mucosa histo-tissue sections

21 (Figure S1A).

22 Bacteria were labelled with fluorescein isothiocyanate (FITC) (Sigma, St. Louis, MO), and 23 in vitro bacterial adhesion was tested as described ⁴². Slides were mounted with DAKO 24 fluorescent mounting media (DAKO North America, Inc., CA, USA) and imaged with a 25 Zeiss Axio Imager Z1 microscope (Carl Zeiss AB, Stockholm, Sweden) or the Leica 26 Thunder microscopes. FITC-labelled *H. pylori* were digitalized from at least 3 identical 27 fields of view from serial sections to quantify bacterial attachment. All images were 28 evaluated by ImageJ. Briefly, micro-picts were subjected to the threshold in order to 29 separate objects of interest from the background and quantified by "Analyze particles". 30 Graphs and curves were created using GraphPad Prism 9 (San Diego, USA)

31

32 **1.1.** Inhibition of *in situ H. pylori* binding by human sera (Figure 1A and S1B).

Inhibition tests were performed with the *in situ* binding methods as described above with the following modifications. FITC-labeled bacteria were first mixed with sera in SIA buffer at the dilutions shown in the figures on a slowly rocking table for 1 h at room temperature and then processed as described ⁴². The attachment of bacterial cells was digitalized and quantified as described above.

38

1.2. Inhibition of *in situ H. pylori* binding by ABbA-IgG (Figure 4B). Inhibition of bacterial attachment by ABbA-IgG was carried out as described above with slight modifications. FITC-labeled bacteria were first mixed with different dilutions of ABbA-IgG diluted in SIA buffer, incubated on a rocking table for 2 h at room temperature, and then processed, digitalized, and quantified as described above.

44

45

46 2. Tests of inhibition titer (IT50) and of ABbA IC50 and binding affinity by RIA and
47 ITC and SPR.

2.1. Labeling of Leb-HSA and ALeb-HSA by ¹²⁵I. The Leb-HSA and ALeb-HSA
 conjugates (IsoSep AB, Tullinge, Sweden) were I¹²⁵-Iabeled (I¹²⁵-Leb-conjugate) using the
 chloramine-T method ⁴².

2.2. Labeling of human sera IgG and ABbA-IgG by ¹²⁵I. Labeling of human sera IgG 4 5 and monoclonal ABbA-IgG was done according to the chloramine-T method with slight 6 modifications. Briefly, 1 µl of ¹²⁵l (PerkinElmer, Waltham, MA, USA) was added to 2 µg of sera/ABbA-IgG in 50 µI K₂HPO₄/KH₂PO₄ buffer (pH 7.4). Labeling was started by the 7 8 addition of 20 μ L 0.6 mg/mL chloramine-T and stopped by the addition of 100 μ L 1 mg/mL 9 Na₂S₂O₅ and 200 μ L KI (9.6 mg/mL) after 20 and 40 seconds, respectively. ¹²⁵I-labeled sera/ABbA-IgG was purified with a PD-10 column (GE Healthcare, Sweden), and the 10 11 fractions with the highest radioactivity were pooled. 12 The stability of the labeled IgGs was determined by radioimmune binding assay of bacterial suspensions with the target proteins present in excess. Typical binding for the 13 14 radiolabeled monoclonal IgG was greater than 90% towards the 17875/Leb strain. The 15 procedure was repeated on multiple days post labeling in order to monitor the rate of degradation due to the harsh conditions of the labeling protocol. All experiments with 16 17 radiolabeled IgGs were performed within 5 days after labeling. 18

- **2.3. Analysis of BabA binding properties by RIA.** ¹²⁵I-labeled Leb-HSA conjugate ("hot conjugate") or I¹²⁵-labeled Leb-HSA diluted with unlabeled conjugate ("cocktail") ⁴² was mixed with 1 mL of bacterial suspension ($OD_{600} = 0.1$) in blocking buffer. Following incubation, the bacteria were pelleted by centrifugation at 13,000 × *g*, and the ¹²⁵I in the pellet and in the supernatant was measured using the 2470 Wizard² Automatic Gamma counter (PerkinElmer, Waltham, MA, USA) giving a measure of binding activity (% binding).
- 26

27 2.4. Analysis of sera inhibition titers (IT₅₀) by RIA. Serum samples from 960 H. pylori-28 infected patients were tested for their ability to inhibit the binding of radiolabeled Leb-HSA 29 conjugate (I¹²⁵-Leb-conjugate) to selected *H. pylori* strains. In order to compare IT50s 30 fairly between strains with varying maximum binding properties, all strains were calibrated in a pilot experiment to find the dilution corresponding to 10% I¹²⁵-Leb-conjugate binding. 31 To ensure consistency of bacterial numbers and to aid pellet recovery, strains were diluted 32 33 with *H. pylori* 17874, which does not bind Leb. For example, 17875/Leb at an OD_{600nm} = 34 1.0 (2.5 x 10⁹ CFU/mL) was diluted 1:900 with *H. pylori* 17874 to reach 10% binding. Serial dilutions of the serum were made in blocking buffer, and 50 µL of I¹²⁵-Leb conjugate (0.01 35 36 ng/µL) was added to a final volume of 500 µL. After addition of 500 µL of the 17875/Leb 37 and 17874 mixture, the tubes were rotated for 17 h at room temperature. Samples were centrifuged (13,000 x g for 13 min), and the I^{125} -Leb-conjugates in the pellet and 38 39 supernatant were measured to ascertain the bound and free conjugate amounts, 40 respectively. The relative titer of the tested serum was defined as the dilution titer sufficient 41 to reduce Leb binding to half the maximum value as determined by binding of the Leb 42 conjugate in the absence of serum (IT50).

43 A micro-scale assay was established in a conical polystyrene 96-well plate (Thermo 44 Scientific, Germany) that allowed the determination of the inhibitory titer with only 3 μ L of 45 serum. For each serum sample, a 1:3 serial dilution series (starting from 1:33) was

46 established in 6 wells of the 96-well plate with a final volume of 60 μ L. Then, 60 μ L was

added to each well of a mixture consisting of 1 ng of I¹²⁵-Leb conjugate and a suspension of *H. pylori* 17875/Leb (OD₆₀₀ = 0.1) as well as *H. pylori* 17874 (OD₆₀₀ = 0.1). All samples were diluted in blocking buffer. The 96-well plate was rotated for 17 h at room temperature and then centrifuged (4,000 x g for 5 min), and the I¹²⁵-Leb-conjugate was measured

5 separately in the pellet and supernatant to determine the IT50.

6 This micro-scale assay was additionally adapted to be performed like the original assay 7 in 1.5 mL Eppendorf tubes. The procedure was identical to the 96-well assay with the 8 difference that the centrifugation conditions post incubation were done according to the 9 original assay at 13,000 x g for 13 min. IT50s were calculated identically as for the 10 previous assay variations.

11

12 **2.5.** Analysis of ABbA-IgG inhibition capacity (IC50).

13 The ABbA-IgG and ABbA-scFv inhibition capacities were measured as described in

14 Section 2.2.4 with slight modification. The known concentration of ABbA-IgG was used to

15 calculate the IC50, i.e., the concentration of antibody that provides 50% inhibition of *H*.

- 16 *pylori* binding.
- 17

2.6. Analysis of ABbA-IgG binding properties by ITC and SPR (Figures S4E and S4F).

- ITC was performed on an Auto-ITC200 from Malvern Panalytical (Malvern, UK). 20 21 Recombinant BabA from H. pylori 17875/Leb was stabilized by adding hexa-lysine and 22 myc-tag to the BabA protein C-terminus as described previously ²⁵. Experiments were 23 performed at 25°C in PBS with 10 µM of BabA and injection of 50 µM ABbA-IgG. The 24 titrations were repeated three times with high feedback and a filter period of 5 s. For each 25 experiment, 19 automated injections of 2 µL each were performed (duration 0.8 s) with 26 300 s intervals between each injection with a stirring speed of 1000 rpm. Calorimetric data 27 were plotted and fitted using a single-site binding model with MicroCal PEAQ-ITC Analysis 28 from Malvern Panalytical (Malvern, UK). **SPR** experiments were performed on a Biacore 3000 system (GE Healthcare, Uppsala, 29
- Sweden). ABbA-IgG was immobilized on a CM5 chip at around 50 RU levels by standard
 amine coupling at pH 5. Recombinant BabA from *H. pylori* 17875/Leb was injected for 2
 min over the surface at concentrations of 66 nM or 40 nM at two- or three-fold dilutions in
- PBS + 0.005% Tween-20 at 25°C. Regeneration was done by injection of 10 mM glycine
 (pH 1.7) for 18 s. Dissociation and rate constants were determined by global fitting with
 Scrubber2 software (Biological Software, Australia). The experiment was repeated three
 times and presented as the average value.
- 37

38 2.7. Analysis of ¹²⁵I-ABbA and Leb competitive RIA (Figures 5Bii and 5Biii). For 39 competitive RIA assays, the ABbA-IgG was labeled as described in Section 2.2.2. To 40 measure whether ABbA-IgG could compete with the anti-peptide rabbit serum for BabA-41 binding, I¹²⁵-ABbA-IgG1 (0.13 nM, ~20.000 cpm) was incubated with titrated amounts of rabbit serum (1:100 to 1:1600) with constant amounts of H. pylori 17875/Leb (OD_{600nm} = 42 43 0.002) and *H. pylori* 17874 (OD_{600nm} = 0.1). After overnight incubation at 4° C, the bacteria 44 were pelleted, and γ -emission was measured in the supernatant (free fraction of I¹²⁵-45 ABbA-IgG1) and pellet (bound fraction). For measuring Leb competition, 1 µg/mL radiolabeled Leb (~25.000 cpm) was added instead of I¹²⁵-ABbA-IgG1. Dilutions were
 made in blocking buffer (1% BSA in T-PBS).

3

4 **2.8. Analysis of ABbA-IgG inhibition capacity corresponding to IT50 (Fig 4D).**

5 Given that the antibodies in the patient serums contain antibodies with a binding efficiency

- 6 on the same level as the ABbA IgG mAb, we devised the term "ABbA IgG-like antibodies"
- 7 in order to assign more quantitative values and to more understandably talk about the

8 relationship between IT50 (unknown concentration) and IC50 (known concentration).

- 9 For example, "What level/concentration of "ABbA like IgG" would a patient have if their
- 10 IT50 corresponds to 100?" Given that the IC50 of ABbA is 12.86 ng/mL, and that we know
- 11 that this concentration corresponds to the same level of binding as the IT50, we calculate 12 in reverse to find the stock concentration of "ABbA like IgGs" in the serum:
- 13 100× dilution = 12.86 ng/mL
- 14 1× dilution = 12.86 ng/mL * 100
- 15 = 1286 ng/mL OR 1.286 µg/mL
- 16 This is the likely concentration of "ABbA like IgGs" in a patient's serum that has an IT50 17 of 100.
- 18

19 2.9 Analysis of odds ratios (ORs) by sliding window calculation (Figures 3C and 20 S3E)

- 21 We started out by creating a database containing 4 entries derived from the milder
- symptoms of the infection (gastritis, G) and the more severe symptom of the infection (duodenal ulcer, DU). Both of these are further divided into High or Low depending on the
- 24 selected cut-off value for the OR calculations.
- The measurable parameter is the patient serum IT50 level, i.e. "How many times we can dilute the serum and inhibit 50% of the binding". Depending on the test-strain, the IT50 for
- a given serum will change depending on strain's Leb-binding affinity (see IT50 method).
- 28 Because there is currently no definition of what a High or Low IT50 is in terms of antibodies
- towards the *H. pylori* binding adhesin, we want nature to tell us "is there a numerical value
- 30 of these IT50 for any given strain that indicates whether an individual patient is at risk for
- 31 more severe disease progression?"
- 32 We had 60 patients evenly/randomly divided between the DU and G diagnoses. These
- 33 patients had serum IT50s tested against multiple strains of different affinities for the Leb
- 34 conjugate. For example, with the CCUG 17875/Leb strain (high affinity) we had IT50s
- ranging from 1 (serums that inhibits, but does not reach the 50% binding mark) and up to
- a few hundred. The mean and median IT50 was around 75. So, we started testing the cut-
- off values at 2, and then slid our way up towards 150.
- 38 For every step we created an entry in the database. The first step was the temporarily
- defined "cut-off" (in this first entry it is equal to 2). The script then counted all observations
- 40 of patient with the G diagnoses that had an IT50 below the current cut-off into the "Low G 41 group", everything with a G diagnose and above the cut-off was sorted into the "High G
- 41 group", and the same procedure was applied for the sera samples of DU diagnoses. For
- 43 each tested cut-off we were then left with 4 values that told us how the patients were
- 44 distributed among the 4 groups, and a row-name was created corresponding to the cut-
- 45 off it was calculated for.
- 46 The slider increased 1 more step and it iterated itself and created another entry for the 47 out off equal to 2, and then continued to do so until we ran careco all of the different out
- 47 cut-off equal to 3, and then continued to do so until we ran across all of the different cut-

1 offs we needed assessed by that particular test-strain. Because a sample could only move 2 from the Low group to the High group, once a sample had moved into the High group it

2 from the Low group to the High group, once a sample had moved into the High group it 3 could never end up in another group again. So, after a certain time there were very few

- could never end up in another group again. So, after a certain time there were very few
 samples left that could "move" into another group. This means that we always reached a
- 5 point where there was no point in checking above a certain value as things would change
- 6 with very low frequencies.
- 7 The final Table was then comprised of rows containing the cut-off value and the patient 8 distribution among the 4 groups.
- 9 The OR was then calculated by dividing the ratio of "low DU/high DU" by the ratio of "low
- 10 G/High G". If the OR was equal to or close 1 this meant that there was no difference
- between the 2 different diagnoses and the patients'; IT50s. If the OR was greater than 1
- this indicated that a high IT50 was connected to a milder diagnosis (G), and if the OR was less than 1 this indicated that a high IT50 was connected to a worse diagnosis (DU).
- 14 For each of the different cut-offs, we ran a Fisher's exact t-test to test for significance,
- 15 because low and high ORs did not necessarily correlate with significant observations.
- 16 The ORs across the whole tested range for each strain was illustrated in a window
- 17 containing all the ORs and how the OR changed as the cut-off level increased. On the
- second (right) Y-axis, the corresponding significance from the ORs was plotted. The classical 0.05 and 0.01 p-values were plotted as horizontal lines to visually show where
- 19 classical 0.05 and 0.01 p-values were piolled as nonzonial lines to visually show whe
- 20 (if anywhere) the ORs were presented as significant.
- 21 At these points we suggest that these cut-offs potentially could be used to indicate whether
- a patient should seek eradication (or future vaccine) treatment of their *H. pylori* infection
 or whether their own immune system will most likely be able to keep the infection in
 balance i.e., without disease progression.
- 25
- 26 **3. SDS-PAGE** and immunoblot detection of denatured or semi-native BabA.
- 27 SDS-PAGE was performed with 7.5% or 10% Mini-PROTEAN TGX Gels (Bio-Rad 28 Laboratories, Hercules, CA, USA). Bacterial extracts or the BabA protein solution were 29 applied in Laemmli buffer under non-reducing, semi-native conditions and mild heating at 30 37°C for 30 min or under denaturing conditions (5% β-mercaptoethanol or 10 mM DTT 31 and 10 min boiling) prior to loading onto the gels. For immunoblots, proteins were 32 transferred to a polyvinylidene difluoride membrane (Bio-Rad Laboratories, USA) and 33 blocked with 5% skim milk. Detection of native/recombinant BabA with human sera or 34 ABbA-scFv on immunoblots was as described above, with the human sera being diluted 35 1:1000 and incubated overnight at 4°C. Secondary antibody HRP-conjugated goat antirabbit antibody (DAKO, Glostrup, Denmark) was diluted 1:1000 or ECL sheep anti-human 36 37 HRP-conjugated (GE-Healthcare, USA) was diluted 1:5000 and incubated with the 38 membrane for 1 h at room temperature. Bound ABbA-scFv was detected by incubation of 39 the membrane with biotinylated murine anti-myc mAb 9E10 (Abcam, Cambridge, UK) 40 followed by a streptavidin-HRP conjugate. Signals were developed with ECL chemiluminescence (SuperSignal West Pico, Thermo Scientific/Pierce, IL, Rockford, 41 USA). For visualization of the signal, the Bio-Rad ChemiDoc[™] Touch Imaging System 42 43 (Bio-Rad Laboratories, Inc) was used.
- 44

45 **4. Purification of human IgG.**

A volume of 200 µl of human serum (total protein concentration 5 mg/mL) was diluted with
2.8 mL of binding buffer (20 mM sodium phosphate, pH 7.0). The sample was applied by

a syringe onto a 1 mL HiTrap Protein G High Performance column (Cytiva, USA). The 1 flow-through fraction with a total protein concentration of 4 mg/mL was saved for RIA 2 3 analysis. The column was washed with 10 column volumes of binding buffer, and IgG was 4 eluted as a 1 mL fraction with 10 mM glycine (pH 2.7) into tubes containing 100 µl 1M Tris 5 (pH 9.0) and ≈2.5 mg/mL of protein. The protein concentration in the plasma and the flow 6 through was determined by Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) according to the manufacturer's instructions. The purified IgG fraction 7 8 concentrations were determined by absorbance at 280 nm with a Nanodrop ND-1000 9 Spectrophotometer (NanoDrop Technologies, In., USA). Human IgG was identified by 10 immunoblotting with sheep anti-human HRP-conjugated antibody (GE Healthcare, USA) diluted 1:5000. The human IgG was detected as the 55 kDa heavy chain (HC) and the 30 11 12 kDa light chain (LC).

13

14 **5.** Isolation, purification, and expression of ABbA-IgG (Figure 4).

15 5.1. cDNA synthesis and PCR of human variable regions.

16 Peripheral blood mononuclear cells from 10 mL of patient blood were isolated on a Ficoll gradient, and total RNA was extracted using standard protocols (RNeasy-Mini, Qiagen, 17 18 Hilden, Germany). First-strand cDNA was synthesized with an oligo-d(T) primer 19 (Amersham Biosciences, Buckingham, UK), and human variable immunoglobulin genes 20 were amplified via PCR in 50 µL reactions containing 1 µL cDNA, 200 µM dNTPs, 5 µL 10x reaction buffer, 1 U polymerase (BD-Advantage2, BD Biosciences Clontech, Palo 21 22 Alto, CA, USA), and the appropriate family-based sense and antisense primers (500 nM) 23 for 36 cycles (15 s denaturation at 94°C, 30 s annealing at 65°C, and 30 s extension at 24 72°C). The sense and antisense primers were described elsewhere ⁴⁶⁻⁴⁸. For VL-chain 25 amplification, the sense primers were extended at the 5' end by the sequence TAC 26 AGGATCCACGCGTA in order to introduce an Mlul restriction site, and the antisense 27 primer was extended with TGACAAGCTTGCGGCCGCG for introduction of a Not I site. 28 For VH-chain amplification. the sense primers were extended with 29 GAATAGGCCATGGCG (Nco I site) and the antisense primer with CAGTCAAGCTT (Hind 30 III site). The antisense primers annealed at the 5' ends of the CH1 and constant Kappa 31 regions, respectively. All amplifications were performed independently for each of the 32 family-specific sense primers. The PCR products were pooled, gel-extracted (QIAquick 33 Gel Extraction Kit, Qiagen), and digested with Mlu I and Not I (New England Biolabs, USA) 34 for cloning of VL chains and with Nco I and Hind III for cloning of VH chains. After 35 digestion, the fragments were gel purified again and stored at -20° C.

36

37 5.2. ScFv library construction.

The phagemid vector pSEX81-phOx ²⁴ was digested with Mlu I and Not I and separated 38 39 from the phOx scFv cassette by extraction in a 0.7% agarose gel. One hundred 40 nanograms of the digested vector were ligated with 10 ng of the purified VL chains in a 41 final volume of 40 µL with 1 U ligase (Roche, Mannheim, Germany) at 16°C overnight. 42 Plasmid DNA was ethanol precipitated and electroporated into the E. coli strain XL1-Blue 43 (Stratagene, La Jolla, CA), and the bacteria were grown for 1 h in 1 mL SOC media (LB 44 plus 0.1 M glucose) for recovery. The bacteria were subsequently plated on SOB_{GAT} plates 45 (0.1 M glucose, 100 µg/mL ampicillin, 12.5 µg/mL tetracycline) and incubated overnight at 46 37°C. Colonies were scraped off, and vector DNA containing the VL chain repertoire was 47 isolated using anion exchange chromatography columns (Macherey & Nagel, Germany).

For cloning of the VH chains, vector DNA was digested with Hind III and Nco I (New 1 2 England Biolabs), ligated with the appropriately digested VH-encoding genes, 3 transformed into XL1-Blue cells, and grown as described above. Independent colonies 4 were scraped off and stored in 25% glycerol at -80°C as the final scFv library.

5

Selection of BabA-binding scFvs by phage display (fig S4A). 5.3.

6 Phage scFvs were retrieved from the libraries essentially as described ⁴⁹ using helper 7 8 phage M13KO7 (New England Biolabs, USA) for packaging. Panning was performed in 9 Maxisorb Immunotubes (Nunc, Wiebaden, Germany) coated overnight with 5 µg of purified BabA (according to ¹⁴) at 4°C and blocked with PBS containing 2% (w/v) low-fat 10 dried skimmed milk (2% M-PBS). Tubes coated with BSA were used as negative controls. 11 For selection, phage-scFvs (10¹² CFUs) were blocked by the addition of an equal volume 12 13 of PBS containing 4% milk (w/v) to the tubes and incubation with constant rolling for 2 h 14 at room temperature. The solution was subsequently discarded, and the tubes were 15 washed 10 times with PBS in the first panning round. With subsequent panning rounds, 16 washing stringency was increased by vortexing 10 times with 0.1% Tween 20 in PBS. 17 Bound phages were eluted by addition of 1 mL 0.1 M triethylamine (pH 11.5) for 5 min 18 with gentle agitation and neutralization with 0.5 mL 1 M Tris-HCI (pH 7.4). The neutralized 19 mixture was used to infect 20 mL of exponential-phase E. coli XL1-Blue grown in 2YT 20 media (12.5 µg/mL tetracycline) at 37°C. After incubation for 15 min at 37°C without 21 shaking, the bacteria were shaken for 45 min, plated on SOB_{GAT} plates, and incubated 22 overnight at 37°C. The bacteria were harvested and stored in aliquots at -80°C, 23 representing a phagemid-packaged scFv-library. For the subsequent panning round, 24 phages were produced by inoculation of 10 mL LB_{GAT} media with an aliquot of the library 25 in order to reach an $OD_{600nm} = 0.4$. The titers of eluted phage containing either helper 26 phage or the phagemid genomes were determined by CFU titration on LB plus kanamycin 27 (70 µg/mL) or LB plus ampicillin (100 µg/mL) plates, respectively, essentially as described 28 ⁵⁰. The enrichment of specific binders during the selection procedure was determined by 29 dividing the number of phage that were eluted from BabA-coated immunotubes by the 30 number of phage that were eluted from BSA-coated immunotubes (the enrichment factor 31 was 55 in the second and 2381 in the third panning rounds).

32 33

ELISA screening with scFv-gIII fusion proteins. 5.4.

BabA-specific scFvs were screened by taking advantage of the pIII protein encoded in the 34 phagemid vector essentially as described ⁵¹. Briefly, production of scFv-gIII fusion proteins 35 in logarithmically growing bacteria was induced with 100 µM isopropyl β-D-1-36 37 thiogalactopyranoside (IPTG) for 16 h at 30°C. Bacteria were centrifuged and the pellet 38 was incubated in Spheroblast solution (50 mM Tris-HCl, pH 8.0, with 20% sucrose and 1 39 mM EDTA) for 20 min on ice, followed by centrifugation at 30,000 x g for 45 min at 4°C. 40 The supernatant, representing the periplasmic extract, was diluted with an equal volume of 4% M-PBS and used for ELISA. Wells (Nunc Microtitre plates, Wiesbaden, Germany) 41 were coated with 200 ng of BabA overnight at 4°C in 50 mM Na₂CO₃-NaHCO₃ (pH 9.6). 42 After blocking with 2% M-PBS, the periplasmic extract was added and incubated for 4 h 43 44 at room temperature. Antigen-bound scFv-pIII fusion protein was detected by incubation with a mouse mAb specific for pIII (MobiTec, Göttingen, Germany ²⁴ for 1 h at room 45 46 temperature followed by an HRP-conjugated rabbit anti-mouse antibody (DAKO, Glostrup, 47 Denmark) for 1 h at room temperature. Colorization was performed with 0.42 mM

3,3',5,5'-tetramethylbenzidine (Merck-Germany) in substrate buffer (83 mM sodium
acetate, 17 mM citric acid (pH 4.9), and 0.004% H₂O₂). After all incubation steps, the
ELISA wells were washed three times with blocking buffer. As a negative binding control,
a 2-phenyloxazolone (anti-phOx) scFv was expressed in the same phagemid vector and
analyzed using ELISA-coated, phOx-conjugated BSA.

6

5.5. Subcloning into the prokaryotic expression vector pOPE101 (Figure S4). The entire scFv expression cassette from the phagemid vector pSEX81 was subcloned into the prokaryotic expression vector pOPE101 (Genbank #Y14585) via the Nco I and Not I sites. The C-terminal myc and (His)₆ tags allowed detection and IMAC purification, respectively. Purification from the periplasmic space was performed as described ²⁴.

12 13

5.5. Production of a complete human antibody (Figures 4 and S4).

14 Variable regions were cloned into the insect cell expression vector pMThlgG1-V carrying 15 the constant regions of the human IgG1 heavy chain and human kappa chain ²⁴. PCR was 16 performed using the VL chain primer pair VL5'Sfil (TTA CTC GCC TGG CCG TCG TGG CCT TTG TTG GCC TCT CGC TGG GCG ACA TCC AGA TGA CCC AGT C) and 17 18 VL3'BsiWI (AGC GTA CGT ACG TTT GAT TTC CAC CTT GGT CC) and the VH chain 19 primer pair VH5'SnaBI (GAT GTC TAC GTA GGC CTC TCG CTG GGC CAG GTG CAG CTG GTC CAG TC) and VH3'Apal (ACC GAT GGG CCC TTG GTG GAG GCG GAG 20 GAG ACG GCG ACC AGG G). PCR was performed with 100 ng of the phagemid vector 21 22 as the template, 25 pmol each of the VL and VH primer pair, 2 μ M MgCl₂, 0.2 mM dNTPs, 23 and 10 U of Tag polymerase (Promega). After an initial denaturation at 94°C for 2 min, 32 24 cycles were run with 15 s at 94°C, 30 s at 62°C, and 30 s at 72°C, with a final elongation 25 step of 5 min at 72°C. PCR products were purified with the QIAquick PCR purification kit 26 (Qiagen) and digested with the appropriate restriction enzymes prior to cloning. A stable 27 antibody-secreting S2 Schneider cell line (Invitrogen) was established as previously 28 described ⁴⁵, and antibodies in the media were purified and enriched using protein G 29 columns (GE Healthcare, Pittsburgh, PA). The purity and functionality of the purified 30 antibodies were analyzed by Coomassie staining and ELISA, respectively.

31

32 **5.7.** Immunoelectron microscopy and detection of BabA by ABbA (Figure S4G).

Bacterial cells from H. pylori 17875/Leb and the 17875babA1A2 mutant were grown and 33 34 adjusted in PBS to an OD₆₀₀ of 1. An aliquot of each strain was resuspended in 2% BSA 35 in 0.1 M sodium cacodylate buffer for 15 min, centrifuged, and resuspended with ABbA-IgG or an irrelevant anti-HCV antibody of the same human IgG1-isotype diluted 1:1 in 0.1 36 37 M sodium cacodylate plus 0.1% BSA and incubated for 60 min. After incubation, the 38 bacteria were washed twice in 0.1 M sodium cacodylate plus 0.1% BSA and resuspended 39 in the same buffer containing protein A conjugated to 10-nm gold particles (GE 40 Healthcare) and incubated for 45 min. The incubation was terminated by adding 41 glutaraldehyde to a final concentration of 1%, and the samples were fixed overnight at 42 4°C. Bacteria were subsequently pelleted and small aliquots were resuspended in distilled 43 water. Small drops (3 µL) were placed on formvar-coated grids and allowed to attach for 44 5 min. Excess water was removed with filter paper and then the grids were air-dried for 5 45 min and then examined on a Tecnai 10 electron microscope (Fei, Eindhoven, 46 Netherlands) at 100 kV, and the images were recorded on photographic film.

5.8. Construction of a random BabA shotgun gene-fragment library (Figure 5A).

The phagemid vector pSEX81(phOx) was prepared for blunt end ligation by digestion with 2 3 Pvull and EcoRV followed by agarose gel purification. The purified vector was treated with 4 shrimp alkaline phosphatase (NEB, USA) to prevent self-ligation. The full-length babA 5 gene from *H. pylori* strain 17875/Leb was excised from a midi-plasmid preparation by 6 restriction enzyme digestion and purified on an 0.8% agarose gel. The purified babA gene was sonicated with a Covaris S sonicator to obtain DNA fragments with a size of 400, 800, 7 8 or 1500 bp. DNA fragments were polished by treatment with T4 DNA polymerase, and 5'-9 ends were subsequently phosphorylated by T4 polynucleotide kinase (Next End Repair 10 Module, NEB, USA). Fragments were purified on a Qiagen column (PCR purification kit) and ligated overnight with 200 ng of the prepared phagemid pSEX81 plasmid. 11 Electroporation and library preparation were performed as described in ⁴⁹⁻⁵¹, and aliguots 12 13 were stored at -80°C.

14

15**5.9. Selection of ABbA-IgG-binding BabA fragments by phage display (Figure 5A).**16Phage display selection was performed essentially as described in $^{49-51}$, except that17Hyperphage M13KO7∆pIII was used for phage packaging (Progen-Heidelberg, Germany)18and immunotubes were coated with 10 µg ABbA-IgG or HSA-Leb.

19 20

The BabA protein co-crystallized with ABbA-IgG (Fab) (Figure 5C and Figure 5C and Figure 55E, Table S5).

To generate the BabA-ABbA complex, purified BabA^{AD} (residues 25 to 460 of mature 23 24 BabA) and ABbA-Fab were mixed at a 1:1 stoichiometric ratio. Crystal formation of the 25 BabA-ABbA complex was enhanced by use of nanobody Nb-ER19 as described in ^{13,52}. Nb-ER19 is a camelid VHH single domain antibody that binds the 3+4 alpha domain of 26 BabA^{AD}, stabilizes BabA^{AD}, and facilitates its crystallization. Binding of Nb-ER19 is distant 27 28 from the CBD and does not interfere with the binding of glycan receptors or of ABbA to 29 BabA. BabA^{AD} and Nb-ER19 were produced and purified as described previously ¹³. The 30 ABbA-Fab was generated using the Pierce Fab Preparation Kit according to the 31 manufacturer's instructions (ThermoScientific, cat#44985). The BabA-ABbA-Nb-ER19 complex (40 mg/mL in 20 mM Tris-HCI (pH 8.0) and 10 mM NaCI) was crystallized in 15% 32 33 PEG6000, 0.1 M NaAc (pH 5.5), and 0.2 M CaCl₂ by sitting drop vapor diffusion. For data 34 collection, crystals were cryo-protected by brief transfer into the crystallization buffer 35 supplemented with 15% glycerol, after which crystals were loop mounted and flash cooled 36 in liquid nitrogen. X-ray diffraction data were collected from a single crystal at beamline 37 ID29 of the ESRF (date 31/08/2014) at a wavelength of 1.072 Å to a final resolution of 2.7 Å. Diffraction data were integrated and scaled using XDS and XSCALE ⁵³, and the 38 39 structure was solved by molecular replacement using Phaser ⁵⁴ and BabA^{AD}-Nb-ER19 40 (PDB: 5F7W) and an unrelated FAB (PDB: 1S5H) as search models. The final model was obtained after iterative cycles of manual building using Coot ⁵⁵ and maximum likelihood 41 refinement against the X-ray data using Phenix Refine ⁵⁶ resulting in a model that 42 contained two copies of the BabA^{AD}-ABbA-Nb-ER19 complex per asymmetric unit, with 43 44 an R and free R-factor of 22.9% and 28.3%, respectively, and 98.9% of the residues were 45 in allowed regions of the Ramachandran plot. The BabA crystal structure was displayed with DNASTAR/Lasergene Protean 3D Software. 46

1

Data collection	BabA ^{AD} -Nb19-ABBA
Space group	P 1 2 ₁ 1
Cell dimensions	
a, b, c (Å)	99.7, 68.4, 176.6
α, β, γ (°)	90.0, 104.4, 90.0
Resolution (Å)	39.45-2.70 (2.77-2.70) [*]
R _{meas}	6.0 (88.4) [*]
Ι/σΙ	15.1 (2.1)*
CC1/2	99.9 (86.4) [*]
Completeness (%)	99.2 (99.3) [*]
Redundancy	4.3 (4.5)*
Refinement	
Resolution (Å)	39.5-2.7
No. reflections	63297
Rwork/ Rfree	22.9 / 28.3
No. atoms	
Protein	13995
Water	4
B-factors	
Protein	110.6
Water	95.5
R.m.s deviations	
Bond lengths (Å)	0.01
Bond angles (^o)	

2

*Highest resolution shell is shown in parenthesis.

3

4 7. Shuttle vector design, genetic complementation by conjugation, and

5 recombinant expression of the S234A and D233A-S234A-S235A (DSS mutants) BabA in H. pylori (Figure S5G). 6

The *H. pylori* shuttle vector pIB6 is based on the pHeI3 plasmid ⁵⁷ that has been further 7 modified to contain the alpA promoter upstream of a multiple cloning site where the 8 various *babA* alleles were introduced ^{14,58}. The *babA* gene from 17875/Leb was cloned 9

into the shuttle vector pIB6 and transformed into the *H. pylori* P1_{\DeltababA} strain as described 10

by ¹⁴. The pIB6-babA17875/Leb was used for the mutagenesis procedure where the 1 S234A mutant and the DSS mutants were constructed by PCR-based site-directed 2 3 mutagenesis using Genscript (Piscataway, NJ, USA). Fragments were re-cloned in pIB6 4 using Ndel and Notl restriction sites to make up the shuttle vector plasmids (SV) SVS234A 5 and SVDSS/AAA that were transformed into the *dapA*-negative *E. coli* strain β2150. This 6 "donor" strain is strictly dependent on exogenously supplied diaminopimelic acid. Hence, the removal of diaminopimelic acid provides an efficient counter-selection against this 7 8 donor. All "donor" strains with the various *babA* shuttle vector plasmids were conjugated 9 into the H. pylori strain P1_{bbab}A. Plasmids from transformed H. pylori clones were re-10 isolated, and the full babA sequence from each mutant type was sequenced at MWG Operon, Germany. The tested clones showed the correct sequence. 11

12

13 8. Amplification and analysis of BabA sequences.

14 Bacterial cells of strains listed in Table S7 were grown, and colonies were removed from 15 the plates, washed, and re-suspended in 1 mL of PBS to OD_{600nm} = 1.0. This suspension 16 was used to isolate genomic DNA according to the manufacturer's instructions (DNeasy 17 Blood and Tissue Kit, Qiagen). BabA fragments covering nucleotide 1 to approximately nucleotide 1200 were amplified by PCR with 4 µL of genomic DNA as the template and a 18 19 combination of either one of the two forward primers babA2-271¹¹ (5'-ATC CAA AAA 20 GGA GAA AAA ACA TGA AA-3') or babA2-Leader (5'-GCT TTT AGT TTC CAC TTT 21 GAG-3') and either one of the two reverse primers J11R (5'-TGT GTG CCA CTA GTG 22 CCA GC-3`) or A26R (5'-TTG CTC CAC ATA GGC GCA C-3'). The PCR fragments were 23 ligated into pGEM-T (Promega, Madison, CA, USA) and sequenced with T7 and SP6 24 promoter-specific primers. Nucleotide sequences were determined by the dideoxy chain-25 termination method of Sanger using the Big Dye Terminator Cycle Sequencing Kit 26 (Applied Biosystems, Foster City, CA, USA) or using the services of Eurofins (Ebersberg, 27 Germany). Assembly and sequence analysis was performed with Vector NTI version 10 (Invitrogen). Sequences that originated from Aspholm et al.¹¹ are indicated by stars. 28 Sequences that originated from Bugaytsova et al.¹⁴ are indicated by triangles. Mexican 29 30 Mc1215, Mc1207, and Mc1201 were sequenced by the J. Torres lab (co-author). 31 Sequence analysis including alignments using the ClustalW algorithm was performed 32 using DNASTAR/Lasergene MegAlign Pro Software.

33

9. Amino acid positions in the BabA CBD that modulate ABbA binding affinity

35 (Figure 6D and Table S7).

The amino acid residues were derived from BabA alignments of 123 strains from worldwide populations. The alignments were based on high-affinity binding strains that bind ABbA >20% *vs.* low-affinity binding strain that bind ABbA <2%. The amino acid configuration and composition at each position is expressed in terms of the relative size of the amino acid 1-letter code.

41

42 **10. Genome sequencing of strain CCUG17875**

DNA was extracted from bacterial biomass using a modified Marmur procedure ⁵⁹. The short read library was prepared using the Illumina DNA PCR-Free protocol aiming for insert sizes of 550 bp and was subsequently sequenced using the Illumina MiSeq v3 chemistry generating 2*300 bp reads. Libraries for long read sequencing were barcoded using the SQK-RBK004 Rapid Barcoding Kit and sequenced on the Oxford Nanopore

1 MinION platform, flow cell version FLO-MIN106. Raw Fast5 files were base called and 2 demultiplexed using the Guppy software v. 4.2.2. Hybrid assemblies of Illumina and ONT 3 reads were performed using the Unicycler software v0.4.8 ⁶⁰. The de novo assembly 4 produced a circular, complete chromosome of 1,635,834 bp and a plasmid of 8,108 bp. 5 Genome sequencing data for *H. pylori* CCUG 17875 and its plasmid are available from 6 GenBank under BioProject PRJNA793037 with accession number CP090367 and 7 CP0903678, respectively.

8

9 **11. Construction of the phylogenetic tree (Figure 2B).**

10 The phylogenetic distance was calculated based on kmer sharing using mash v. 2.0. 11 (REF: Mash: fast genome and metagenome distance estimation using MinHash ⁶¹). The 12 tree was generated using RapidNJ v. 2.3.2. Genomic sequences used as worldwide 13 references were:

13 14

Genome	GenBank Accession
26695	GCA_000008525.1
51	GCA_000011725.1
908	GCA_000148665.1
Aklavik117	GCA_000315955.1
ausabrJ05	GCA_001653435.1
ELS37	GCA_000255955.1
F30	GCA_000270025.1
Gambia94/24	GCA_000185205.1
HPAG1	GCA_000013245.1
HUP-B14	GCA_000259235.1
India7	GCA_000185185.1
J99	GCA_013177275.1
K26A1	GCA_001653455.1
L7	GCA_001653375.1
NCTC 11637	GCA_900478295.1
P12	GCA_000021465.1
PNG84A	GCA_001653475.1
Shi112	GCA_000277405.1
SouthAfrica7	GCA_000185245.1
J166	GCA_000685625.1
USU101	GCA_006874685.1

15 16

18 (Figure 6E).

19 Acid sensitivity of *H. pylori* binding was performed according to ¹⁴. Acid sensitivity of scFv

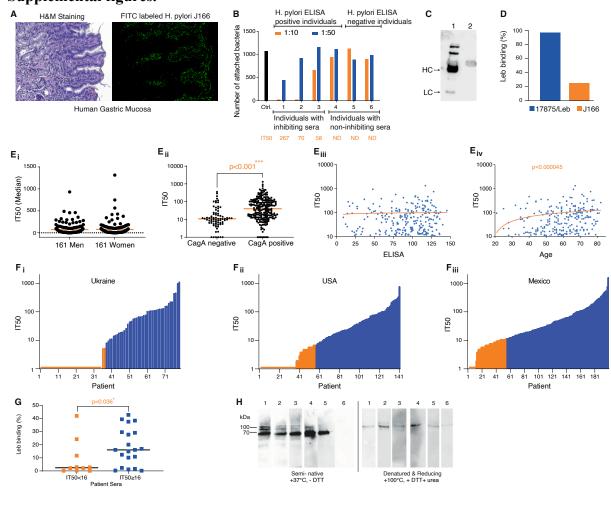
and ABbA binding to the BabA of *H. pylori* 17875/Leb was assessed by incubation of the

^{17 12.} Acid sensitivity in *H. pylori* BabA-mediated Leb binding and Leb inhibition

radiolabeled scFvs or ABbA-IgG in nine buffers with pH ranging from 2.0 to 6.0 with 0.5

pH unit increments (as described in ¹⁴). The assay was performed by mixing 890 µl of 2 3 pure pH buffer, 10 µl of radiolabeled scFv or ABbA-IgG in the corresponding pH buffer, 4 and 100 μ I of bacterial suspensions (OD₆₀₀ = 1.0) in blocking-buffer (pH 7.4). The obtained 5 suspension was incubated on a rocking table at room temperature for 1 h, and the cells 6 were pelleted by centrifugation. CPMs in the pellet and supernatant were measured using 7 the 2470 Wizard² Gamma Counter (PerkinElmer, Waltham, MA, USA), and binding at 8 each pH was determined as described in 2.3. Analysis of BabA binding properties by 9 RIA.

10


1

11 13. QUANTIFICATION AND STATISTICAL ANALYSIS

12 Data were analyzed using Graphpad Prism 9.0 (Graph Pad software, La Jolla, CA, USA) 13 or R, version 4.0.2 (**R Core Team, 2020**). Depending on the experimental design and type of variables under investigation, different methods were utilized. Statistical significance 14 15 regarding group comparisons was investigated via either unpaired or paired Student's t-16 test or the Wilcoxon signed rank test, while associations between variables were tested using Pearson and/or Spearman correlation or Odds Ratios. Further classification 17 18 performance was assessed using Area Under the Curve (AUC) in a Receiver Operating 19 Characteristic (ROC) curve and by permutation tests. Details on the tests used can be 20 found in the respective figure legends. P-values < 0.05 were considered significant (*p <0.05; **p < 0.01; ***p < 0.001), and p > 0.05 was non-significant (NS). Tests were two-21 22 tailed unless otherwise stated. 23 Reference for R; R Core Team (2020). R: A language and environment for statistical

- computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www</u>.R-
- 25 project.org/.

¹ ²₃ Supplemental figures

1 **Supplemental figures.**

2

3

4 Figure S1. High global prevalence of serum inhibition of Leb binding

5 (Ai) H&E-stained adjacent sections of human gastric mucosa from Figure 1A, (Aii) and in 6 vitro attachment by *H. pylori* J166 bacterial cells labeled with FITC-green fluorescence.

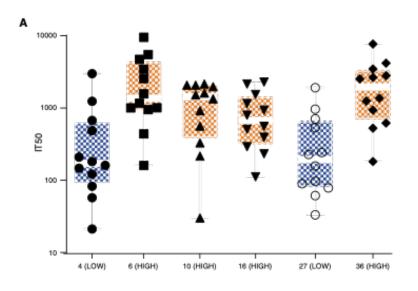
7 (B) Quantification by ImageJ of attached J166 bacteria treated with 1:10 and 1:50 dilutions

8 of individual serum samples from **Figure 1A**. Individuals 1-4 were ELISA positive for *H*.

pylori infection, whereas individuals 5 and 6 were ELISA negative. Individuals 1–3 demonstrated IT50s of 267, 70, and 58, in contrast to individuals 4–6 with non-detectable

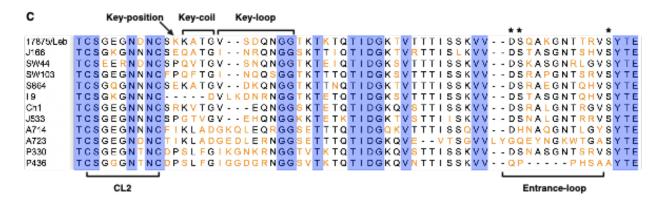
- 11 (ND) titers (**Figure 1B**).
- 12 (C) Immunoblot of the SDS-PAGE-separated serum proteins from individual 1 (from

13 **Figure 1A**) detected with anti-human Ab. The heavy chain (HC) and light chain (LC), i.e.,


the IgG components, were fully removed by Protein G affinity desorption (sera before (1) and after (2) IgG desorption).

- 16 (D) H. pylori J166 with only 25% "Hot-Leb binding" is a low-affinity Leb-binding strain,
- 17 compared to 17875/Leb, with >95% "Hot-Leb binding" which is a high-affinity Leb binding
- 18 strain. High and low-affinity Leb-binding *H. pylori* strains have been identified (Figure
- 19 S2B). The 25% Hot-Leb binding by strain J166 corresponds to ~50-fold lower affinity

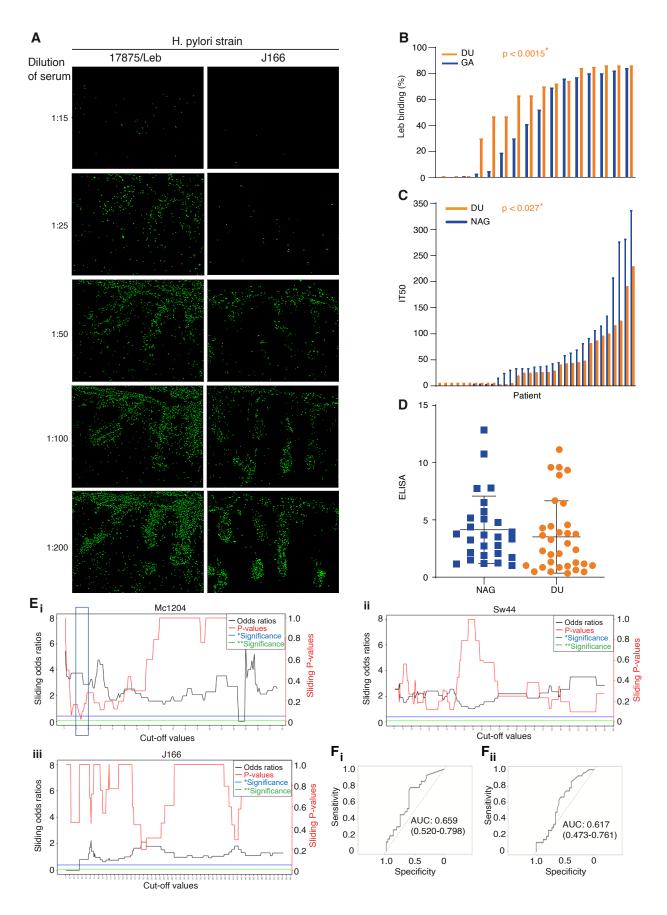
according to Scatchard tests, which is a radio immuno-assay (RIA) for affinity testing
 based on binding of Leb under equilibrium conditions ⁴².

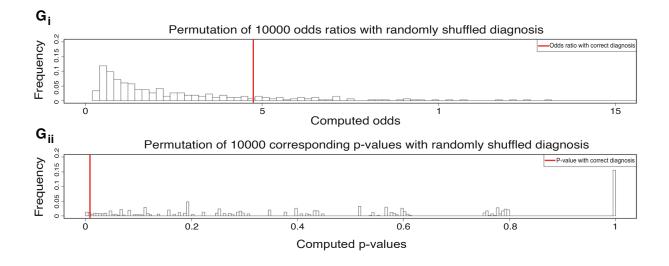

3 (Ei) Among the 322 Kalixanda Śwedish H. pylori carriers (95% of whom were gastric

- 4 healthy), the 161 men with median age 59 years and 161 women with median age of 61 5 years did not exhibit any difference in median IT50 (**Table S1B**).
- 6 (Eii) The CagA status by ELISA among 317 out of 322 Kalixanda individuals (5 individuals
- 7 were not tested for CagA) exhibited strong correlation with IT50, with a median IT50 = 11
- for CagA-negative individuals and a median IT50 = 40 for CagA-positive individuals. *** p < 0.001.
- 10 (**E***iii*) The general immune response against *H. pylori* (ELISA) and IT50 among the 322 11 Kalixanda individuals showed no correlation.
- 12 (Eiv) A rank correlation test showed that the IT50s increased with age among the 322
- 13 Kalixanda individuals, r = 0.28, $p \le 0.000045$. This was most similar to a regular correlation
- 14 test, r = 0.18, $p \le 0.001$.
- 15 (Fi) The IT50s of 79 ELISA-positive individuals from Sumy, Ukraine, tested with strain
- 16 17875/Leb with a median IT50 = 69 and a mean IT50 = 125, where 44 (56%) sera samples
- 17 were positive for Leb inhibition by strain J166 (**Table S1C**).
- 18 (Fii) The IT50s of 141 ELISA-positive individuals from the US tested with strain 17875/Leb
- with a median IT50 = 39 and a mean IT50 = 79, where 83 sera samples (59%) were positive for Leb inhibition by strain J166 (**Table S1D**).
- (Fiii) The IT50s of 200 ELISA-positive individuals from Mexico City, Mexico, tested with
 strain 17875/Leb with a median IT50 = 50 and mean IT50 = 115, where 146 sera samples
 (72%) were positive for Leb inhibition by strain J166 (Table S1E).
- (G) The 30 Mexican sera and corresponding strains (Table S2B) were tested for correlation between IT50s and the Leb binding property. Low IT50 (<16) sera are in
 (G) The 30 Mexican sera and corresponding strains (Table S2B) were tested for correlation between IT50s and the Leb binding property. Low IT50 (<16) sera are in
- orange and high IT50 sera (\geq 16) are in blue with medians indicated (Wilcoxon p = 0.036). (H) Immunoblot detection by serum samples from (1) the Karolinska University Hospital
- 28 (Sweden) (Figure 1I), (2) Ukraine, (3) the US, (4) Mexico, (5) the Kalixanda series
- 29 (Sweden), and (6) the ELISA-negative individual 5 from Figure 1A. BabA protein was
- 30 purified from strain 17875/Leb and separated by semi-native SDS-PAGE (samples were
- kept at 37°C for 10 min without reducing agent) or under full denaturing and reducing conditions (samples heated to 100°C in reducing SDS sample buffer with 8M urea and 10
- 33 mM DTT). BabA binding by sera antibodies was detected using HRP-conjugated anti-
- 34 human antibody.
- 35

в

Strain		ABO Blood Group Antigen Binding Properties, %			Binding	
Continent	Country	ID	Leb, Hot	Leb, Cocktail	ALeb, Cocktail	Preference ^a
Reference		17875/Leb	97 ^b	32	29	Generalist
		J166	25 ^b	12	16	Generalist
Europe Sweden Spain	Sw44 ^c	42	47	33	Generalist	
	Sw103	93	24	14	Generalist	
	S864	83	23	16	Generalist	
Asia China Japan	19	64	15	9	Generalist	
	China	Ch1	86	44	36	Generalist
	J533	88	27	26	Generalist	
North Americas USA/Alaska	A714	89	23	21	Generalist	
	USA/Alaska	A723	63	11	0.3	Specialist
South Peru Americas	Bani	P330	88	28	0.3	Specialist
	Peru	P436	86	49	12	Specialist


67


Figure S2. The broadly blocking serum Abs 1

(A) A box-plot presentation of the IT50 titers for the 12 strains in Figure 2A showing the 2 3 relatively higher variation in IT50 titers for the two lower-inhibitory sera (LOW in blue, 4 individuals 4 and 27) compared to the four sera with Higher inhibitory titers (HIGH in 5 orange, individuals 6, 10, 16, and 36). In the log-scale presentation, the IT50 titers 6 demonstrate increased spans between the guartiles for the LOW serum samples (Ansari-Bradley p = 0.07, i.e., close to significant and significant by removal of one outlier and 7 8 between the "highest" from the LOW sera and the "lowest" from the HIGH sera (Ansari-9 Bradley p = 0.029). The results suggest that the LOW sera displayed a higher level of 10 discrimination for different strains compared to the HIGH sera that efficiently blocked the 11 Leb binding of the majority of *H. pylori* strains. (B) Binding properties and binding preferences of *H. pylori* strains tested for inhibition by 12 human sera (Figure 2A) and by ABbA (Figure 4A). ^aThe Indigenous South American 13 specialist isolates bind to Leb much better than to ALeb (from 2.5-fold to ~100-fold), i.e., 14 15 there is a Specialist preference for binding to blood group O antigen. In comparison, the 16 common Generalist binding preference is defined as the Leb/ALeb-ratio interval from 1:1 to 1:2.5¹¹. ^bThe Hot Leb binding is from **Figure S1D**. ^cThe ABO/Leb binding preference 17 18 of *H. pylori* Sw44 is described in ¹¹. 19 (C) Alignment of the central part of the BabA CBD of the *H. pylori* isolates from Figure 20 **2A.** The strains were chosen with respect to differences in Leb-binding affinity, binding 21 preference (ABO-Generalists vs. O-Specialists), and BabA phylogeny, illustrated in (B) 22 ^{11,14}. The stars indicate the locations of the conserved Leb-binding DSS triad residues ¹³. 23 However, exceptions do exist, and the DSS residues in the BabA Entrance loop that are 24 critical for binding to ABO/Leb can be modified by a change of charge or hydrophobic

25 substitutions or by deletions, e.g., in the Specialist strains that only bind to the blood group

- 26 O antigen, which is a common adaptation in binding preference among Indigenous 27 American/Latin American strains such as A723 and P436^{11,13}.
- 28

Figure S3. Broadly blocking serum Abs protect against overt gastric disease 1

2 (A) Strains 17875/Leb and J166 were tested for blocking of *in vitro* binding to human 3 gastric mucosa (Figure 2B) by a dilution series of sera from individual 1 (from Figures

4 **1A** and **1B**). Attached bacterial cells were quantified by ImageJ.

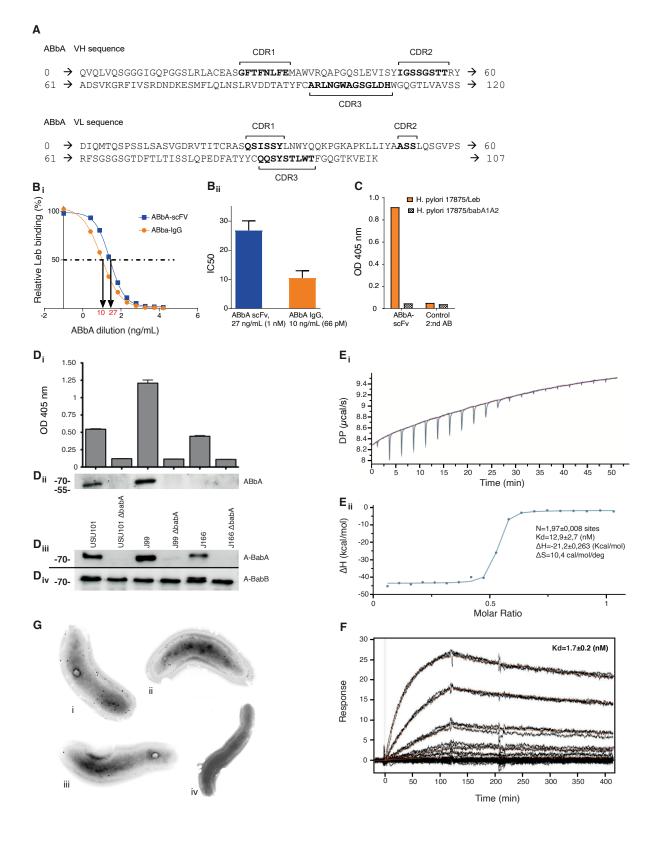
5 (B) A series of 32 Mexican isolates from patients with GA or DU (16 isolates for both) were tested for Leb binding strength with 1 ng of ¹²⁵I-labeled Leb-conjugate, i.e., a limiting 6 concentration, defined as "Hot-Leb". The DU isolates demonstrated generally higher 7

- 8 binding strength compared to GA isolates (Wilcoxon signed-rank test, p = 0.0015) (Table 9 S2B).
- (C) The 79 serum samples from NAG and DU patients demonstrated generally higher 10 11 IT50 for patients with NAG (p < 0.027) (**Table S3**).
- (D) The 79 Mexican serum samples from patients with NAG or DU did not show significant 12
- 13 differences in *H. pylori* ELISA, p < 0.4, i.e., the two patient groups exhibited similar general
- 14 immune responses against chronic *H. pylori* infection (**Table S3**).

15 (Ei) Sliding window for strain Mc1204; critical IT50 = 15 and $p < 0.0189^*$ (indicated by the 16 box) (Table S3).

(Eii-iii) Sliding windows for strains Sw44 (ii) and J166 (iii), i.e., strains that are less 17 18 discriminative for high vs. low-inhibition titers and thus do not provide the critical IT50 19 values with significant ORs (**Table S3**). Our approach using high vs. low-affinity binding 20 strains is conceptually similar to tests with different mAbs for discrimination between 21 sensitivity and specificity in epitope recognition. The high-affinity strains 17875/Leb 22 (Figure 3C) and Mc2014 (Figure S3Ei) discriminate between high vs. low IT50 in contrast 23 to the low-affinity binding strains J166 and Sw44 (Figure S2B), which do not produce 24 significant ORs (*ii* and *iii*). However, the low-affinity binding strain J166 identified all IT50-25 positive serum samples with low IT50 vs. the true IT50-negative sera samples (Table S3). 26 (Fi) The ROC diagram AUC 0.659 for strain 17875/Leb shows that the critical IT50 value 27 that provides the highest significance is 29.5, i.e., the Youden index using the Area Under 28 the Curve (AUC) where sensitivity and specificity are maximal. The described approach 29 for finding optimal cut-offs using the OR as the discrimination measure can be seen as 30 complementing a more common approach, namely that of using the Youden index while 31 showing the overall classification performance across all possible cut-offs using an ROC 32 curve and associated AUC. The optimal cut-offs identified using this approach are very similar, and we can thus view the "OR approach" as a way of illustrating the classification 33 34 performance across the range of possible cut-offs. This complements the AUC, which 35 gives a measure of overall classification performance. What we see using the OR 36 approach is that the best classification performance (high ORs) is achieved within a 37 narrow range of IT50 values around 30, i.e., where an optimal cut-off is located. This, 38 together with the AUC value provided in the ROC, indicates that there is indeed useful 39 information in the IT50 values. The ROC analyses were performed using the pROC 40 package in R⁶².

41 (Fii) The ROC diagram AUC was 0.617 for strain Mc1204, and the critical IT50 value was 42 15.5.


43 (G) To verify the OR approach in an unbiased manner, we performed permutation tests

44 where, in each iteration, we randomly permuted the outcome labels NAG/DU and then

45 searched for an optimal Rf IT50 and its associated OR and its corresponding significance

- (p-value). We performed 10,000 iterations in each of these two permutation tests, and the 46
- Fi-test showed that the number of ORs (i.e., classification performance) that exceeded 47

- 1 OR 4.75 (red bar, from **Figures S3B** and **3C**) were less than 2% of the permutation test 2 iterations. In addition, a **G***ii*-test showed that the ORs with high corresponding significance
- 3 (p-values) constituted non-random results (p = 0.027 and p = 0.0197, respectively).

1 Figure S4. Cloning and identification of ABbA, the broadly blocking mAb

(A) Amino acid sequences of the ABbA VH and VL. The ABbA-VH region was generated
by recombination of the germline gene IgHV3-48*3 with the D segment of IgHD2-15*01
and the J segment of IgHJ4*03. The high number of mutations in comparison to the
germline gene indicates intense affinity maturation. The ABbA-VL chain was derived from
the VL germline gene IgGKV1D-39*01 by recombination with the J segment of IgKJ1*01.
Interestingly, the ABbA-VL chain was nearly identical to its most closely related germline

8 gene.

9 (Bi and Bii) Binding strength of ABbA(1)-scFv (27 kDa) vs. ABbA-lgG (ABbA) (150 kDa)

- by strain 17875/Leb with a 16-fold difference in IC50 (the concentration of antibody that inhibits *H. pylori*-Leb binding by 50%) of 27 ng/mL (1 nM) and 10 ng/mL (66 pM), respectively.
- 13 (C) Specificity of ABbA binding. ABbA(1)-scFv binds to *H. pylori* 17875/Leb but not to

14 its isogenic 17875babA1A2-minus strain. ELISA wells coated with the two *H. pylori* strains

15 were incubated with ABbA(1)-scFv. Binding was detected using an anti-myc mAb and

16 HRP-conjugated anti-mouse Ab, and the control was secondary Ab only.

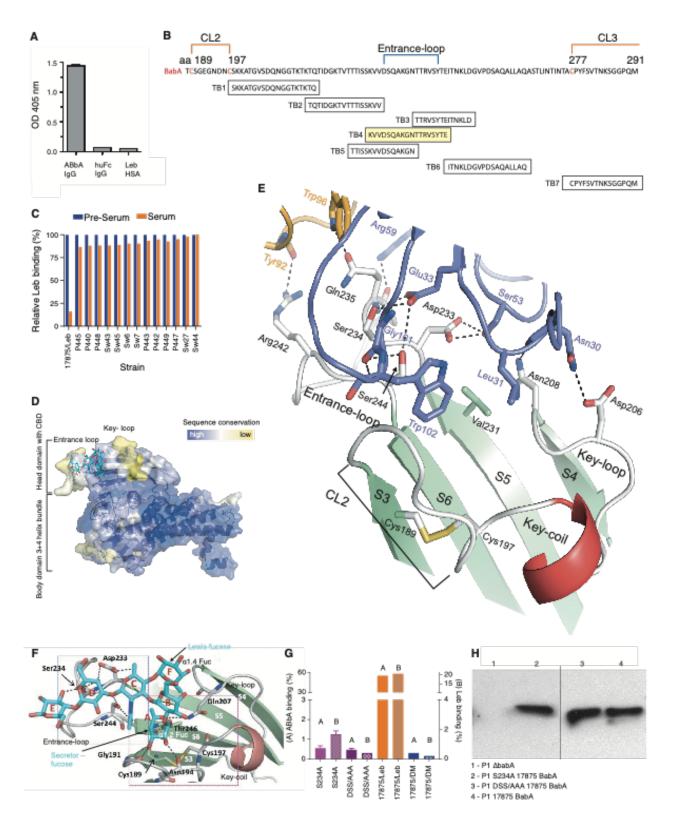
(D) Detailed specificity in ABbA binding. To test for cross reactivity with the non-Leb-17 18 binding paralog BabB protein (with unknown function), three strains - USU101 19 (https://www.ncbi.nlm.nih.gov/nuccore/NZ CP032818.1) and J166 from central/southern Europe ²² and J99 of African phylogeny ⁴⁰ (Figure 2B) – and their babA-minus mutants – 20 were analyzed. Two spontaneous *babA*-minus mutants, USU101*\DabA* and J166*\DabA*. 21 isolated after passage from Rhesus macaques ^{44,63}, and a J99∆babA genetic deletion 22 23 mutant ⁴¹ were compared with their cognate BabA-positive parent strains. (*i*) ELISA wells 24 coated with the three *H. pylori* strains and the corresponding *babA*-minus mutants were 25 incubated with ABbA-IgG. Binding was detected using an HRP-conjugated anti-human 26 antibody. (ii) Immuno-blot detection of BabA by the strains USU101, J99, and J166. 27 ABbA-IgG recognizes and binds BabA but does not recognize any bands/proteins in the 28 BabA-negative strains. The lower affinity of J166 for ABbA binding is reflected in the 29 binding of ABbA-IgG to BabA on the bacterial surface in the ELISA, but not to semi-30 denatured BabA on immunoblots. The ELISA was repeated three times, and each bar

represents the mean of three values with the standard error. (*iii*) BabA expression was

- verified in an immunoblot with BabA-specific rabbit serum under denaturing conditions, where BabA was expressed in the original strains but not in the corresponding isogenic
- BabA mutants. (*iv*) BabB expression was verified in an immunoblot with BabB-specific
- 35 rabbit serum under denaturing conditions, where all tested strains expressed BabB. The
- BabA protein was detected with VITE rabbit antibody ¹⁴, and BabB was detected by VIRA rabbit antibody diluted 1:6000 and accordance HBB goet (anti-rabbit) antibody diluted
- rabbit antibody diluted 1:6000 and secondary HRP-goat (anti-rabbit) antibody diluted
 1:1000 (DakoCytomation, Denmark A/S).
- 39 **(E) Affinity of ABbA-IgG. (***i***)**The ABbA-IgG binding affinity to recombinant soluble BabA 40 (527 aa) devoid of the membrane-spanning hydrophobic beta-barrel domain was 41 measured using isothermal titration calorimetry (ITC). (*ii*) Five separate ITC tests 42 demonstrated an affinity of 10.2 ± 1.5 nM with one representative experiment of Kd = 12.9 43 nM shown in the figure.
- 44 (F) ABbA-IgG was immobilized on a chip and tested by Biacore Surface Plasmon
- 45 Resonance (SPR) for binding to soluble BabA. Three separate tests demonstrated a Kd 46 = 1.7 ± 0.2 nM. Most likely, the functional binding strength of ABbA-IgG will be log-folds
 - 74

increased by the avidity effects gained in binding to BabA multimers on the *H. pylori* bacterial surfaces ¹⁴.

3 (G) Immuno-electron microscopy demonstrated specific BabA immune staining of H.


4 *pylori* by ABbA. Bacterial cells with *H. pylori* 17875/Leb (*i, ii*) were incubated with ABbA,

5 and bound IgG was visualized with 10 nm gold-labeled protein A. The 17875babA-minus

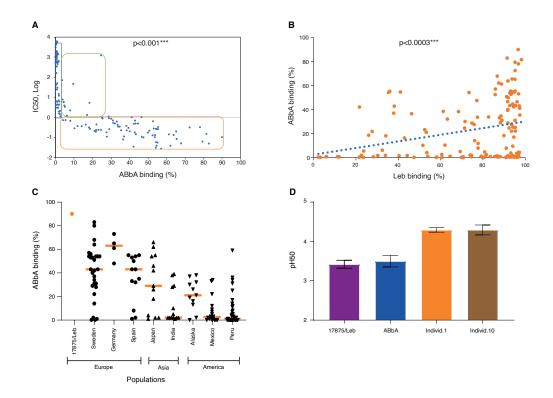
6 mutant was used as a negative binding control (*iii*), and the anti-E2 HCV envelope IgG1

7 was used as a negative antibody control (*iv*). The 17875babA mutant displayed only non-

8 specific background binding similar to the isotype control antibody.

1 Figure S5. Identification of the structural binding epitope in BabA for the broadly 2 blocking ABbA

(A) The 260 aa BabA₇₆₋₃₃₅ polypeptide selected from the phage-display shotgun library
 was recombinantly expressed with its three disulfide loops. Binding was assessed by
 ELISA with ABbA-IgG and human Fc (IgG1) fusion protein (as the negative control) and
 Leb (as the receptor). The 260 aa BabA fragment comprises an adequate epitope for
 ABbA binding but does not provide sufficient structural stability and support for Leb


- 8 binding. The 260 as BabA fragment was identified as reviewed in 64 .
- 9 (B) Alignment of the seven synthetic peptides of the CBD domain from aa197 to aa291,
- 10 where peptides TB2, TB3, TB5, and TB6 partially overlap peptide TB4.

11 (C) Inhibition of Leb binding by the rabbit-sera TB4 of a series of *H. pylori* strains from 12 Sweden (Sw) and Peru (P) and strain 17875/Leb. The TB4 serum, which was derived

- 13 from the TB4 peptide of strain 17875/Leb, only efficiently inhibited Leb-binding by strain
- 14 17875/Leb and did not significantly inhibit Leb-binding of strains from geographically local
- 15 Sweden or distant Peru.

(D) The BabA adhesin exhibits extensive polymorphism with multiple amino acid
 substitutions (indicated in yellow) preferentially focused in the Entrance loop and the Key
 Coil/Loop in the CBD, which is located in the head domain ¹⁴.

- 19 (E) For clarity, the co-crystal structure shows the ABbA-BabA interaction without Leb. Out
- of 15 bonds in total, the VL makes 3 bonds with the Entrance-loop and the VH makes the
- other 12 bonds, including the triple glycan mimicry (GM) domains. The BabA (grey loops
- 22 and green β -strands) bound to ABbA-Fab (VH in lilac, VL in beige) with the amino acid 23 residues that bind BabA indicated, including the hydrophobic W102 and L31 that
- substitute for the fucose residues. In addition, VH residues E33, S53, and G101 (in blue)
- form tight grips with the DSS triad. The VL also contributes with bonds to R242 and Q235.
- 26 Q235 also binds to R59 in the VH and thus is the only BabA residue that binds to both the
- 27 VH and VL.
- 28 (F) Structure of the 17875 BabA-CBD bound to and co-crystallized with Leb (Leb shown
- in cyan; PDB: 5F7W). The six sugar rings of Leb are indicated by A–F, where A and F are
- 30 the secretor fucose and Lewis fucose, respectively, making α 1.2 and α 1.4 bonds with the
- Gal (B) and GlcNAc (C), respectively. The D and E residues constitute the lactose core
- 32 and together with GlcNAc (C) form H-bonds (dashed lines) with the DSS residues located
- in the BabA Entrance loop. The secretor fucose makes many bonds with the CL2 loop,
- 34 whereas the Lewis fucose interacts with the hydrophobic V231 residue located in the 35 immediate proximity of the DSS triad ¹³.
- 36 (G) The triple DSS-to-AAA mutant and the critical single S234A DSS mutant of BabA were
- expressed in *H. pylori* strain P1 Δ babA, where they demonstrated loss of both ABbA and Leb binding. Controls were the 17875/Leb BabA expressed in the P1 Δ babA strain
- (positive control) and the 17875babA1A2-minus mutant (negative control).
- 40 (**H**) BabA expression was verified by two (fused) immunoblots by BabA rabbit sera and
- 41 showed that the expression level of BabA 17875/Leb in the *H. pylori* P1-DSS/AAA and
- 42 P1-S234A mutant was similar to that of *H. pylori* P1 with the non-mutated BabA.

1 2

Fig 6. The ABbA global binding epitopes and their acid sensitivity in binding.

3 (A) The ABbA-IgG binding strength showed a strong correlation with the ABbA IC50 4 (**Table S7**). Spearman's rank correlation r = -0.881 (p < 0.001).

5 (B) The ABbA and Leb binding strengths (Table S7) strongly correlate among global strains ($r_s = 0.3$, p < 0.0003). Thus, clinical isolates with higher binding strength for Leb 6 7 most often bind ABbA-IgG with higher binding strength.

8 (C) The ABbA-IgG binding strength is higher among European strains and also among 9 strains from Japan, whereas strains from Southeast Asia (India) and North, South, and

10 Latin America are lower in ABbA binding strength.

(D) The acid sensitivity profiles, denoted as a pHgram, were determined by incubation of 11 H. pylori with 125I-labled Leb and ABbA-IgG and Fc-purified IgG antibodies from 12 individuals 1 and 10 in the pH 6–2 interval ¹⁴. The series of pH50s were repeated 3 times 13 with SEMs. The test also showed that $\sim 1\%$ of the purified serum IgG bound to *H. pylori*, 14 15 i.e., 0.1 mg/mL out of 10 mg/mL IgG. With this new understanding that the bbAb/ABbA 16 content is 1/10,000 part of the IgG pool (Figure 4D), we conclude that bbAb similarly to

ABbA constitutes ~1% of the serum IgG in circulation that binds to *H. pylori*. 17

The life of H. pylori with a daily acid-wash in the pH gradient

1 **Video S1.** <u>https://play.umu.se/media/t/0 bf1lh9qt</u>

3 The life of *H. pylori* with a daily refreshing acid wash.

4 The gastric onco-pathogen *H. pylori* lives in the stomach lining, referred to as the gastric 5 epithelium. Close to the epithelial cells, the viscous mucus layer provides a bicarbonate 6 buffer zone that protects the epithelial cell lining from the acidic gastric juice present in the 7 stomach lumen just a third of a millimeter away. However, as the distance from the cell 8 lining increases, the bicarbonate buffering fades to form a pH gradient that extends about 9 half-way up the mucus layer. At this "altitude", the impact of the very acidic gastric juice drops the pH back to pH1-2. The gastric juice is acidified by hydrochloric acid, which of 10 course is too acidic for most microbes, *H. pylori* included. In this fascinating environment, 11 12 *H. pylori* has adapted its life in the stomach to make life-long use of both the epithelial cell lining and the mucus layer pH gradient ^{14,26}. The more virulent *H. pylori* isolates bind the 13 14 ABO blood group antigens (in blue) on the epithelial cell surfaces for firm bacterial 15 attachment. In this prime location, H. pylori has full access to the necessary nutrients and 16 iron leaching from the mucosal cells. However, pros come with cons, and the tight 17 attachment exposes H. pylori to our immune system. The H. pylori infection is a major 18 target of the humoral immune system, and the majority of carriers produce ELISA titers 19 against H. pylori antigens. Hence, the H. pylori infections are exposed to high levels of 20 antibodies (in red) that disseminate into the gastrointestinal tissues from the systemic 21 circulation as well as from antibody-producing cells in both the stomach and gut lining. 22 These antibodies bind to a plethora of *H. pylori* antigens such as the urease enzyme, LPS, 23 heat-shock proteins, and the CagA effector protein. Although, the very best attempt 24 possible by our immune system, the antibodies against H. pylori never manage protect 25 against the H. pylori infection, which instead establish itself through adaptation and 26 persists over the lifespan. The persistent infection is the cause of the chronic mucosal 27 inflammation that in many millions of cases annually results in gastric disease, although 28 of different degree of severity, ranging from mild and non-atrophic gastritis to "the silent 29 killer" gastric cancer.

30 Our results suggest that the humoral immune system has found a way to balance the 31 inflammation pressure by raising the bbAbs that prevent BabA adhesin from binding to the ABO/Leb glycans. Thus, the bbAbs block or reduce attachment of the *H. pylori* bacteria to the cell surfaces in the epithelial lining. The bbAbs bind to folded structures in the <u>carbohydrate binding domain (CBD) of the BabA attachment protein (the green hooks)</u>. This is illustrated by the *H. pylori* bacterial cell (located in the center) that is blocked by the bbAbs in binding the ABO glycans by the full set of BabA adhesins. Similarly, the bacterium to the left carries a multitude of bbAbs at its right pole and is barely hanging on in attachment to the cell surface ABO antigens.

To avoid detrimental consequences of the humoral defense and complement system 8 9 activation, H. pylori can take advantage of the rapid gastric mucosal desguamation 10 process, where epithelial cells are pushed into the mucus layer pH gradient. This is a 11 natural, essential, and innate immune protective process and the epithelial cells undergo 12 rapid turnover every 2–3 days and are continuously replaced with new cells proliferating 13 from the stem cells located in the column-palisade just below. The protective mucus layer 14 is renewed even faster, about twice per day. If these processes were irreversible and 15 sufficient, the desquamation process would move and transport all attached H. pylori 16 bacterial cells to the gastric juice where the bacteria would be destroyed by the acidic 17 environment. If this were the case, the *H. pylori* infection would be naturally eradicated in 18 a week or maybe two. But this does not take place and instead H. pylori adapts to the host 19 and successfully persists for the lifetime of the individual.

20 Our new results suggest that H. pylori does not merely and passively adapt to the 21 desquamation process but instead actively makes good use of it as a way to escape the 22 humoral immune system. As the *H. pylori* cells that are attached to desquamating cells 23 move upwards and through the mucus layer, they soon reach their first rejuvenation region 24 at ~pH 4.5, where the majority of acid-sensitive antibodies and complement molecules 25 are both de-attached and inactivated. After about 2 h and further out in the mucus layer, 26 at the slightly lower pH 3.5, the H. pylori cells will rid themselves also of the more acid-27 resistant bbAbs.

28 But how do the H. pylori manage to detach from the desquamating cells? The BabA 29 adhesin binds to the ABO/Leb antigens on the cell surface similarly to the glycan mimicry 30 of the bbAbs. During the millennia of adaptation to the human gastric mucosa, the main 31 attachment protein BabA has evolved to be acid sensitive in its binding to ABO/Leb blood 32 group glycans. At the low pH 3.5, the majority of BabA no longer bind, and the H. pylori 33 will come loose from the desquamating cells. Once free, "acid-washed", and again fully 34 motile, H. pylori uses its chemotactic sensors and flagella (Goers Sweeney et. al, 35 Structure, 2012) to propel itself along the pH gradient from the epithelial cells back to the buffered epithelial surface by its reported rapid motility in the mucus zone ⁶⁵, *H. pylori* can 36 37 in a short time return to the less acidic parts of the epithelial lining, where the bacteria cells can again reattach in a continuous recycling process. Thus, by taking advantage of 38 39 the pH gradient, the H. pylori infection can escape the humoral effector molecules of the 40 immune system and, in addition, can recycle the infection through natural bio-selection of 41 those bacterial cells that have introduced mutations or induced or modified expression 42 patterns that are the best suited for life in the local gastric environment. This also allows 43 for adaptation to changes over the lifetime of the host. However, long-term infection by 44 adherent H. pylori that cause chronic mucosal inflammation constitute the critical risk for 45 gastric cancer development.

¹ Supplemental Tables

2

3 **Table S1A-F** related to **Figures 1** and **S1** and **2** and **S2** and **3**.

Characteristics of Individuals from Karolinska University Hospital, Sweden; Kalixanda
Study, Sweden; Sumy Regional Clinical Hospital, Ukraine; Baylor College of Medicine,
Houston, TX, USA; Mexico UMAE Pediatria, Mexico City, Mexico; Regional Children
Hospital and St. Zinaida City Children Hospital, Sumy, Ukraine.

8

9 **Table S2A-B** related to **Figures S1G** and **3A** and **S3A**.

- 10 Leb-binding properties of Swedish and Mexican strains.
- 11
- 12 **Table S3** related to rest of **Figures 3** and **S3**.

13 Sera IT50 from Non-Atrophic Gastritis (NAG) and Duodenal Ulcer disease (DU) patients.

15 Table S4 related to Figures 1 and 3 and S1

- 16 The location of the $\overline{1750}$ = 30 interval in the different cohorts as identified by strain 17 17875/Leb, and the location of IT50 positive *vs.* negative sera in the different cohorts
- 18 identified by strain J166.
- 19

Table S5. Crystallographic data collection and refinement statistics for the BabA protein co-crystallized with ABbA.

- 22
- 23 **Table S6A.** Binding properties and IC50 of Eurasian *H. pylori* strains.
- S831, I109, and I119 are marked in red as the Specialists among 49 European and 27Asian strains.
- 26

Table S6B. Binding properties and preferences and IC50 of North and South Indigenous
 American and Latin-American *H. pylori* strains.

- 29 ND Not Determined
- 30 O Specialists are the strains with >2.5 ratio in Leb/ALeb binding ¹¹.
- A Specialists are the strains with <0.4 ratio in Leb/ALeb binding ¹¹.
- 32
- Table S7. BabA alignment (aa 180–250) according to ABbA binding strength. Sequences
 that originated from ¹¹ are indicated by a star (*).
- Sequences that originated from ¹⁴ are indicated by a triangle (Δ). Mexican Mc1215, Mc1207, and Mc1227 were sequenced by the J. Torres lab (co-author).
- 37

Table S8. ABbA binding properties of global *H. pylori* strains and of generalist vs.
 specialist *H. pylori* strains.

- 40
- 41

- **Table S1A**, related to **Figure 1** and **Figure S1**, **Figure 2** and **Figure S2** and **Figure 3**.
- Characteristics of *H. pylori* ELISA-positive individuals from Karolinska University
 Hospital, Sweden.

#	Serum Code	IT50 17875/Leb
1	Individual 1	0
2	Individual 2	0
2 3 4	Individual 3	10
	Individual 4	252
5	Individual 5	20
6	Individual 6	1643
7	Individual 7	448
8	Individual 8	0
9	Individual 9	0
10	Individual 10	2168
11	Individual 11	17
12	Individual 12	0
13	Individual 13	0
14	Individual 14	0
15	Individual 15	0
16	Individual 16	1280
17	Individual 17	9
18	Individual 18	6
19	Individual 19	0
20	Individual 20	0
21	Individual 21	0
22	Individual 22	0
23	Individual 23	20
24	Individual 24	141
25	Individual 25	132
26	Individual 26	157
27	Individual 27	674
28	Individual 28	0
29	Individual 29	0
30	Individual 30	59
31	Individual 31	107
32	Individual 32	0
33	Individual 33	7
34	Individual 34	51
35	Individual 35	14
36	Individual 36	2041
37	Individual 37	0
38	Individual 38	43

1 **Table S1B** related to **Figure 1** and **Figure S1** and **Figure 3**.

2 Characteristics of Individuals from Kalixanda Study, Sweden.

3

The serum samples are displayed according to IT50s tested with *H. pylori* strain 17875/Leb. In addition, *H. pylori* strain J166 identified the series of IT50 titers as positive (+) or negative (–). The location for the background level (the start of the positive IT50 sample is indicated by the horizontal bar) was calibrated with sera from ELISA-negative individuals using *H. pylori* J166.

#	Sarum Cada	Sav	1	ELIS	4	IT50	
#	Serum Code	Sex	Age	H. pylori	CagA	17875/Leb	J166
322	K1260	F	67	116.9	1	1314	+
321	H1959	Μ	66	47.7	1	931	+
320	H87	F	76	127.8	1	748	+
319	K1047	F	71	77.8	1	564	+
318	K275	Μ	72	103.9	1	489	+
317	H2529	Μ	40	120.3	1	461	+
316	K1384	Μ	60	103.5	1	458	+
315	K1421	F	64	107.1	1	427	+
314	H2821	F	65	88	1	416	+
313	H1376	F	74	58.9	1	376	+
312	K2789	М	47	36.5	0	355	+
311	H2441	F	51	108.6	1	343	+
310	K2593	F	78	124.8	1	329	+
309	K2787	Μ	77	119.5	1	321	+
308	H2905	Μ	62	117.3	1	305	+
307	H2181	Μ	62	112.8	1	297	+
306	H824	F	44	119.8	1	294	+
305	K49	Μ	74	72.9	0	292	+
304	H244	Μ	44	15.2	1	280	+
303	K1999	Μ	82	92.6	1	259	+
302	K1488	М	58	123.9	1	255	+
301	H1218	F	70	98.5	1	250	+
300	H2162	Μ	39	21.1	1	243	+
299	H278	Μ	72	106.8	1	236	+
298	K1614	Μ	65	100.5	1	234	+
297	H2574	Μ	72	48.3	1	230	+
296	K2498	F	62	113.6	0	206	+
295	K2608	Μ	32	125.8	1	199	+
294	H2854	F	67	116	1	194	+
293	K1415	М	66	17.1	1	186	+
292	K956	М	66	103.9	1	186	+
291	K15	F	53	128.3	1	185	+
290	H988	F	67	56.6	1	180	+
289	K2600	F	77	27	1	179	+

288	K2644	F	56	116.8	1	173	+
287	H814	F	52	109.2	1	170	+
286	H2000	F	59	105.2	1	168	+
285	K2042	F	72	130.7	1	161	+
284	H197	M	69	72.5	1	157	+
283	H18	F	57	41.9	1	157	+
282	K295	M	59	104.3	1	150	+
281	K1829	M	38	78.7	1	149	+
280	H1262	M	71	114.9	0	149	+
279	H812	F	25	27.2	1	140	+
279	H2876	M	35	113.5	1	145	+
278		F	64	113	<u> </u>	143	+
276	H1833	F	70	91	<u> </u>	138	+
276	K2026	F		121.1	1	130	
	H2842		80				+
274	H817	F	77 67	82.4	<u>1</u> 1	133	+
273	H2022	-		120.4		132	
272	H1011	M	72	43.6	1	132	+
271	K2534	M	76	94.1	1	131	+
270	K1604	M	78	83	1	128	+
269	H1890	M	59	123.7	1	123	+
268	K2770	F	77	114.1	1	122	+
267	K1243	M	69	114.7	-	122	+
266	H853	F	73	145.3	1	120	+
265	H783	M	70	77.9	1	119	+
264	K745	F	73	130.9	1	119	+
263	K1953	M	53	98.9	0	118	+
262	H1517	M	64	105.3	1	116	+
261	K638	F	64	79.8	1	116	+
260	H2215	F	46	50.9	1	116	+
259	K364	F	67	94.2	1	115	+
258	K366	F	51	72.7	1	114	+
257	H2442	F	59	82.8	1	111	+
256	K450	F	76	48.9	1	110	+
255	H2924	F	54	117.7	0	110	+
254	K1650	M	74	101.1		105	+
253	H810	F	69	136.7	0	103	+
252	K681	F	68	121.2	1	102	+
251	H234	M	69	128.8	1	102	+
250	H1409	M	62	98.5	1	101	+
249	K1924	M	47	58.5	1	100	+
248	H262	F	71	46	1	100	+
247	H649	F	70	131.6	1	98	+
246	H2877	F	54	117.8	1	95	+
245	H1905	M	71	130.6	1	95	+
244	K1022	Μ	50	122.1	1	94	+

243	K2429	М	81	60.5	1	94	+
242	K1013	M	21	101.1	1	93	+
242	K1013 K299	M	51	116.3	1	93	+
241	K299 K2462	M	80	20.5	1	93	+
239	K2090	F	43	134.3	1	92	+
239	K2765	M	62	72.6	0	91	+
230	K906	F	56	14.2	1	91	+
237	H1485	F	59	39.7	1	90	+
230	K1928	F	66	96.6	1	89	+
233	K2762	M	67	92.1	1	89	+
234	K1520	F	68	54.3	1	87	+
233	K135	M	53	65.8	1	85	+
232	K2030	F	64	89.9	1	82	+
230	K833	M	48	113.2	1	80	+
229	K2246	M	71	59.7	1	75	+
229	K2074	F	52	84.1	1	73	+
227	H2891	F	57	90.1	1	74	+
226	K1289	F	74	128.7	1	74	+
225	K1964	F	69	64	1	73	+
223	H1207	F	64	93.3	1	72	+
223	H2705	F	68	132.9	1	69	· +
222	H1804	F	55	86.1	1	69	+
221	K1248	M	65	110.9	1	68	+
220	H718	M	62	68.9	1	66	+
219	K2156	M	40	40.8	1	66	+
218	H2012	M	75	101.6	1	66	+
217	K2570	F	76	83.6		64	+
216	H93	F	35	90.2	1	64	+
215	H2626	M	74	117.6	1	63	+
214	H907	F	63	119.9	1	63	+
213	H701	M	69	8.8	1	62	+
212	H926	M	75	131.9	1	62	+
211	K2132	F	63	97.8	1	62	+
210	H267	F	73	60.6	1	62	+
209	H1473	M	69	98.4	1	61	+
208	H2268	F	56	84.4	1	61	+
207	H1458	M	67	106.9	1	60	+
206	H840	M	67	92.5	1	59	+
205	K2067	М	39	75.5	1	59	+
204	K377	F	72	122.8	0	55	+
203	K959	F	61	135.8	1	54	+
202	K2783	F	52	52.4	1	54	+
201	H1247	М	71	91.8	1	53	+
200	K2840	F	57	66.7	1	53	+
199	H1391	М	36	64.2	1	53	+

198	H624	F	68	124.8	1	52	+
197	H964	F	35	36.6	1	52	+
196	K1294	F	78	87.1	1	50	+
195	K2606	M	63	127.3	0	49	+
194	K30	F	51	121.4	1	48	+
194	H2780	F	47	121.4	1	46	+
193	H1240	F	57	103.6	1	40	+
192	K2841	F	37	73.2	1	44	+
191	H1934	F	80	110.7	1	44	+
189	H1401	F	52	101.6	1	43	+
188	K2844	F	79	90.9	0	41	+
187	K1569	M	70	117.4	1	41	+
186	K2135	M	55	65.4	1	40	+
185	H2857	M	51	94	1	40	+
184	H2007	M	56	59.2	1	38	+
183	H118	F	28	79.9	1	38	+
182	K1073	M	73	105	1	36	+
181	K2878	M	61	74.5	1	36	+
180	H373	F	73	129.7	1	35	+
179	K2837	M	73	131.5	0	35	+
178	K326	M	59	92.2	1	35	+
177	H259	F	62	122.5	1	33	+
176	K2740	M	77	102.5	1	34	+
175	H690	F	57	81.1	1	34	+
173	H2450	F	79	79.9	1	33	+
173	K384	M	52	111.4	1	33	+
172	K2580	M	58	11.8	1	33	+
172	H157	M	65	139.8	1	31	+
170	H2811	M	50	91.1	0	30	+
169	H1351	M	51	74.6	1	30	+
168	H2260	F	78	113.8	1	28	+
167	K199	M	64	109.2	1	28	+
166	K731	M	68	122.3	1	20	+
165	K1117	F	47	13.9	1	26	+
164	H786	M	49	30.4	1	20	+
163	H1615	M	55	125.8	1	23	+
162	K2079	M	71	123.0	1	24	+
162	H2830	M	37	97.4	0	24	+
160	K381	M	60	110.6	1	24	+
159	K1880	F	63	99.4	1	24	+
159	K1000	M	71	<u>99.4</u> 112	1	24	+
158	H1579	M	71	88.8	1	24	+
157	K1275	M	49	<u> </u>	0	23	+
155	K1275	F	49	71.7	1	23	+
155	H351	F	43	110	1	22	+
134	11001	1	42	110	I	22	Т

153	H2421	Μ	48	99.8	1	22	+
152	K2890	F	28	34.6	0	22	+
151	K2104	F	25	27.8	1	21	+
150	K2627	M	54	98	1	21	+
149	H57	F	66	80.3	1	20	+
148	H1560	M	56	116	1	20	+
147	H2806	F	77	82.1	0	20	+
146	H1949	F	72	98.5	1	20	+
145	K2540	F	74	99.1	1	19	+
144	K328	F	68	115	1	19	+
143	H2807	F	74	83.6	1	19	+
142	K430	М	55	81	1	19	+
141	H2618	М	45	131.6	1	19	+
140	H2700	F	64	108.9	1	19	+
139	K312	М	58	90.6	1	19	+
138	K993	М	70	120.8	1	19	+
137	K322	М	44	100.5	1	18	+
136	H2645	М	60	56.2	0	18	+
135	K56	М	64	87.2	1	18	+
134	K34	М	72	65.4	1	17	+
133	H2211	F	60	99.9	1	17	+
132	H2885	М	59	90	1	17	+
131	K2434	М	68	72.7	1	17	+
130	H303	F	45	77.9	1	17	+
129	K2164	F	67	26.3	1	17	+
128	K1807	М	56	115	1	17	+
127	K2718	М	48	90.6	0	17	+
126	K1966	F	68	114.7	1	17	+
125	K435	F	64	20.5	1	16	+
124	K632	М	52	126.3	1	16	+
123	H207	М	54	57.4	1	16	+
122	K416	F	62	117.1	0	16	+
121	K735	М	49	33.7	1	16	+
120	K1369	F	44	98.2	1	16	+
119	K279	М	39	106.9	1	15	+
118	H1212	F	65	64.1	1	15	+
117	H2206	М	47	23.4	1	15	+
116	H1078	F	38	79.2	1	15	+
115	K2478	М	41	87.2	1	14	+
114	H1551	F	56	118.6	1	14	+
113	H605	F	40	113.3	0	14	+
112	K2070	М	75	120.4	0	13	+
111	K892	F	68	82.6	1	13	+
110	H1375	F	37	135.2		13	+
109	K2526	М	55	108.9	1	13	+

108	K697	М	62	107.3	1	13	+
					1		
107 106	K2198	F	69 58	91.3 112.9	1	<u>13</u> 13	+ +
106	K1389 K1237	F	61	51.8	1	13	+
					1		+
104	K2244	M F	64	118.7	1	13	+
103	K395	F	43 75	110.8	1	13 13	
102	K1292			78.3	1	13	+
101	H1426	M	58	109.7		13	++
100	K1425	<u>M</u>	44	108.5	0	13	+
99 98	H258	F	47 67	76.4	0	12	+
98 97	K28 H2829	M	73	117.3	1	12	+
			62	64.9 125.7		12	
96	K2951	M F		135.7 32.3	0	12	++
95	K2118		58	25.5	0		
94 93	H2886 H84	M F	32 57	<u>25.5</u> 95	1	12 12	++
93 92			60			12	+
92 91	K1446 K2707	M F	44	94.1 85.7	0	12	+
					0	12	+
90 89	K2625 K940	M F	79 53	56.8 115.3	1	12	
88	H2180	F	53		0	12	++
87		-	49	94.5 118.4	1	12	+
	K2464	M F			1	12	
86	K809		34	125.8			+
85 84	K2539 K966	M F	41 60	90.7 44.4	<u>1</u> 1	<u>11</u> 11	+
83	K900 K652	F	28	23.8	0	11	+
82	K052	M	50		1	11	+
81	H21		49	126.9	0	11	+
80	K2136	M F	59	77.9 69.3	0	11	+
	K1972	F	69	129.2	0	11	+
79 78		F	59		0	11	+
77	K2699	M	59	69.1	1	10	+
76	H2117 K2730		57	124.7 97.4	0	10	+
75	K83	M	53	97.4	1	10	+
	K1427		+ +		1		+
74 73	H604	M	30 53	62.8 123.2	1	10 10	+
73	K2190	F	53	74.8	0	10	+
72	K2054	M	55	104	1	10	+
70	K2054 K2864	M	46	31.5	0	10	+
70 69	K1126	F	55	94.8	1	10	+
69 68	K1120 K935	M	64	94.0	1	10	+
67	H1034	F	52	99.9	1	9	+
66	K2611	M	52	99.9 89.9	0	9	+
65	H90	M	55	122.2	0	9	+
65 64	K54	M	55	31.7	1	9	+
04	N04	IVI	52	১ ।./	I	9	+

63	H1533	F	62	111.4	0	9	+
62	H356	M	22	97.2	0	9	+
61	K2014	F	58	94.3	0	9	+
60	K2814	F	65	63.6	0	8	+
59	H2128	M	43	72.1	1	8	+
58	K2032	М	57	78.8	1	8	+
57	K730	М	66	93	1	8	+
56	K1899	F	61	61.4	1	8	+
55	K2130	F	70	81.5	0	8	+
54	K1432	М	43	73.3	0	8	+
53	K1817	М	51	40.2		-	-
52	K155	F	78	113.6	1	-	-
51	K2108	F	69	132.3	0	-	-
50	K1561	F	51	49.3	1	-	-
49	H1979	М	54	119.3	1	-	-
48	K789	F	43	111.4	0	-	-
47	K2420	М	70	105	1	-	-
46	H1254	F	61	113.6	1	-	-
45	H2406	F	50	119.5	0	-	-
44	K1836	F	72	52.4	1	-	-
43	K1805	М	45	50.4	0	-	-
42	K870	F	44	9.5	1	-	-
41	H319	М	62	90	0	-	-
40	H1224	М	54	94.8	1	-	-
39	K2994	М	61	80.3	0	-	-
38	K100	F	36	92.9	0	-	-
37	H298	F	71	121	0	-	-
36	K1837	М	35	63.2	0	-	-
35	K1858	F	65	79.4	0	-	-
34	H1327	М	56	88.4	1	-	-
33	K108	М	50	122	1	-	-
32	K2250	F	60	75.6	0	-	-
31	K1825	F	39	110.5	1	-	-
30	H687	F	76	28.9	1	-	-
29	H1436	F	44	22.5	0	-	-
28	H85	F	40	11.3	1	-	-
27	K2504	F	72	_	1	-	-
26	K2093	М	64	117.6	0	-	-
25	K1326	М	57	96.5	0	-	-
24	H1592	F	51	66.8	0	-	-
23	K1806	М	72	109.4	1	-	-
22	K1611	F	64	15.3	1	-	-
21	K831	F	54	130.9	0	-	-
20	K877	F	42	7.6	1	-	-

19	K976	F	32	71	1	-	-
18	K2087	Μ	48	127.7	0	-	-
17	H196	F	64	105.9	1	-	-
16	H2588	F	27	125.4	0	-	-
15	H107	Μ	46	119.1	1	-	-
14	H119	Μ	46	83.2	0	-	-
13	K865	F	62	108.6	0	-	-
12	H914	F	59	80.8	0	-	-
11	H921	Μ	54	58.8	1	-	-
10	H965	F	54	7.4	1	-	-
9	K1082	F	55	49.1	0	-	-
8	H1281	Μ	36	18.9	1	-	-
7	H1641	Μ	69	61.9	0	-	-
6	H1871	Μ	48	117.8	1	-	-
5	K1993	Μ	72	16.9	0	-	-
4	H2008	Μ	62	110.2	1	-	-
3	K2059	F	41	90.8	1	-	-
2	K2587	Μ	59	91.9	0	-	-
1	K2906	Μ	63	100.7	1	-	-

1 **Table S1C** related to **Figure S1** and **Figure 3**.

Characteristics of *H. pylori* ELISA-positive patients from Sumy Regional Clinical Hospital, Ukraine.

- 4 The serum samples are displayed according to IT50s tested with H. pylori strain
- 5 17875/Leb. In addition, *H. pylori* strain J166 identified the series of IT50 titers as positive

6 (+) or negative (–). The location for the background level (the start of the positive IT50

7 sample is indicated by the horizontal bar) was calibrated with sera from ELISA-negative

٦

8 individuals using *H. pylori* J166.

# Serum Code	IT50		
#	Seruin Code	17875/Leb	J166
79	UA-96	1159	+
78	UA-24	1023	+
77	UA-2	476	+
76	UA-84	455	+
75	UA-104	232	+
74	UA-80	232	+
73	UA-82	203	+
72	UA-78	165	+
71	UA-83	160	+
70	UA-39	135	+
69	UA-9	130	+
68	UA-31	130	+
67	UA-16	125	+
66	UA-23	118	+
65	UA-13	116	+
64	UA-98	113	+
63	UA-11	112	+
62	UA-38	108	+
61	UA-66	107	+
60	UA-40	79	+
59	UA-42	78	+
58	UA-6	71	+
57	UA-86	69	+
56	UA-88	69	+
55	UA-8	63	+
54	UA-62	61	+
53	UA-75	57	+
52	UA-21	48	+
51	UA-15	46	+
50	UA-77	38	+
49	UA-10	27	+
48	UA-43	23	+
47	UA-25	20	+
46	UA-79	19	+
45	UA-60	19	+

	T		
44	UA-72	17	+
43	UA-46	16	+
42	UA-41	14	+
41	UA-44	12	+
40	UA-100	12	+
39	UA-63	11	+
38	UA-70	10	+
37	UA-52	8	+
36	UA-12	5	+
35	UA-32	-	-
34	UA-14	-	-
33	UA-97	-	-
32	UA-50	-	-
31	UA-59	_	_
30	UA-36	_	_
29	UA-17	_	_
28	UA-89		_
27	UA-65	_	_
26	UA-49	_	-
25	UA-76		-
24	UA-54	_	-
23	UA-7		
22	UA-20		-
21	UA-73	-	-
20	UA-53		
19	UA-74		-
18	UA-22		-
17	UA-105	-	-
16	UA-103	-	-
15		-	-
	UA-27 UA-35	-	-
14 13	UA-35 UA-5	-	-
		-	-
12	UA-26	-	-
11	UA-34	-	-
10	UA-55	-	-
9	UA-90	-	-
8	UA-94	-	-
7	UA-30	-	-
6	UA-103	-	-
5 4	UA-28	-	-
4	UA-92	-	-
3	UA-95	-	-
2	UA-61	-	-
1	UA-91	-	-

1 **Table S1D** related to **Figure S1** and **Figure 3**.

2 Characteristics of *H. pylori* ELISA-positive patients from Baylor College of

3 Medicine, Houston, TX, USA.

4

5 The serum samples are displayed according to IT50s tested with *H. pylori* strain 6 17875/Leb. In addition, *H. pylori* strain J166 identified the series of IT50 titers as positive

7 (+) or negative (–). The location for the background level (the start of the positive IT50

8 sample is indicated by the horizontal bar) was calibrated with sera from ELISA-negative

- 9 individuals using *H. pylori* J166.
- 10

#	Some Code	IT50	
#	Serum Code	17875/Leb	J166
141	11352	794	+
140	11377 A	350	+
139	12478	312	+
138	11360	289	+
137	12121 A	274	+
136	12150 A	268	+
135	12364	252	+
134	12490	242	+
133	11526	221	+
132	11883 B	171	+
131	11358 B	156	+
130	11263	146	+
129	13182	145	+
128	12866	131	+
127	11361	111	+
126	12838	109	+
125	11538	105	+
124	12381	105	+
123	12424	104	+
122	13192	96	+
121	12609	96	+
120	11327	93	+
119	12804	87	+
118	12854	84	+
117	13178	82	+
116	13185	81	+
115	11240	80	+
114	13789	79	+
113	12562	75	+
112	12815	75	+
111	12456	63	+
110	12643	60	+
109	11369 A	58	+

		I	
108	11326	57	+
107	11344 A	55 53	+
106	12342	+	
105	12798	+	
104	11485 B	50	+
103	11843 A	47	+
102	12853	44	+
101	12502	44	+
100	11255	39	+
99	12343	39	+
98	12292	39	+
97	11613	36	+
96	12803	36	+
95	11252	33	+
94	12868	31	+
93	12922	29	+
92	12533	28	+
91	12970	27	+
90	11281	26	+
89	12614	25	+
88	12786	24	+
87	13067	24	+
86	12341	24	+
85	11355	23	+
84	12544	23	+
83	11332	22	+
82	11248	21	+
81	11465 B	20	+
80	11376 A	20	+
79	11677 A	19	+
78	11325	19	+
77	11443 A	18	+
76	13175	17	+
75	12351	17	+
74	13714 A	16	+
73	12812	15	+
72	13003	14	+
71	11333 B	14	+
70	12968	14	+
69	12344	13	+
68	12886	13	+
67	11266	12	+
66	12188	11	+
65	11842 A	11	+
64	11834 A	10	+

00	44007.4		
63	11837 A	9	+
62	12430	9	+
61	11891 A	9	+
60	12817	8	+
59	11353 B	8	+
50	44000 4		
58	11829 A	-	-
57	11660	-	-
56	12830	-	-
55	11320	-	-
54	11351 A	-	-
53	11354	-	-
52	12869	-	-
51	12566	-	-
50	11884 A	-	-
49	12753	-	-
48	11258	-	-
47	12800	-	-
46	13179	-	-
45	12126 A	-	-
44	11364	-	-
43	12795	-	-
42	15395 A	-	-
41	13191	-	-
40	11631 B	-	-
39	12399	-	-
38	12159 B	-	-
37	12345	-	-
36	11882 A	-	-
35	11888 A	-	-
34	11813 A	-	-
33	11874 A	-	-
32	11444 A	-	-
31	11445 A	-	-
30	11371 A	-	-
29	11367 B	-	_
28	11368 B	_	-
27	11260	_	-
26	11348 A	_	_
25	11343 A	-	-
24	1340 A	-	_
23	11258	-	_
22	1335 C	-	
21	11349 A		
20	13172	-	
20	13172	-	-

19	13173	-	1-
18	13174	-	-
17	13184	-	-
16	12876	-	-
15	12906	-	-
14	13177	-	-
13	13181	-	-
12	12858	-	-
11	12910	-	-
10	12837	-	-
9	13791	-	-
8	12611	-	-
7	11289	-	-
6	11888 B	-	-
5	11352	-	-
4	11335 d	-	-
3	11635 C	-	-
2	12339	-	-
1	12368	-	-

1 **Table S1E** related to **Figure S1** and **Figure 3**.

2 Characteristics of *H. pylori* ELISA-positive patients from Mexico UMAE Pediatria,

3 Mexico City, Mexico.

4 5

6

The serum samples are displayed according to IT50s tested with *H. pylori* strain 17875/Leb. In addition, *H. pylori* strain J166 identified the series of IT50 titers as positive (+) or negative (–). The location for the background level (the start of the positive IT50

(+) or negative (-). The location for the background level (the start of the positive IT50 sample is indicated by the horizontal bar) was calibrated with sera from ELISA-negative

- 9 individuals using *H. pylori* J166.
- 10

#	Serum Code	IT50	
#	Serum Code	17875/Leb	J166
200	326	1651	+
199	261	799	+
198	150	581	+
197	426	561	+
196	15	552	+
195	151	513	+
194	10	488	+
193	5	451	+
192	24	413	+
191	51	378	+
190	119	374	+
189	227	338	+
188	300	313	+
187	188	302	+
186	220	300	+
185	13	287	+
184	431	274	+
183	57	256	+
182	174	247	+
181	336	228	+
180	422	214	+
179	535	203	+
178	56	193	+
177	182	191	+
176	263	190	+
175	530	171	+
174	372	168	+
173	37	151	+
172	250	151	+
171	297	148	+
170	125	148	+
169	59	137	+
168	395	136	+

167	353	131	+
166	140	125	+
165	451	122	+
164	278	120 115	+
163	264	115	+
162	158	115	+
161	175	114	+
160	106	113	+
159	2	108	+
158	21	107	+
157	553	107	+
156	23	105	+
155	401	104	+
154	468	100	+
153	444	95	+
152	456	92	+
151	204	91	+
150	11	82	+
149	228	77	+
148	591	74	+
147	27	74	+
146	31	73	+
145	235	71	+
144	407	67	+
143	14	66	+
142	434	66	+
141	344	66	+
140	543	65	+
139	531	62	+
138	539	62	+
137	130	60	+
136	552	59	+
135	9	57	+
134	145	57	+
133	371	56	+
132	237	54	+
131	6	54	+
130	284	52	+
129	615	51	+
128	134	50	+
120	43	49	+
126	36	49	+
125	29	49	+
123	576	48	+
124	593	40	+
120	000	۲	•

465	1.4.0		
122	419	45	+
121	437	42	+
120	44	40	+
119	206	38	+
118	608	37	+
117	339	37	+
116	574	36	+
115	415	36	+
114	219	36	+
113	541	35	+
112	379	32	+
111	449	31 31	+
110	32	31	+
109	238	31	+
108	41	30	+
107	421	30	+
106	521	29	+
105	397	29	+
104	240	29	+
103	208	28	+
102	439	27	+
101	454	27	+
100	194	27	+
99	193	26	+
98	184	25	+
97	54	25	+
96	393	25	+
95	40	24	+
94	296	24	+
93	469	24	+
92	400	23	+
91	467	22	+
90	257	21	+
89	77	21	+
88	465	21	+
87	442	20	+
86	241	20	+
85	355	20	+
84	446	20	+
83	52	20	+
82	579	19	+
81	95	19	+
80	211	19	+
79	558	18	+
78	259	18	+

77			
	580	18	+
76	271	18	+
75	50	17	+
74	403	17	+
73	181	17	+
72	45	16	+
71	63	16	+
70	239	16	+
69	3	16	+
68	409	15	+
67	177	15	+
66	131	14	+
65	248	14	+
64	440	14	+
63	112	13	+
62	331	13	+
61	390	13	+
60	550	13	+
59	33	12	+
58	163	12	+
57	582	-	-
56	35	-	-
FF	500		
55	528	-	-
55 54	286	-	-
55 54 53		-	-
54 53 52	286 7 602		
54 53	286 7		-
54 53 52 51 50	286 7 602 49 78	-	-
54 53 52 51	286 7 602 49	-	- - -
54 53 52 51 50	286 7 602 49 78	-	- - -
54 53 52 51 50 49	286 7 602 49 78 26	-	- - - -
54 53 52 51 50 49 48	286 7 602 49 78 26 450	-	- - - -
54 53 52 51 50 49 48 47	286 7 602 49 78 26 450 38	-	- - - -
54 53 52 51 50 49 48 47 46	286 7 602 49 78 26 450 38 542	-	- - - -
54 53 52 51 50 49 48 47 46 45	286 7 602 49 78 26 450 38 542 162	-	- - - -
54 53 52 51 50 49 48 47 46 45 44	286 7 602 49 78 26 450 38 542 162 525	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43	286 7 602 49 78 26 450 38 542 162 525 525 522	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43 42	286 7 602 49 78 26 450 38 542 162 525 522 122	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39	286 7 602 49 78 26 450 38 542 162 525 522 122 34	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40	286 7 602 49 78 26 450 38 542 162 525 522 122 34 387	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37	286 7 602 49 78 26 450 38 542 162 525 522 122 34 387 267	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38	286 7 602 49 78 26 450 38 542 162 525 522 122 34 387 267 55	-	- - - -
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37	286 7 602 49 78 26 450 38 542 162 525 522 122 34 387 267 55 62	-	- - - -

33 35 $ 32$ 66 $ 31$ 159 $ 30$ 600 $ 29$ 25 $ 28$ 599 $ 27$ 30 $ 26$ 545 $ 25$ 39 $ 24$ 47 $ 23$ 554 $ 22$ 592 $ 21$ 58 $ 20$ 544 $ 19$ 20 $ 18$ 609 $ 17$ 399 $ 18$ 609 $ 11$ 12 $ 12$ 4 $ 13$ 294 $ 11$ 12 $ 10$ 18 $ 9$ 19 $ 6$ 129 $ 6$ 129 $ 4$ 144 $ 3$ 270 $ 1$ 380 $ -$	33	53	_	_
31 159 30 600 29 25 28 599 27 30 26 545 25 39 24 47 23 554 22 592 21 58 20 544 19 20 18 609 16 8 15 17 14 60 13 294 11 12 10 18 9 19 8 22 7 28 6 129 3 270 2 327			-	-
30 600 $ 29$ 25 $ 28$ 599 $ 27$ 30 $ 26$ 545 $ 25$ 39 $ 24$ 47 $ 23$ 554 $ 22$ 592 $ 21$ 58 $ 20$ 544 $ 19$ 20 $ 18$ 609 $ 17$ 399 $ 16$ 8 $ 15$ 17 $ 14$ 60 $ 11$ 12 $ 12$ 4 $ 9$ 19 $ 8$ 22 $ 7$ 28 $ 6$ 129 $ 5$ 142 $ 4$ 144 $ 3$ 270 $ -$			-	-
29 25 28 599 27 30 26 545 25 39 24 47 23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 9 19 8 22 7 28 6 129 3 270 2 327			-	-
28 599 27 30 26 545 25 39 24 47 23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 11 12 10 18 9 19 6 129 5 142 4 144 3 270 2 327	30		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	25	-	
26 545 25 39 24 47 23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 11 12 10 18 9 19 8 22 7 28 6 129 4 144 3 270 2 327	28		-	
23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 10 18 9 19 8 22 7 28 6 129 4 144 3 270 2 327	27		-	-
23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 10 18 9 19 8 22 7 28 6 129 4 144 3 270 2 327	26	545	-	-
23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 10 18 9 19 8 22 7 28 6 129 4 144 3 270 2 327	25	39	-	-
23 554 22 592 21 58 20 544 19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 10 18 9 19 8 22 7 28 6 129 4 144 3 270 2 327	24		-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	554	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	592	-	-
19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 10 18 9 19 7 28 6 129 5 142 4 144 3 270 2 327	21	58	-	-
19 20 18 609 17 399 16 8 15 17 14 60 13 294 12 4 11 12 10 18 9 19 7 28 6 129 5 142 4 144 3 270 2 327	20	544	-	
18 609 17 399 16 8 15 17 14 60 13 294 13 294 12 4 11 12 10 18 9 19 8 22 7 28 6 129 5 142 4 144 3 270 2 327	19	20	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18		-	-
168 15 17 14 60 13 294 12 4 12 4 11 12 10 18 9 19 8 22 7 28 6 129 5 142 4 144 3 270 2 327	17		-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	12	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	18	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	
6 129 - - 5 142 - - 4 144 - - 3 270 - - 2 327 - -		22	-	-
6 129 - - 5 142 - - 4 144 - - 3 270 - - 2 327 - -	7	28	-	
5 142 - - 4 144 - - 3 270 - - 2 327 - -	6	129		
4 144 - - 3 270 - - 2 327 - -		142	-	
3 270 - 2 327 -	4		-	
2 327 - - 1 380 - -	3	270	-	
1 380	2		-	
	1		-	

- 1 **Table S1F** related to **Figure 1**.
- 2 Characteristics of *H. pylori* ELISA-positive patients from Regional Children
- 3 Hospital and St. Zinaida City Children Hospital, Sumy, Ukraine.
- 4

			IT50
#	Serum Code	Age	17875/Leb
36	UA-206	9	7100
35	UA-327	15	717
34	UA-292	17	546
33	UA-308	17	338
32	UA-238	15	253
31	UA-266	5	243
30	UA-236	15	208
29	UA-280	9	141
28	UA-247	14	120
27	UA-307	9	86
26	UA-319	14	75
25	UA-318	7	74
24	UA-290	9	51
23	UA-223	7	50
22	UA-331	13	24
21	UA-310	11	15
20	UA-303	14	8
19	UA-203	7	
19 18	UA-203 UA-205	4	-
		4	- - -
18	UA-205	4	- - - -
18 17	UA-205 UA-220	4	- - - - -
18 17 16	UA-205 UA-220 UA-243	4 3 15	- - - - - - -
18 17 16 15	UA-205 UA-220 UA-243 UA-245	4 3 15 16	- - - - - - - -
18 17 16 15 14 13 12	UA-205 UA-220 UA-243 UA-245 UA-276	4 3 15 16 7	- - - - - - - - - - - -
18 17 16 15 14 13	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289	4 3 15 16 7 9	- - - - - - - - - - -
18 17 16 15 14 13 12	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296	4 3 15 16 7 9 9	
18 17 16 15 14 13 12 11	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305	4 3 15 16 7 9 17 15	
18 17 16 15 14 13 12 11 10	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305 UA-306	4 3 15 16 7 9 17 15 17	
18 17 16 15 14 13 12 11 10 9 8 7	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-296 UA-305 UA-306 UA-309	4 3 15 16 7 9 9 17 15 17 15 17 13 8 8 13	
18 17 16 15 14 13 12 11 10 9 8 7 6	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305 UA-305 UA-306 UA-309 UA-311 UA-316 UA-321	4 3 15 16 7 9 17 15 17 13 8 13 13	
18 17 16 15 14 13 12 11 10 9 8 7	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305 UA-305 UA-306 UA-309 UA-311 UA-316	4 3 15 16 7 9 9 17 15 17 15 17 13 8 8 13	
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305 UA-305 UA-306 UA-309 UA-311 UA-311 UA-316 UA-321 UA-322 UA-324	4 3 15 16 7 9 17 15 17 13 8 13 13 13 15 16	
18 17 16 15 14 13 12 11 10 9 8 7 6 5	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305 UA-305 UA-306 UA-309 UA-311 UA-316 UA-321 UA-322 UA-324 UA-328	4 3 15 16 7 9 9 17 15 17 15 17 13 8 13 13 13	
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	UA-205 UA-220 UA-243 UA-245 UA-276 UA-289 UA-296 UA-305 UA-305 UA-306 UA-309 UA-311 UA-311 UA-316 UA-321 UA-322	4 3 15 16 7 9 17 15 17 13 8 13 13 13 15 16	

Table S2A related to Figure 3A.Leb-binding affinities of Swedish strains.

Diagnosis	Strain	Ka Leb
Gastritis	Sw62	_a
	Sw3	_a
	Sw10	_a
	Sw11	_a
	Sw15	_a
	Sw29	_a
	Sw56	_a
	Sw57	_a
	Sw67	_a
	Sw69	_a
	Sw125	_a
	Sw58	_a
	Sw70	_a
	Sw77	_a
	Sw79	_a
	Sw80	_a
	Sw86	_a
	Sw123	_a
	Sw82	_a
	Sw84	6.84E+08
	Sw114	9.37E+08
	Sw76	1.00E+09
	Sw59	1.04E+09
	Sw72	1.55E+09
	Sw116	1.65E+09
	Sw60	2.41E+09
	Sw47	2.72E+09
	Sw78	3.05E+09
	Sw65	3.09E+09
	Sw75	3.19E+09
	Sw119	4.09E+09
	Sw117	4.35E+09

	Sw81	7.38E+09
	Sw42	1.22E+10
	Sw115	2.23E+10
	Sw87	2.25E+10
	Sw66	2.63E+10
	Sw4	2.74E+10
	Sw68	3.04E+10
	Sw89	4.11E+10
	Sw61	5.44E+10
	Sw126	5.84E+10
	Sw27	6.54E+10
	Sw127	6.57E+10
	Sw64	8.41E+10
	Sw63	1.75E+11
DU	Sw1	_a
	Sw20	_a
	Sw52	_a
	Sw31	_a
	Sw50	2.18E+08
	Sw13	4.47E+09
	Sw24	9.17E+09
	Sw51	1.04E+10
	Sw39	1.55E+10
	Sw30	2.32E+10
	Sw45	3.04E+10
	Sw54	3.14E+10
	Sw43	3.23E+10
	Sw18	4.92E+10
	Sw7	5.44E+10
	Sw38	9.21E+10
	Sw44	1.04E+11
	Sw53	1.58E+11
	Sw5	1.66E+11

-^a Ka data are missing because the strain does not produce detecTable Leb binding. Leb binding affinities of Swedish *H. pylori* strains are described in ¹¹. 1

1

Table S2B related to Figure S1G (Leb-Cocktail) and Figure S3A (Leb-Hot). Leb-binding properties of Mexican strains and corresponding serum IT50s. 2

	Leb-binding properties of Mexican strains and corresponding serum IT50s.				
Diagnosis	Strain	Leb-Hot, %	Leb-Cocktail, %	Serum Code	Serum IT50
Gastritis	Mc1201	19	8	386	1
	Mc1205	77	1	203	1
	Mc1207	30	10	21	116
	Mc1215	41	3	171	70
	Mc1216	76	29	110	1
	Mc1217	84	24	68	39
	Mc1218	82	12	79	59
	Mc1219	5	2	31	16
	Mc1221	52	20	345	64
	Mc1222	0	0	12	1
	Mc1223	0	0	22	ND ^a
	Mc1227	80	41	75	4
	Mc1229	3	1	217	107
	Mc1230	1	0	566	92
	Mc1231	69	29	68	39
	Mc1236	80	21	747	ND ^a
DU	Mc1202	84	18	419	50
	Mc1203	47	2	1045	1
	Mc1204	86	31	902	89
	Mc1206	30	1	1040	7
	Mc1208	63	28	415	43
	Mc1209	74	40	798	98
	Mc1210	86	53	465	27
	Mc1211	86	67	979	84
	Mc1212	47	2	899	1
	Mc1213	85	24	1075	28
	Mc1214	70	34	1038	118
	Mc1220	63	24	70	46
	Mc1224	1	0.5	918	1
	Mc1225	1	0.3	1070	1
	Mc1226	1	0.5	1085	127
	Mc1228	72	17	372	193
	Not Defined (

ND^a - IT50 is Not Defined (LOW) 3

1 **Table S3** related to **Figure 3** and **Figure S3**.

- Sera IT50 from Non-Atrophic Gastritis (NAG) and Duodenal Ulcer disease (DU)
 patients.
- 4

			IT50 by different test-strains							
Serum Code	Diagnosis	ELISA H. pylori	17875/Leb	Mc1204	J166	Mc1207	Mc1215	Sw44	61	no. of blue boxes
201-14	NAG	3.5	34	69	234	386	103	75	127	5
201-84	NAG	2.1	208	118	424	509	344	141 9	381	5
201-99	NAG	1.9	46	33	64	96	49	73	75	5
201-113	NAG	6.0	1	5	31	37	26	1		0
201-118	NAG	3.3	31	14	40	52	43	8	8	2
201-137	NAG	10.8	135	151	555	1494	482	180		5
201-143	NAG	2.2	38	35	266	178	12	51		4
201-352	NAG	7.2	1	1	1	43	15	1	8	0
201-406	NAG	12.8	44	590	2285	1221	413	721		5
201-464	NAG	2.7	34	80	351	399	155	78		5
201-526	NAG	1.2	1	17	91	473	90	7		5
201-537	NAG	1.0	1	12	35	58	27	1	32	1
201-540	NAG	2.1	1	6	44	46	10	1	1	0
201-560	NAG	5.1	37	51	73	160	218	25		5
201-568	NAG	7.8	34	68	441	1203	197	86		5
5	NAG	5.2	282	106	198	1515	733	343		5
10	NAG	9.8	1	2	27	27	42	1	9	1
12	NAG	1.2	1	22	8	23	8	1	5	0
15	NAG	3.3	337	794	2019	541	998	294		5
21	NAG	7.8	116	143	501	916	291	153		5
31	NAG	4.0	16	15	70	171	62	56		5
51	NAG	3.8	277	93	680	1015	662	264		5
68	NAG	5.7	39	51	267	214	39	34		5
75	NAG	1.7	4	7	13	355	11	12	77	3
79	NAG	1.0	59	74	243	637	246	71		5
110	NAG	0.9	1	2	12	12	8	1	3	0
146	NAG	1.5	2	16	85	72	15	1	14	2
160	NAG	6.5	82	54	310	355	365	232		5
171	NAG	1.2	70	264	1106	742	203	298		5

176	NAG	2.8	25	20	430	71	132	69	65	5
203	NAG	5.5	1	4	60	13	1	1	4	1
217	NAG	4.8	107	45	839	794	230	29		5
345	NAG	3.7	64	43	142	602	252	1		4
386	NAG	4.4	1	9	107	147	41	1	57	4
		1.3		204						
566	NAG		92	1	3167	145	230	189		5
372	DU	9.6	193	416	2139	543	324	115		5
70	DU	3.9	46	33	407	348	106	98		5
415	DU	4.6	43	51	358	303	391	36		5
419	DU	4.4	50	144	1263	54	55	37	224	5
439	DU	9.4	28	94	507	217	357	104		5
465	DU	11.1	27	112	400	210	55	28		5
522	DU	0.7	1	3	26	36	21	1	7	0
767	DU	2.1	22	10	71	62	17	1	35	3
776	DU	4.1	1	1	45	24	22	1	1	0
790	DU	3.8	102	19	145	1193	212	482		5
798	DU	1.0	98	84	589	527	208	177		5
899	DU	0.4	1	1	18	23	14	1	33	0
902	DU	0.5	89	499	1021	651	534	202		5
903	DU	0.5	1	5	107	50	1	1	29	3
904	DU	0.7	1	4	38	63	9	1	20	1
906	DU	0.6	1	4	43	33	19	1	6	0
913	DU	0.6	1	2	25	30	45	1	8	1
918	DU	1.3	1	9	99	89	12	7	53	4
919	DU	1.0	28	43	921	365	46	93		5
920	DU	1.3	1	1	13	17	27	1		0
921	DU	9.6	47	26	299	319	57	62		5
938	DU	0.3	1	217	415	514	61	167		5
958	DU	2.4	5	15	141	224	1	16		4
960	DU	3.7	31	14	39	182	24	29		3
979	DU	6.7	84	8	186	90	176	25	98	5
983	DU	0.5	1	1	9	28	16	1	10	0
994	DU	0.6	45	42	388	1163	261	119		5
995	DU	4.3	1	15	60	65	34	17	34	5
1008	DU	0.8	27	41	167	50	128	59	98	5
1010	DU	6.4	1	7	130	36	52	1	3	3
1019	DU	1.3	1	3	62	64	32	1	29	3
1034	DU	1.6	1	1	12	20	33	1	1	1

		4.0								_
1038	DU	1.2	118	114	186	646	242	256		5
1040	DU	1.3	7	30	160	113	93	1	84	4
1041	DU	0.8	4	57	164	56	405	22	265	5
1045	DU	0.5	1	2	56	104	45	1	13	4
1062	DU	3.0	231	348	882	631	367	322		5
1066	DU	1.0	1	7	35	58	19	7	23	2
1069	DU	2.1	1	1	11	42	8	1	7	0
1070	DU	2.3	1	12	338	44	22	1	61	2
1074	DU	2.0	1	14	165	55	34	1	55	4
1075	DU	3.3	28	178	569	255	91	190		5
1085	DU	3.8	127	353	479	1031	368	64		5
1086	DU	1.3	1	4	7	26	28	1	4	0
		Posi IT5		50	50	28	2	33		

1 2

Explanation for the column "No. of (blue) boxes)". The IT50 titers for 17875/Leb and
Mc1204 are considered positive if two or more of the five reporter strains (J166, Mc1207,
Mc1215, Sw 44, and I9) are positive (indicated by blue color) for IT50. If only a single
reporter strain is positive and the rest are negative (yellow) or all reporter strains are
negative (yellow), the serum is considered negative for IT50 and is not included in the
Odds Ratio calculations. Those sera are indicated with a full yellow stripe.

9

10 There are 8 sera samples that are IT50 negative in the NAG cluster, compared to 11 IT50-11 negative sera samples in the DU cluster, which corresponds to 23% and 25%, 12 respectively.

13

In the 17875/Leb column and the Mc1204 column, the sera that demonstrate IT50 <30 are colored red (LOW), whereas the sera samples with IT50 >30 are colored green (HIGH). The IT50 = 30 critical value was defined from the comparison of all possible odds ratios, see **Figure 3C**.

18

The ratio between High and Low for the NAG vs. DU sera samples was used to assess the Odds Ratio. There were 21 vs. 6 (a 3.5-fold difference) sera samples with IT50 higher vs. lower than 30 among NAG patients, compared to 14 vs. 19 (a 0.74-fold difference) for DU patients, which generated the Odds Risk as 3.5/0.74 = 4.75 (**Figure 3D***i*).

1 **Table S4** related to **Figure 1** and **Figure S1** and **Figure 3E**.

The locations of the IT50 = 30 interval in the different cohorts were identified by strain 17875/Leb, whereas the locations of IT50 positive *vs.* negative sera in the different cohorts were identified by strain J166.

6

7

8

#1	#2	#3	#4	#5	#6	#7	
Serum Series	Number of individual sera samples	Serum no. for the IT50 = 30 interval	Serum no. in the middle of IT50 = 30 interval	Serum samples with IT50 > 30	Sera no. for the IT50 -positive interval	IT50- positive individuals	
Kalixanda	322	180 - 189	184	43%	54 - 322	84%	
Ukraine	79	52 - 56	54	33%	36 - 79	56%	
USA	141	94 - 98	96	33%	59 - 141	59%	
Mexico	200	131 - 139	135	33%	58 - 200	72%	
Referred to:	Table S1	Figure 3E	Figure 3E	Figure 3E	Tabl	le S1	

9

10Column #1:IT50s were tested by sera samples from four world-wide populations11(all data in **Table S1**)

12 Column #2: The number of individual sera samples from each population.

13Column #3:The sera sample numbers corresponding to the IT50 = 30 interval, i.e.,14IT50 < 30 in samples 1–179 and IT50 > 30 in samples 190–322 in the15Kalixanda cohort.

Column #4: The sera sample indicates the mid sample of the IT50 = 30 interval
 from Column 3.

Column #5: The prevalence of serum samples with IT50 > 30, e.g., samples no. 184–
 322 out of the 322 samples (43%) in the Kalixanda cohort.

20 Column #6: The sera samples that are positive for IT50 after testing with the 21 sensitive low-affinity Leb-binding strain J166.

22 Column #7: The group of individuals (in %) that are IT50 positive (from Column 6).

23

24

1 Table 5 related to Fig 5 and Figure S5

- 2 Crystallographic data collection and refinement statistics for the BabA protein
- 3 co-crystallized with ABbA (Table 5).
- 4

	BabA ^{AD} -Nb19-ABBA
Data collection	
Space group	P 1 2 ₁ 1
Cell dimensions	
a, b, c (Å)	99.7, 68.4, 176.6
<i>α</i> , <i>β</i> , <i>γ</i> (°)	90.0, 104.4, 90.0
Resolution (Å)	39.45-2.70 (2.77-2.70)*
R _{meas}	6.0 (88.4)*
Ι/σΙ	15.1 (2.1)*
CC1/2	99.9 (86.4)*
Completeness (%)	99.2 (99.3)*
Redundancy	4.3 (4.5)*
Refinement	
Resolution (Å)	39.5-2.7
No. reflections	63297
Rwork/ Rfree	22.9 / 28.3
No. atoms	
Protein	13995
Water	4
B-factors	
Protein	110.6
Water	95.5
R.m.s deviations	
Bond lengths (Å)	0.01
Bond angles (^o)	

- 1 Table S6A related to Fig 6 and fig S6.
- 2 Binding properties and IC50 of Eurasian *H. pylori* strains.
- 3 S831, I109, and I119 are marked in red as the Specialists among 49 European and 27
- 4 Asian strains.
- 5

Origin	#	Strain	Leb-Hot (%)	ABbA-Hot (%)	IC50, nM
Europe	1	17875/Leb	92	90	0.1
	2	J166	33	1	25
	3	USU101	78	12	0.4
Sweden	1	Sw2	94	54	0.1
	2	Sw4	61	0.2	7
	3	Sw6	73	54	0.03
	4	Sw7	38	37	0.1
	5	Sw8	91	83	0.05
	6	Sw17	96	1	6
	7	Sw19	76	14	0.4
	8	Sw21	93	43	0.2
	9	Sw27	95	31	0.7
	10	Sw38	82	2	2
	11	Sw41	28	22	0.2
	12	Sw43	86	57	0.03
	13	Sw44	42	54	0.1
	14	Sw45	88	29	0.3
	15	Sw53	95	80	0.06
	16	Sw60	22	42	0.04
	17	Sw61	86	53	0.1
	18	Sw63	92	64	0.1
	19	Sw64	95	54	0.3
	20	Sw65	38	43	0.2
	21	Sw66	83	34	0.4
	22	Sw68	89	31	0.5
	23	Sw75	24	0.3	4
	24	Sw89	76	28	0.2
	25	Sw99	92	40	0.2
	26	Sw103	94	53	0.7

	27	Sw105	87	68	0.05
	28	Sw110	93	56	0.3
-	29	Sw126	91	51	0.2
Germany	1	G929	77	48	0.1
-	2	G932	89	61	0.1
	3	G962	95	73	0.3
-	4	G965	95	65	0.2
Spain	1	S808	78	8	0.7
-	2	S819	94	55	0.3
	3	S828	41	55	0.04
-	4	S830	95	54	0.3
	5	S831	54	1	>100
	6	S845	44	2	4
-	7	S847	88	33	0.6
	8	S851	63	32	0.5
	9	S855	92	50	0.2
	10	S860	95	43	0.5
	11	S863	97	53	0.3
	12	S864	91	35	0.4
	13	S865	97	43	0.7
India	1	199	23	2	1.6
	2	193	74	2	>100
	3	19	74	38	0.38
	4	178	30	2	12
	5	160	81	5	4
	6	l21	87	2	>100
	7	l18	92	39	0.3
	8	l17	74	2	6
	9	l120	75	29	1
	10	l110	94	28	0.1
	11	I109	75	2	4
	12	l102	17	1	>100
	13	l119	52	10	0.3
China	1	Ch1	97	78	0.3

Japan	1	J503	96	46	1
	2	J506	11	1	>100
	3	J507	94	2	>100
	4	J509	92	29	0.9
	5	J511	36	55	0.06
	6	J512	35	54	0.06
	7	J513	96	4	72
	8	J517	94	26	0.89
	9	J519	87	62	0.04
	10	J520	90	18	5
	11	J531	92	2	15
	12	J532	95	42	0.5
	13	J533	94	66	0.08

1

Binding properties and IC50s of Eurasian *H. pylori* strains. S831, I109, and I119 are marked in red as the Specialists

2 3

among 49 European and 27 Asian strains. 4

- 1 **Table S6B** related to **Fig 6** and **fig S6**.
- 2 Binding properties and preferences and IC50s of North and South Indigenous American
- 3 and Latin-American *H. pylori* strains.
- 4 Leb-H, % binding to Hot HSA-Leb conjugate
- 5 Leb-C, % binding to Cocktail-HSA-Leb conjugate
- 6 ALeb-C, % binding to **C**ocktail-HSA-ALeb conjugate
- 7 ND Not Determined
- 8 O Specialists are the strains with a >2.5 ratio in Leb/ALeb binding ¹¹.
- 9 A Specialists are the strains with a <0.4 ratio in Leb/ALeb binding 11 .
- 10

Origin	#	Strain	Leb-H (%)	Leb-C (%)	ALeb-C (%)	ABO Preference	ABbA- Hot (%)	IC50, nM
Alaska /	1	A702	97	37	26	Generalist	41	1
North America	2	A703	94	32	32	Generalist	45	0.5
America	3	A710	91	36	38	Generalist	0.3	>100
	4	A712	54	16	13	Generalist	4	0.7
	5	A713	24	6	2	O-Specialist	6	0.7
	6	A714	96	23	21	Generalist	82	0.2
	7	A718	16	0	16	A-Specialist	0.5	>100
	8	A723	70	11	0	O-Specialist	0.3	>100
	9	A730	26	6	19	A-Specialist	19	0.3
	10	A733	64	46	37	Generalist	1	30
	11	A736	94	34	30	Generalist	0.7	>100
Mexico,	1	Mc 1201	22	12	0	O-Specialist	0.3	>100
Latin America	2	Mc 1202	95	15	12	Generalist	0.4	>100
America	3	Mc 1203	53	2	2	Generalist	21	0.2
	4	Mc 1204	97	38	33	Generalist	3	2
	5	Mc 1205	87	3	0	O-Specialist	0.5	>100
	6	Mc 1206	34	2	2	Generalist	18	0.3
	7	Mc 1207	34	ND*	ND	ND	2	2
	8	Mc 1208	71	12	7	Generalist	25	>100
	9	Mc 1209	84	40	0	O-Specialist	1	>100
	10	Mc 1210	97	39	34	Generalist	4	6
	11	Mc 1211	97	ND	ND	ND	5	6
	12	Mc 1212	53	3	3	Generalist	23	0.3
	13	Mc 1213	95	28	3	O-Specialist	25	1
	14	Mc 1214	79	29	9	O-Specialist	1	3

	15	Mc 1215	46	2	1	Generalist	37	0.08
	16	Mc 1216	86	24	22	Generalist	1	5
	17	Mc 1217	95	16	1	O-Specialist	0.9	>100
	18	Mc 1218	92	16	5	O-Specialist	0.9	>100
	19	Mc 1219	6	2	0	O-Specialist	0.9	>100
	20	Mc 1220	71	ND	ND	ND	0.7	>100
	21	Mc 1221	58	ND	ND	ND	0.5	>100
	22	Mc 1227	80	42	0	O-Specialist	1.3	5
Peru,	1	P300	91	23	0	O-Specialist	0.4	>100
South America	2	P302	80	26	0	O-Specialist	0.5	43
America	3	P304	61	14	0	O-Specialist	2.7	1
	4	P306	92	70	59	Generalist	25	0.2
	5	P308	94	31	4	O-Specialist	10	47
	6	P314	94	40	5	O-Specialist	0.8	>100
	7	P315	74	18	0	O-Specialist	0.7	>100
	8	P318	97	53	0	O-Specialist	0.8	>100
	9	P320	65	28	0	O-Specialist	1.2	>100
	10	P322	98	46	36	Generalist	36	0.2
	11	P323	43	20	11	Generalist	16	0.4
	12	P325	88	16	1	O-Specialist	0.8	>100
	13	P326	94	22	2	O-Specialist	22	0.2
	14	P328	91	38	34	Generalist	8	2
	15	P330	95	28	0	O-Specialist	22	0.5
	16	P331	93	31	0	O-Specialist	0.4	>100
	17	P434	92	40	31	Generalist	47	0.1
	18	P435	40	16	0	O-Specialist	1.6	7
	19	P436	93	49	12	O-Specialist	0.7	>100
	20	P437	81	15	8	Generalist	0.7	>100
	21	P438	72	19	7	O-Specialist	30	0.9
	22	P439	14	2	14	A-Specialist	0.3	>100
	23	P440	58	32	25	Generalist	0.3	>100
	24	P441	88	42	3	O-Specialist	0.9	>100
	25	P442	96	46	5	O-Specialist	0.5	>100
	26	P443	61	12	0	O-Specialist	39	0.2

27	P444	62	21	0	O-Specialist	11	0.6
28	P445	95	34	0	O-Specialist	17	1
29	P446	32	16	0	O-Specialist	6	1
30	P447	69	33	1	O-Specialist	5	3
31	P448	71	31	0	O-Specialist	0.1	>100
32	P449	96	62	17	O-Specialist	0.3	3
33	P450	47	12	0	O-Specialist	0.3	>100
34	P451	12	8	0	O-Specialist	0.7	>100
35	P452	80	25	1	O-Specialist	0.1	>100
36	P453	93	56	3	O-Specialist	4	8
37	P454	78	27	0	O-Specialist	34	0.4
38	P455	92	27	0	O-Specialist	1.5	3

- 1 Sequences that originated from (11) are indicated by one star *.
- 2 Sequences that originated from (14) are indicated by two stars **.
- 3 Mexican Mc1201, Mc1207, Mc1215 and Mc1227 are indicated by three stars ***
- 4 and were sequenced by the J. Torres lab (co-author).

- **Table S8** related to **Figure 6** and **Figure S6**.
- 2 ABbA binding properties of global *H. pylori* strains and of Generalist vs. Specialist
- *H. pylori* strains.

5 Table S8A (Figure 6A)

ABbA binding			
(%)	European	Asian	Americas
RIA, >20%	57.4	19.1	23.5
RIA, <2%	11.5	13.5	75

Table S8B (Figure 6B)

ABbA binding		
(%)	Generalists	Specialists
RIA, >20%	91.2	8.8
RIA, <2%	38.8	61.2

9 Table S8C (Figure 6C)

ABbA binding	E Contraction of the second se
(%)	Specialists
RIA, >20%	37.5
RIA, <2%	80.6