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Abstract 

Filtering plays an essential role in event-related potential (ERP) research, but filter settings are 

usually chosen on the basis of historical precedent, lab lore, or informal analyses. This reflects, 

in part, the lack of a well-reasoned, easily implemented method for identifying the optimal filter 

settings for a given type of ERP data. To fill this gap, we developed an approach that involves 

finding the filter settings that maximize the signal-to-noise ratio for a specific amplitude score 

(or minimizes the noise for a latency score) while minimizing waveform distortion. The signal is 

estimated by obtaining the amplitude score from the grand average ERP waveform (usually a 

difference waveform). The noise is estimated using the standardized measurement error of the 

single-subject scores. Waveform distortion is estimated by passing noise-free simulated data 

through the filters. This approach allows researchers to determine the most appropriate filter 

settings for their specific scoring methods, experimental designs, subject populations, recording 

setups, and scientific questions. We have provided a set of tools in ERPLAB Toolbox to make it 

easy for researchers to implement this approach with their own data. 

 
Keywords: signal-to-noise ratio, waveform distortion, standardized measurement error, ERP 
amplitude, ERP latency, scoring methods 
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1. Introduction 

Filters are essential in research using event-related potentials (ERPs). At a minimum, a 

low-pass filter must be applied in hardware prior to digitizing the continuous EEG signal so that 

aliasing can be avoided (Picton et al., 2000). Low-pass filters can also minimize muscle artifacts 

and induced electrical noise (de Cheveigné & Nelken, 2019; Luck, 2014), and high-pass filters 

can significantly improve statistical power by reducing skin potentials (Kappenman & Luck, 

2010). However, a strong filter may reduce the amplitude of the ERP component of interest as 

well as attenuating noise. Moreover, inappropriate  filter settings can create temporal smearing, 

artifactual deflections, or bogus oscillations in the ERP waveform, potentially leading to 

erroneous conclusions (Acunzo et al., 2012; de Cheveigné & Nelken, 2019; Rousselet, 2012; 

Tanner et al., 2015; Vanrullen, 2011; Widmann et al., 2015; Yeung et al., 2007).  

What, then, are the ideal filter settings for a given study? Although some 

recommendations have been proposed (e.g., Duncan et al., 2009; Luck, 2014; Widmann et al., 

2015), the existing cognitive and affective ERP literature does not provide a clear, complete, and 

quantitatively justified answer to this question. This is partly because different filter settings may 

be optimal for different experimental paradigms, participant populations, scoring methods, and 

scientific questions. As a result, the range of filter settings used in published ERP research varies 

widely across laboratories and often within a laboratory, presumably based on a combination of 

empirical testing, mathematical understanding (or misunderstanding) of filtering, and lab lore. 

The goal of the present paper is to provide a principled and straightforward approach for 

determining optimal filter settings. The approach is conceptually simple: A set of filters are 

evaluated, and the optimal filter is the one that maximizes the data quality without producing 

unacceptable levels of waveform distortion. However, this requires methods for quantifying the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Gt3llY
https://www.zotero.org/google-docs/?Gt3llY
https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  4 

 

data quality for a specific amplitude or latency score and methods for assessing waveform 

distortion. Our approach includes methods for each of these steps1. 

A companion paper (Zhang et al., 2023) uses this approach to provide recommendations 

for seven commonly-used ERP components combined with four different scoring methods (mean 

amplitude, peak amplitude, peak latency, and 50% area latency). That paper uses data from the 

ERP CORE (Compendium of Open Resources and Experiments; Kappenman et al., 2021), which 

includes data from 40 young adults who performed six standardized paradigms that yielded 

seven commonly-studied ERP components.  

However, the optimal filter settings for those data may not be optimal for different 

populations of participants (e.g., infants), different recording setups (e.g., dry electrodes), or 

different ERP components (e.g., the contingent negative variation). For example, data quality for 

the error-related negativity is much poorer in young children (Isbell & Grammer, 2022) than in 

adults (Kappenman et al., 2021), and this may necessitate different filter settings. The present 

paper therefore describes in detail how researchers can apply this approach to their own data. To 

make this approach easy to implement, we have also added new tools to version 9.2  and higher 

of ERPLAB Toolbox (Lopez-Calderon & Luck, 2014). Our approach can be implemented either 

through ERPLAB’s graphical user interface or through scripting, and we have also provided 

example scripts at https://osf.io/98kqp/.  

Our intention is for this paper to be useful for researchers from a broad variety of 

backgrounds, whether or not they have any technical expertise with signal processing. 

 
1 The general idea of choosing filters that maximize the data quality and avoid waveform distortion has been 
explored in the context of auditory sensory responses, but with quantification approaches that reflect the specific 
issues involved in that domain (e.g., identifying whether a sensory response was present). See Picton (2000) for a 
review. 
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Consequently, the technical details have been deemphasized in the main text and can be found in 

footnotes, supplementary materials, or the cited papers. 

2. Review of basic filter properties 

We first review the basic frequency-domain properties of the kinds of filters used most 

often in ERP research (see Widmann et al., 2015, for a more detailed overview). Figure 1 shows 

the frequency response functions of several different filters along with their effects on an 

example averaged ERP waveform. Figure 1a shows low-pass filters (which pass low frequencies 

and attenuate high frequencies), and Figure 1b shows high-pass filters (which pass high 

frequencies and attenuate low frequencies). In the ERP waveforms, the low-pass filters mainly 

appear to “smooth” the waveform, whereas the high-pass filters mainly appear to reduce the 

amplitude of the P3 wave. 

The frequency response functions characterize how the filters impact the frequency 

content of the data. The horizontal axis is frequency, and the vertical axis is gain. The gain 

indicates the extent to which a given frequency passes through the filter rather than being 

attenuated. A gain of 1.0 means that the frequency passes through completely (no filtering); a 

gain of 0.75 means that 75% of the signal at that frequency passes through the filter and that the 

signal is attenuated by 25% at that frequency; a gain of 0.0 means that the signal is completely 

attenuated at that frequency. The frequency response function of a filter is often summarized 

with the half-amplitude cutoff frequency, which is the frequency at which the gain is 0.5 and the 

signal is attenuated by 50%. The high-pass filters shown in Figure 1a have a half-amplitude 

cutoff at either 0.1 Hz or 0.5 Hz. The low-pass filters shown in Figure 1b have a half-amplitude 

cutoff at either 5 Hz or 20 Hz. When both high-pass and low-pass filters are applied, their 
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combined effects are referred to as the bandpass of the filter (e.g., a bandpass of 0.1–5Hz for the 

combine effects of a 0.1 Hz high-pass filter and a 5 Hz low-pass filter). 

Filters are also characterized by their roll-offs, which specify how rapidly the gain 

changes as the frequency changes. This is often summarized by the slope of the filter at its 

steepest point, using logarithmic units of decibels of gain change per octave of frequency change 

(dB/octave). The filters in Figure 1 have roll-offs ranging from relatively shallow (12 dB/octave) 

to relatively steep (48 dB/octave). Researchers often assume that a steeper roll-off is better, 

because this means that most frequencies are either passed nearly completely (a gain near 1.0) or 

attenuated nearly completely (a gain near 0.0). As we will demonstrate, however, steeper roll-

offs tend to produce greater waveshape distortion. 

Filters can be either causal (unidirectional) or noncausal (bidirectional). Causal filters 

create a rightward shift in the waveform and are typically avoided except under specific 

conditions (Rousselet, 2012; Woldorff, 1993). All filters used here were therefore noncausal. 

Although filters can be extremely valuable in attenuating noise, they inevitably distort the 

time course of the ERP waveform (see Luck, 2014; Widmann et al., 2015). Low-pass filters 

typically “smear” the waveform, causing ERP components to begin artificially early and end 

artificially late. This is illustrated for a simulated N170 waveform in Figure 1e. When a 5 Hz 

lowpass filter was applied to the simulated waveform, the onset of the component was shifted 

earlier in time and the offset was shifted later in time. By contrast, high-pass filters typically 

produce artifactual opposite-polarity deflections before and after an ERP component. For 

example, Figure 1f shows that applying a 2 Hz high-pass filter produced artifactual positive 

peaks before and after the simulated N170 component. Thus, it is important to consider the time-
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domain waveform distortion produced by a filter as well as the filter’s frequency-domain 

properties. 

3. Overview of the present approach 

In this section, we provide a brief overview of our approach to determining optimal filter 

parameters. The following sections will provide a more detailed explanation and justification. 

We assume that the component of interest in a given study can be isolated from other ERP 

components by means of a difference wave; Section 8.3 will discuss how our approach can be 

modified if this assumption is not valid. 

Figure 2 provides a flowchart for our approach when the score of interest is an amplitude 

score (e.g., N170 peak amplitude). Section 7 will discuss how the procedure is modified for 

latency scores (e.g., N170 peak latency). The approach consists of two parallel streams of 

analysis, one examining the effects of a set of candidate filters on data quality and another 

examining the effects of the candidate filters on waveform distortion. For amplitude measures, 

data quality is quantified using a special version of the signal-to-noise ratio (SNR), and 

waveform distortion is quantified using the relative size of the artifactual peaks produced by the 

filter (the artifactual peak percentage or APP). An SNR value and an APP value are obtained for 

each candidate filter, and the filter that produces the best SNR without exceeding a criterion for 

waveform distortion is selected as the optimal filter. Note that this general procedure could be 

used with a different metric of data quality, a different metric of waveform distortion, or a 

different threshold for waveform distortion. 

The set of candidate filters can be chosen by examining the range of filters used in prior 

research. Alternatively, it can be chosen by starting with a broad set of combinations of low-pass 
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and high-pass filters, determining the general range of parameters that yield good results, and 

then repeating the with a finer set of combinations within that range. 

Ordinarily, one set of data should be used to select the optimal filter parameters, and then 

those parameters should be applied to new data. If the optimal filters are selected on the basis of 

one set of data are then applied to the same data, this “double dipping” will likely increase the 

false positive rate. There may be exceptions, but a careful justification would be needed before 

applying the parameters to the same dataset that was used to select the parameters. The previous 

studies used to determine the filter parameters need not be identical to the study of interest: 

reasonable filtering parameters can be chosen as long as prior recordings are available that 

contain reasonably similar waveforms and noise levels. We have also added options in 

ERPLAB’s Channel Operations tools that allow users to add noise of various types to prior data. 

4. Defining and quantifying the signal-to-noise ratio 

This section describes our approach to estimating the data quality resulting from a given 

set of filter parameters (the left side of Figure 2). We use the signal-to-noise ratio as our metric 

of data quality because filters can decrease the size of the signal as well as reduce the noise, and 

it is important to determine whether the reduction in noise outweighs the loss of signal. Although 

the concept of SNR has been used in ERP research for many decades, it is not simple to define 

and quantify either the signal or the noise in a way that is truly useful. This section therefore 

provides a new way of visualizing, defining, and quantifying the signal, the noise, and the SNR. 

The signal portion of the SNR is usually framed in terms of the amplitude of the signal, 

so we will focus on ERP amplitudes for the next several sections. A slightly different approach is 

required for ERP latencies, as described in Section 7. 
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4.1. An informal visualization of the effects of filters on signal and noise 

The logic behind applying high-pass and low-pass filters to EEG/ERP data is that some 

types of noise are confined to relatively low frequencies (e.g., skin potentials) whereas other 

types of noise are confined to relatively high frequencies (e.g., line noise and muscle artifacts). 

The signal of interest (i.e., the neural activity) typically has less power than the noise in the very 

low frequencies and/or the very high frequencies, so attenuating these frequencies may reduce 

the noise more than it reduces the signal. This subsection provides visualizations of how filtering 

reduces both the signal and the noise. 

To illustrate the loss of signal, Figure 1c shows the effects of low-pass filters with 

different cutoffs2 on an averaged ERP waveform. These filters “smoothed” out the high-

frequency noise, but reducing the low-pass cutoff frequency also reduced the P1 and N1 

amplitudes. These low-pass filters had less impact on the amplitude of the P3 wave. In general, 

low-pass filters will decrease the amplitude of fast, narrow waves such as P1 and N1, with less 

impact on slow, broad waves such as P3 and N400. 

Figure 1d shows the effects of high-pass filtering on the same averaged ERP waveform. 

P3 amplitude declined as the cutoff frequency increased. However, P1 and N1 amplitude were 

largely unaffected until the cutoff reached 2.0 Hz. In general, high-pass filters will decrease the 

amplitude of the longer-latency, broader waves but will have less impact on shorter-latency, 

narrower waves. 

Although low-pass filters produce a clearly visible reduction in high-frequency noise in 

the averaged ERP waveforms (as in Figure 1c), the noise reduction produced by high-pass filters 

 
2 Many different filtering algorithms are available, but for simplicity we focus on noncausal Butterworth filters 
(Hamming, 1998). This class of filters was chosen because it is efficient, flexible, well-behaved, and widely used for 
EEG and ERP signals. However, our general approach is independent of the filtering algorithm. 
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is not usually obvious in the averaged ERP waveform (as in Figure 1d). The effects of high-pass 

filtering can be more easily visualized by looking at the single-trial EEG epochs, as illustrated in 

Figure 3. Slow drifts in the EEG (Figure 3a) cause the single-trial EEG waveforms to tilt upward 

on some trials and downward on other trials. Because the epochs are baseline-corrected using the 

prestimulus period, the trial-to-trial variability in voltage increases progressively over the course 

of the epoch. In the corresponding averaged ERP waveform (Figure 3b), this leads to a 

progressive increase in the standard error of the mean over the course of the epoch. Note that the 

participant shown in Figure 3 had unusually large low-frequency drifts, which makes the slow 

voltage drifts easier to see. However, virtually all participants exhibit increasing drift and an 

increasing standard error of the mean over the course of the epoch if the prestimulus interval is 

used for baseline correction. These low-frequency drifts add uncontrolled variability to the 

averaged ERP waveforms, and this can cause a dramatic reduction in statistical power, especially 

for later components that are farther away from the baseline period (Acunzo et al., 2012; 

Hennighausen et al., 1993; Kappenman & Luck, 2010).  

Drift in the single-trial EEG can be dramatically reduced by applying a 0.5 Hz high-pass 

filter to the EEG (Figure 3d), and this also reduces the standard error of the mean, especially 

later in the epoch (Figure 3e). Thus, low-frequency drift is a threat to statistical power but can be 

minimized by high-pass filtering. 

4.2. The classic definition of signal-to-noise ratio (SNR) and its limitations 

Now that we have seen how filters can influence both the signal and the noise, we will 

consider how to quantify the signal-to-noise ratio (SNR). Classically, the SNR in ERP research is 

defined separately at each individual time point in the averaged ERP waveform. The signal is the 

amplitude of the averaged waveform at a given time point, and the noise is quantified by some 
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measure of trial-to-trial variability at that time point (Picton et al., 2000). Each point in an 

averaged ERP waveform is the mean of the single-trial voltages at that time point, so the 

standard error of the mean is a natural way to quantify the noise. Thus, the SNR at a given time 

point can be quantified as the amplitude at that time point (the signal) divided by the standard 

error of the mean at that time point (the noise). The standard error of the mean (SEM) is typically 

estimated using Equation 1: 

                          SEM = SD/√",                                 (1) 

where SD is the standard deviation of the single-trial amplitudes at that time point and N is the 

number of trials being averaged together. Because the standard error of the mean is linearly 

related to √", this definition of the SNR explains why the SNR of an averaged ERP waveform 

improves linearly with √". 

In Figures 3b and 3e, we could compute the SNR at each time point by dividing the 

amplitude of the averaged ERP at that time point by the standard error of the mean at that time 

point. However, the SNR at individual time points is not particularly useful in most ERP 

research, because most studies derive amplitude and latency scores from the pattern of voltages 

across multiple time points. For example, the size of mismatch negativity (MMN) component in 

the ERP CORE (Kappenman et al., 2021) was measured as the mean voltage from 125–225 ms 

in the deviant-minus-standard difference waves. Because this is the type of score that is typically 

entered into statistical analyses and used to test the hypotheses of a study, the SNR of a given 

score is much more important than the SNR at individual time points (except when mass 

univariate analyses are used). However, there is no simple mathematical relationship between the 

SNR of a score that is derived from multiple time points and the SNR at the individual time 

points. 
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In addition, the effect of a given filter will depend on what scoring method is being used 

(e.g., mean amplitude vs. peak amplitude). For example, when the mean voltage over a 

reasonably wide time window is used to score the amplitude of an ERP component, high-

frequency noise has relatively little impact on the score. This is illustrated in Figure 4, which 

shows a simulated ERP waveform with and without high-frequency noise. The rapid upward and 

downward noise deflections within the measurement window tend to cancel each other out, and 

the mean amplitude from 300-500 ms in the noisy waveform is similar to the mean amplitude 

from 300-500 ms in the clean waveform. However, the peak amplitude is strongly affected by 

the high-frequency noise. High-frequency noise will also have a substantial impact on peak 

latency scores. By contrast, low-frequency noise has a modest impact on peak latency scores but 

a large impact on mean amplitude and peak amplitude scores. Thus, there is no such thing as a 

generic metric of noise; the noise must be defined with respect to the specific method used to 

score the amplitude or latency. When choosing a filter, it is therefore essential to consider how 

the averaged ERP waveform will be scored and how the filter will impact the SNR of that 

specific score. 

A partial solution to this problem is to define the signal as the mean voltage during the 

time window of interest and the noise as the standard deviation of the voltage across the points 

during the baseline period (e.g., Debener et al., 2008; Klug & Gramann, 2021). However, this is 

relevant only for mean amplitude scores and does not apply to other scoring methods (e.g., peak 

amplitude, peak latency). In addition, there is no guarantee that the noise level will remain 

constant between the baseline period and the time window of interest. The noise might increase 

owing to low-frequency drifts (as in Figure 3a), or it might decrease owing to stimulus-induced 

suppression of alpha-band activity (Klimesch, 2012). In addition, it is difficult to estimate the 
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effects of low-frequency noise in the prestimulus interval, where low-frequency drifts are 

minimized by the baseline correction procedure. Indeed, we have found that the baseline noise 

level often provides a misleading estimate of the noise that impacts a given amplitude or latency 

score (see, e.g., Figure S4 in Luck et al., 2021). Thus, we need a means of quantifying the SNR 

that can apply to any scoring method and that directly reflects the noise that impacts the score of 

interest. 

4.3. Using the standardized measurement error (SME) to estimate the SNR for ERP 

amplitude scores 

A new definition of SNR that meets these criteria was recently proposed by Luck et al. 

(2021). The signal is straightforward: It can be estimated by the score itself (although a caveat 

will be described in Section 4.4). For example, when MMN peak amplitude is measured from a 

deviant-minus-standard difference wave, the signal is the measured peak amplitude. The noise 

can then be estimated as the standard error of measurement for that score (which reflects both 

the trial-to-trial variability and the number of trials being averaged together).  

This is a simple generalization of the method for computing the SNR at each individual 

time point, in which the standard error of the mean at a given time point was used to estimate the 

noise. The value at a given time point in an averaged ERP waveform is the mean of the single-

trial voltages at that time point. Because it is a mean, the standard error of measurement for this 

value is the standard error of the mean. Thus, the SNR at a given time point is the mean across 

trials at that time point divided by the standard error of the mean at that time point. 

However, when the signal of interest is a score that is based on the pattern of voltages 

across multiple time points, we need to estimate the standard error of measurement for that 

particular score. Luck et al. (2021) developed an approach for quantifying the standard error of 
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measurement for ERP amplitude and latency scores, and the resulting estimate of the noise is 

called the standardized measurement error (SME; see Section S5 of the supplementary materials 

for a conceptual overview). Thus, the SNR for a given amplitude score can be quantified as the 

score divided by the SME for that score. We refer to this specific definition of SNR as SNRSME. 

As one would expect, SNRSME depends on the size of the score (the signal) along with the 

amount of trial-to-trial variability and the number of trials (which are combined together in the 

SME).  

Equation 1 can be used to estimate the SME when the amplitude of an ERP component is 

scored as the mean voltage within a given time window in an averaged ERP waveform (Luck et 

al., 2021). That is, the mean voltage across the time period is scored for each individual trial, and 

Equation 1 is applied to these values. When estimated using this simple analytic approach, the 

result is called the analytic SME or aSME. Unfortunately, this simple approach is not valid for 

other scoring methods, such as peak amplitude. For those scoring methods, Luck et al. (2021) 

developed a bootstrapping method for estimating the SME. The result is called the bootstrapped 

SME or bSME. Our bootstrapping procedure is described in Section S6 of the supplementary 

materials. Note that the SME assumes that the score of interest will be obtained from averaged 

ERPs, not from single trials. Some other yet-to-be-developed approach would be needed when 

single-trial scores are used as the dependent variable in statistical analyses.  

The aSME is automatically computed by version 8.1 and later of ERPLAB Toolbox. 

Computing the bSME currently requires Matlab scripting, but the scripts are relatively simple, 

and example scripts are available at https://doi.org/10.18115/D58G91. In addition, the ERP 

CORE resource contains SME values and the code required to compute them for all seven ERP 

components (https://doi.org/10.18115/D5JW4R; see Zhang & Luck, 2023). 
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No matter how the SME is computed, it is an estimate of the standard error of 

measurement for the score of interest, and it can therefore be used as the noise term when 

computing the SNRSME. For example, P3 amplitude in the ERP CORE was scored as the mean 

amplitude from 300-600 ms in the target-minus-standard difference waves, and the SNRSME for 

P3 amplitude is this score divided by the SME of the score. 

Using this approach, the SNRSME can be estimated for both filtered and unfiltered data to 

determine the extent to which a given filter increases or decreases the signal-to-noise ratio. This 

is illustrated in the rightmost column of Figure 3. When P3 amplitude was scored as the mean 

amplitude from 300-600 ms in the unfiltered data, the score was 6.62 µV (see Figure 3b) and the 

SME of this score was 2.90 µV (see Figure 3c). The SNRSME was therefore 6.62/2.90 or 2.28. 

When the peak amplitude was scored instead, the score was 11.74  µV and the SME of this score 

was 2.24 µV, yielding an SNRSME of 11.74/2.24 or 5.24. After a 0.5 Hz high-pass filter was 

applied (Figure 3d-f), the mean amplitude and peak amplitude scores were slightly smaller than 

before (4.50 µV and 9.05 µV, respectively). However, the SME values were reduced by a much 

greater amount (to 0.80 µV and 0.95 µV, respectively). Consequently, the SNRSME was almost 

doubled by the filtering to 5.63 for mean amplitude and 9.53 for peak amplitude.  

This example shows how we can determine which filter parameters lead to the best 

signal-to-noise ratio. To our knowledge, this is the first method that can quantify how filters 

impact the SNR of the actual amplitude scores that are used to test hypotheses in most cognitive 

and affective ERP experiments.  

As shown in the flowchart in Figure 2, the SNRSME can be computed for each candidate 

filter to determine which filter yields that best data quality. The following sections provide some 

important details about how the signal is defined and how single-participant SNRSME values 
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should be aggregated across conditions and across participants. In addition, it is important to 

keep in mind that the SNR is not the only factor that should be considered when choosing a 

filter. In particular, Section 6 will show that a filter with a better SNRSME may produce more 

waveform distortion than a filter with a worse SNRSME.  

4.4. Improving the estimate of the signal 

Although it is straightforward to use the amplitude score as the signal in the SNRSME 

calculation, these scores are distorted by any noise in the averaged ERP waveform and are 

therefore an imperfect estimate of the signal. For example, Figure 4 shows that high-frequency 

noise will cause the peak amplitude to be overestimated, which will then lead to an overestimate 

of the SNRSME. Filtering out the high-frequency noise will decrease the peak amplitude, bringing 

it closer to the true value, but this might create the illusion that filtering has decreased the signal-

to-noise ratio. 

A simple solution to this problem is to obtain the score from the grand average ERP 

waveform, which typically has much less noise than the single-participant waveforms. This score 

could then be divided by the SME for a given participant to estimate the SNRSME for that 

participant. To obtain a group SNRSME, the score from the grand average would be divided by an 

aggregate of the single-participant SME values (see Section 4.7).  

Obtaining the score from the grand average is not a perfect solution, because some noise 

will remain in the grand average and contribute to the estimate of the signal. This residual noise 

is often negligible, but when substantial noise remains in the grand average an artificial ERP 

waveform can instead be used to estimate the signal (see Section 5). We found nearly identical 

results for the ERP CORE data when measuring the signal from the grand average or from 
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artificial waveforms, so we used the grand average when calculating the SNRSME in the present 

paper and in the companion paper (Zhang et al., 2023). 

Obtaining the score from the grand average is also an imperfect approach for nonlinear 

scoring methods, such as peak amplitude, because the mean of the single-participant peaks is not 

the same as the peak of the grand average waveform. For example, if the timing of an ERP 

component varies across participants, the peak amplitude of the grand average ERP waveform 

will be smaller than the average of the single-participant peaks (even in the absence of noise). 

However, the goal of the present procedure is not to determine the true SNRSME, but instead to 

determine how the SNRSME varies across different filter settings. The pattern of SNRSME values 

across filters is typically not impacted by the nonlinearity problem, so measuring from the grand 

average typically works well in practice for determining the optimal filtering parameters. 

4.5. Measuring from difference waves 

An averaged ERP waveform is the weighted sum of many underlying components that 

overlap in time and space (Nunez & Srinivasan, 2006). To isolate a specific ERP component, 

many experiments focus on differences between experimental conditions (e.g., oddballs versus 

standards for P3 and MMN, faces versus cars for N170). In these cases, we recommend 

estimating both the signal and the SME from difference waves (e.g., oddballs-minus-standards, 

faces-minus-cars). The reasoning is illustrated in Figure 5, which shows the grand average ERP 

waveforms from the ERP CORE N2pc experiment (Kappenman et al., 2021). The N2pc 

component is defined as the difference between the waveform at electrode sites contralateral 

versus ipsilateral to the target location (indicated by yellow shading). Although this difference is 

approximately 1.5 µV, the N2pc is superimposed on a broad positivity arising from other ERP 

components, bringing the overall voltage up to approximately 5 µV. If we measured the signal 
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from the contralateral and ipsilateral waveforms (the parent waveforms), we would get a value 

that is approximately three times as large as the actual 1.5 µV N2pc component. This would 

vastly overestimate the size of the signal. In addition, if we measured from the parent 

waveforms, a high-pass filter that reduced the broad positivity might appear to reduce the signal 

even if it had minimal impact on N2pc amplitude. Similarly, if we estimated the SME from the 

parent waveforms, our measure of the noise would also be distorted by the overlapping 

components.  

By measuring both the signal and the SME from the difference waveform, we can avoid 

these problems and more directly determine how different filters impact the signal of interest and 

the noise that impacts that signal. Note that the signal is measured from the difference wave of 

the grand average across participants, whereas the noise is measured from each individual 

participant and then aggregated across participants (see Figure 2). 

It is important to note that difference waves do not always perfectly isolate a single 

component. In addition, there may be cases in which difference waves are not available or would 

actually mischaracterize the effect of interest. We consider these issues in Section 8. 

4.6. Obtaining the SME of a score obtained from a difference wave 

When an amplitude or latency score is obtained from a difference wave, it is ordinarily 

necessary to use bootstrapping to estimate the SME. However, when the score of interest is the 

mean amplitude over a fixed time window, it is faster and easier to obtain the analytic SME 

values provided by ERPLAB for the individual conditions and use the following equation to 

estimate the SME corresponding to the difference wave: 

                SMEA-B = $%&'!	" +	%&'# 	".                         (2) 
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In this equation, SMEA-B is the SME of the difference between conditions A and B, and 

SMEA and SMEB are the SMEs of the two individual conditions. Note that this equation applies 

only when the score is the mean voltage across a time window. In addition, it applies only when 

the difference wave is between waveforms from separate trials (e.g., target minus standard for 

P3, unrelated minus related for N400), not when it is a difference between two electrode sites 

(e.g., contralateral minus ipsilateral for N2pc or lateralized readiness potential). Additional 

mathematical details are provided in Section S8 of the supplementary materials. 

4.7. Computing an SNRSME  value that reflects the entire sample participants 

Up to this point, we have discussed how to use the SME to estimate the noise level for 

each individual participant. However, we need a way to aggregate these values across 

participants to estimate the overall noise level for a given set of filter parameters. This could be 

accomplished by simply averaging the single-participant SME values. However, participants 

with particularly noisy data have an outsized effect on statistical power, and it is better to use the 

root mean square (RMS) of the single-participant SME values as the noise estimate for the group 

(Luck et al., 2021). The RMS is obtained by squaring each single-participant SME value, taking 

the mean of these squared values, and then taking the square root of this mean: 

        RMS(SME) = *$
%∑ %&'& 	"%

&'$ .                                                                    (3) 

In this equation, SMEi is the SME value for participant i, of the N participants after combining 

across conditions using Equation 2. 

The resulting RMS(SME) value provides an aggregate estimate of the noise level for a given 

score after the application of a given set of filter parameters. As shown in Figure 2, the SNRSME 

value for that set of parameters is then computed by dividing the signal (the score obtained from 

the filtered grand average difference wave) by the RMS(SME) value.  
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5. Assessing waveform distortion 

This section describes our approach to estimating the waveform distortion produced by a 

given set of filter parameters (the right side of Figure 2). The most straightforward way to assess 

time-domain filter distortion is to pass an artificial waveform through the filter and compare the 

filtered and unfiltered versions of this waveform. Artificial waveforms must be used for this 

purpose because the true (i.e., noise-free) waveform is not usually known for real data, making it 

difficult to know if the filter is “revealing” the true waveform by eliminating noise or is instead 

creating a bogus effect that mischaracterizes the underlying brain activity (Yeung et al., 2007). 

To create an appropriate artificial waveform, it is necessary to estimate the waveshape of 

the real ERP effect. In many cases, the grand average difference wave (e.g., faces minus cars for 

the N170 component) provides a good starting point. This difference wave can be used to create 

a noise-free artificial waveform with the key properties of the experimental effect. If there is 

reason to believe that the grand average difference wave is not a good reflection of the actual 

waveshape, the shape of the artificial waveform can be systematically varied, and the effects of 

filtering can be assessed across a range of waveshapes. Section 8 describes strategies that can be 

applied if multiple components are present in the difference wave. 

Note that the grand average waveform used as a starting point for creating the simulated 

ERP waveform should be created using minimal filtering. Otherwise, it may already contain 

significant filter distortions. 

5.1. Creating simulated N170 and P3 effects 

This subsection provides examples of artificial waveforms that simulate two effects from 

the ERP CORE: a) the larger N170 for faces than for cars in a visual discrimination paradigm, 

and b) the larger P3 for oddballs than for standards in a visual oddball paradigm. We have 
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chosen these two effects because they span the gamut from a relatively early perceptual effect to 

a relatively late cognitive effect. These and most other ERP effects can be simulated with 

Gaussian and ex-Gaussian functions3. Beginning in version 9.2, ERPLAB Toolbox provides a 

tool for using these and other functions to create artificial waveforms that simulate ERP 

components. Whereas this tool simulates averaged ERP waveforms, the SEREEGA toolbox 

(Krol et al., 2018) can be used to simulate single-trial EEG epochs that contain ERP-like effects. 

Panels a and b of Figure 6 show the grand average N170 and P3 effects from the ERP 

CORE. The N170 paradigm involved a series of faces, cars, scrambled faces, and scrambled 

cars, and the N170 effect was defined as the faces-minus-cars difference. The P3 paradigm 

involved a sequence of target (rare) and standard (frequent) letter categories, and the P3 effect 

was defined as the target-minus-standard difference. The N170 effect can be approximated by a 

negative-going Gaussian function with a mean of 129 ms and an SD of 14 ms. The P3 waveform 

is typically skewed to the right, and the ERP CORE P3 effect can be approximated by an ex-

Gaussian function with a Gaussian mean of 310 ms, a Gaussian SD of 58 ms, and an exponential 

rate parameter (λ) of 2000 ms.  

These simulated waveforms are overlaid on the observed grand average waveforms in 

Figures 6a and 6b. They are not a perfect fit, but they do a reasonable job of capturing the key 

properties of the N170 and P3 components, and most ERP components can be approximated by 

Gaussian and ex-Gaussian functions with appropriate parameters. 

 
3 An ex-Gaussian function is a Gaussian function convolved with an exponential function to create a skewed 
waveform. This function is often used to model reaction time distributions (e.g., Karalunas et al., 2014; Schmiedek 
et al., 2007), which are typically right-skewed. Long-latency ERP waves are also typically right-skewed, often as a 
result of the same factors that cause reaction time variability(Luck, 2014). Note that the ex-Gaussian distribution is 
only a coarse approximation of a reaction time distribution (Matzke & Wagenmakers, 2009; Sternberg & Backus, 
2015), but it has the advantage of simplicity and is sufficient for assessing ERP waveform distortions. Other families 
of functions could also be used to simulate ERP waves, such as the gamma distribution (Kummer et al., 2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  22 

 

Because the true waveform is not known, it may be necessary to create several different 

artificial waveforms that reflect different possibilities for the true waveform. A filter can then be 

chosen that minimizes the waveform distortion for the entire set of simulated waveforms. In 

addition, some effects may consist of changes in multiple overlapping components. This can be 

approximated by creating simulations of the individual components and then summing them 

together. 

The following subsections show how the real and simulated waveforms shown in Figure 

6 are distorted by a low-pass filter and a high-pass filter. We have chosen relatively extreme 

cutoff frequencies for these examples to make the distortions obvious. We also provide examples 

of the distortions produced by more typical filters in Figures 7 and 8. 

5.2. Effects of low-pass filtering on simulated ERPs 

Panels c and d of Figure 6 show the results of applying a 5 Hz low-pass filter to the real 

N170 and P3 waveforms, and Panels e and f show the results of filtering the simulated versions 

of these waveforms. The filter reduced the amplitude of both the real and simulated N170 peaks. 

Figure 6e also shows that the filter “smeared out” the simulated N170, artificially creating an 

earlier onset time and a later offset time. By contrast, the 5 Hz low-pass filter had relatively little 

effect on the P3 wave (Figures 6d and 6f). Thus, as noted in Section 4.1, low-pass filters have a 

much larger effect on short-latency, narrow peaks such as the N170 than on long-latency, broad 

peaks such as the P3. 

Figure 7 shows the effects of a variety of different low-pass filter cutoffs and roll-offs on 

the simulated N170 and P3 waveforms. When a relatively gentle roll-off of 12 dB/octave was 

used, the waveform distortion consisted of a progressively greater temporal smearing as the 

cutoff frequency declined, with minimal smearing when the cutoff was above 15 Hz. When steep 
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roll-offs were used, however, the distortion of the simulated N170 also included opposite-

polarity peaks on either side of the N170 (see, e.g., the cutoff of 10 Hz with a slope of 48 

dB/octave). Thus, filtering N170 data with a steep slope might cause a researcher to reach the 

invalid conclusion that faces elicit a small, early, positive response as well as the typical N170 

response. Filtering with a shallow slope avoids this problem. However, filters with shallow 

slopes still distort the onset and offset times of the waveform, especially with cutoff frequencies 

below 20 Hz. Whether these distortions are a significant problem depends on the nature of the 

scientific questions being asked and the analysis procedures being applied. 

5.3. Effects of high-pass filtering on simulated ERPs 

Panels g-j of Figure 6 show the results of applying a 2 Hz high-pass filter to real and 

simulated N170 and P3 waveforms. This filter did not produce any obvious distortion of the real 

N170 waveform, except for a modest reduction in peak amplitude, but the simulated waveform 

shows that the filter also produced opposite-polarity artificial peaks on each side of the simulated 

N170 wave. The other voltage deflections in the real data made it difficult to see these artifactual 

peaks. The filter produced much greater distortion of the P3 wave, dramatically reducing P3 

amplitude and producing an artifactual negative peak prior to the true peak. The artifactual 

negative peak might lead to the incorrect conclusion that the target stimuli elicited a larger 

negativity than the standard stimuli (for additional examples of invalid conclusions that may 

arise from filtering, see Tanner et al., 2015; Yeung et al., 2007). 

Figure 8 shows the effects of a variety of different high-pass filter cutoffs and roll-offs on 

the simulated N170 and P3 waveforms. The artifactual opposite-polarity peaks were minimal for 

cutoffs of 0.1 Hz or lower, but they became clearly visible at 0.5 Hz and increased progressively 

as the cutoff increased further. Note that the artifactual peaks were more pronounced prior to the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  24 

 

P3 peak than after the P3 peak. This is a result of the right skew in the simulated P3 waveform. 

The same asymmetry can be observed in the filter artifacts for the real P3 waveform in Figure 

6h. Thus, for right-skewed waveforms like the P3, high-pass filters produce a larger artifactual 

peak before than after the true peak. 

5.4. Quantifying waveform distortion with the artifactual peak percentage (APP) 

To quantify the waveform distortion produced by a given filter, we compute the 

artifactual peak percentage (APP). The APP reflects the amplitude of the artifactual peak 

produced by the filter relative to the amplitude at the peak of the true component after filtering. 

Absolute values are used so that a greater distortion always produces a larger value. Specifically, 

the APP is calculated from the filtered waveform as: 

APP  = 100 ´ |amplitude of artifactual peak| ÷ |amplitude of true peak|.              (4) 

Consider, for example, the artificial P3 wave after high-pass filtering with a cutoff at 2 

Hz and a slope of 12 dB/octave (Figure 8, upper right corner). The peak amplitude of the 

artifactual peak was -1.466 µV, and the peak amplitude of the true peak was +2.789 µV, so the 

artifactual peak percentage was 100 ´ |-1.466| ÷ |2.789| = 52.56%. This value is shown for each 

filter setting in Figure 8. Note that using peaks to quantify the size of a component can be 

problematic with real data, but it is not so problematic with noise-free artificial waveforms, and 

it has the advantage of simplicity. However, it would be reasonable for researchers to use an 

alternative measure, such as area amplitude, when computing the amplitude distortion 

percentage. 

The idea behind this approach is that a small artifactual peak is likely to be obscured by 

the background noise and have no impact on the conclusions drawn from a given study, but a 

large artifactual peak might be statistically significant and lead to a bogus conclusion. In 
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addition, the artifactual peak might be considered to be substantial in size if it is relatively large 

compared to the other peaks in the waveform (such as the true peak after filtering). For example, 

the artifactual peak in the upper right corner of Figure 8 looks like a very substantial effect when 

compared with the rest of the waveform. 

Although artificial peaks are mainly a problem for high-pass filters, Figure 7 shows that 

they may also occur for low-pass filters with a steep cutoff (see, e.g., the lower left panel in 

Figure 7). We therefore provide the artifactual peak percentage values for the low-pass filters in 

supplementary Table S1. 

5.5. Determining the maximal acceptable artifactual peak percentage (APP) 

We define the optimal filter as the one that maximizes the data quality without producing 

unacceptable levels of waveform distortion. This requires setting a threshold for an unacceptably 

large APP. 

Setting this threshold requires balancing the risk of a false positive (an artifactual peak 

that is large enough to be statistically significant) and the risk of a false negative (a true effect 

that is not statistically significant because of reduced SNR). This is analogous to the threshold 

for statistical significance in traditional frequentist statistical analyses (typically 0.05); a lower 

threshold such as 0.01 reduces the risk of a false positive (a Type I error) but also decreases 

statistical power and increases the risk of a false negative (a Type II error). Generally, scientists 

are more concerned about false positives than false negatives and choose a relatively 

conservative threshold. The chosen threshold is usually arbitrary, but at least the risks are well 

defined. 

For most ERP studies conducted in low-noise environments with highly cooperative 

participant populations, we propose a threshold of 5% for the artifactual peak percentage. That 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  26 

 

is, we recommend that researchers use the filter parameters that produces the best SNRSME while 

also producing an artifactual peak percentage of less than 5%. This amount of distortion would 

be like a 0.5 µV artifactual N2 preceding a 10 µV P3, a 0.4 µV artifactual P2 preceding an 8 µV 

N400, or a 0.1 µV artifactual P1 preceding a 2 µV N2pc. Artifactual effects of this size are 

unlikely to be statistically significant under typical conditions. If we increased the criterion to 

10%, however, we might have a 1 µV artifactual N2, a 0.8 µV artifactual P2, or a 0.2 µV 

artifactual P1, which would have a good chance of being statistically significant4 and leading to a 

fundamentally incorrect conclusion. If we decreased the criterion to 1%, there would be almost 

no chance that the artifactual peaks would be significant, but we would also be choosing a filter 

that yields a poorer SNR and therefore lower statistical power. Thus, a maximal artifactual peak 

amplitude of 5% seems like a reasonable balance between false positives and false negatives.  

However, we would like to stress that this 5% criterion is arbitrary, and it would not be 

straightforward to assess the actual probability that an artifactual effect of a given size would be 

statistically significant. Nonetheless, the 5% criterion seems reasonably conservative without 

being overly strict for most ERP studies conducted in low-noise environments with highly 

cooperative participant populations. Under other conditions, it is likely that a more liberal 

criterion would be justified. For example, in studies with noisy EEG signals or an unusually 

small number of trials, an artifactual peak of 10% amplitude is much less likely to lead to a 

statistically significant effect, and the boost in SNR and statistical power produced by a high-

pass cutoff that produces an artifactual peak percentage of 10% may therefore be well justified. 

 
4 More trials are typically used in experiments that examine smaller components, so an artifactual effect of 0.2 µV 
might be statistically significant in a typical N2pc experiment but would be unlikely to be significant in a typical P3 
experiment. 
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When the amplitude of an ERP component is being scored, the temporal smearing of the 

waveform produced by a low-pass filter is not usually a concern (unless it impacts the SNR). 

Thus, we do not recommend using the amount of latency distortion as a criterion for filter section 

when mean or peak amplitudes are being scored. However, this smearing could be an issue when 

the exact onset or offset latency of an effect is of theoretical relevance or when mass univariate 

statistical analyses are used. In those situations, the specific theoretical questions should drive 

the decision about how much latency distortion is acceptable. Section S7 of the supplementary 

materials describes a latency distortion percentage metric that could be used for this purpose.  

6. Example: Determining the optimal filter parameters for P3 mean amplitude 

This section provides a concrete example of our approach, using data from the ERP 

CORE P3 paradigm (Kappenman et al., 2021) to select an optimal filter for P3 mean amplitude. 

This was an oddball paradigm with rare targets and frequent standards. The P3 was isolated 

using a target-minus-standard difference wave. We used candidate filters created by factorially 

combining high-pass cutoffs of 0, 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz with low-pass cutoffs of 5, 10, 

20, 30, 40, 80, and 115 Hz (12 dB/octave).  

We will first describe the procedure for assessing the effects of data quality, which 

involves looping through each candidate filter (Figure 2, left). For each filter, we loop through 

each of the participants to obtain the single-participant averaged ERP waveforms and SME 

values for the targets and standards. This starts by applying the ordinary preprocessing steps that 

are needed for a given study. In the present case, these steps included shifting event codes to 

account for the monitor delay, downsampling the data to 256 Hz, re-referencing, and correcting 

for artifacts using independent component analysis (ICA). The candidate filter was then applied 

to the continuous data (to avoid edge artifacts). We then conducted additional preprocessing 
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steps, which included epoching the data, performing baseline correction, and rejecting artifacts 

that were not corrected by ICA. A detailed description of these steps can be found in the 

companion paper (Zhang et al., 2023). 

6.1. Quantifying the signal for each candidate filter 

Averaged ERP waveforms for targets and for standard were obtained from the resulting 

data, along with the target-minus-standard difference wave. A grand average across participants 

was then computed for the difference wave. The score of interest for the P3 wave in the ERP 

CORE was the mean voltage from 300-600 ms at the Pz electrode site. This score was obtained 

from the grand average difference wave to serve as the estimate of the signal after the attenuation 

produced by the current candidate filter.  

Figure 9a shows the resulting scores for each candidate (see supplementary Figure S1 for 

the grand average waveforms from which the scores were obtained and supplementary Figure S2 

for the corresponding scalp maps). Significant attenuation of the P3 was produced by high-pass 

cutoffs above 0.1 Hz, whereas low-pass filtering had very little effect on the signal. 

6.2. Quantifying the noise for each candidate filter 

Because the score of interest was a mean amplitude value, ERPLAB was used to directly 

compute the SME for each condition using Equation 1. Bootstrapping would be needed to 

compute the SME for nonlinear measures, such as peak amplitude and peak latency. 

We then applied Equation 2 to combine the SME values for the targets and the standards 

into a single SME value that reflects the data quality for the difference in amplitude between the 

targets and the standards. The SME values from the different participants were then aggregated 

using Equation 3 to obtain the RMS(SME), which reflects the data quality for the P3 amplitude 

score across the whole sample of participants. 
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Figure 9b shows the resulting RMS(SME) values for each of the candidate filters. The 

noise level decreased progressively as the high-pass cutoff increased. Thus, high-pass filtering 

decreased the signal (Figure 9a) and also decreased the noise (Figure 9b).  

6.3. Quantifying the signal-to-noise ratio for each candidate filter 

To assess whether the reduction in signal was outweighed by the reduction in noise for a 

given filter, we computed the SNRSME for each candidate filter by taking the signal (the score 

from Figure 9a) and dividing it by the noise (the RMS(SME) from Figure 9b). The SNRSME for 

each candidate filter is shown in Figure 9c.  

The high-pass cutoff had a clear impact on the SNRSME, with the largest SNRSME 

obtained at 0.5 Hz. Low-pass filtering had very little effect except when a 2 Hz high-pass filter 

was also applied. This is because mean amplitude scores are largely insensitive to high-

frequency noise (see Figure 4). The best overall SNRSME was obtained with a high-pass cutoff of 

0.5 Hz and a low-pass cutoff of 5 Hz. 

Supplementary Figure S2 shows how filtering impacts the scalp distribution of an ERP 

component and discusses how the SNRSME might vary across scalp sites. Supplementary Figure 

S3 shows SNRSME values for a denser sampling of high-pass cutoff frequencies between 0.1 and 

1.0 Hz. 

6.4. Assessing waveform distortion for each candidate filter 

As shown in Figure 9c, the best SNRSME for the P3 mean amplitude score was obtained 

with a high-pass cutoff of 0.5 Hz and no low-pass filtering. However, it is necessary to combine 

the information about SNRSME with information about waveform distortion in order to select the 

optimal filter settings.  
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Our procedure for quantifying waveform distortion (Figure 2, right) begins by looping 

through the participants with the same processing steps used for the SME calculations, but with 

minimal filtering. In the present case, this led to an averaged ERP waveform for targets and for 

standards in each participant, which were used to create target-minus-standard difference waves. 

These were then combined across participants into a grand average difference wave. We then 

simulated a P3 difference wave to match the observed grand average difference wave (as shown 

in Figure 6b). 

The next step was to loop through the candidate filters and quantify the amount of 

waveform distortion each filter produced in the simulated P3 waveform. Distortion was 

quantified with the artifactual peak percentage (APP). The top row of Figure 8 shows the filtered 

waveform and APP for each of the candidate high-pass cutoffs with no low-pass filtering, and 

supplementary Figure S3a shows the APP values for all the candidate filters. 

As shown at the bottom of Figure 2, the final step of our procedure is to combine the data 

quality information with the waveform distortion information and select the filter with the best 

SNRSME from among those with an APP of less than 5%. If we did not consider the APP, we 

would have chosen a high-pass cutoff at 0.5 Hz and a low-pass cutoff of 5 Hz, which produced 

the best SNRSME. However, Figure S3a shows this filter produced an APP of 12.2%, which was 

well above the 5% threshold. Lowering the high-pass cutoff to 0.1 Hz and keeping the low-pass 

cutoff at 5 Hz reduced the APP to 0.5%, well under the 5% threshold. 

These results suggest that a bandpass of 0.1–5 Hz is optimal. However, after we 

determined that the best combination of data quality and waveform distortion lies somewhere 

between high-pass cutoffs of 0.1 and 0.5 Hz, we repeated the process with a denser sampling of 

cutoffs between 0.1 and 0.5 Hz (in steps of 0.1 Hz) to more precisely determine the optimal filter 
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settings (see supplementary Figure S3). Among the filters with an APP of <5%, the best SNRSME 

was produced with a high-pass cutoff of 0.2 Hz; there were no differences among the different 

low-pass cutoffs with this high-pass cutoff. Thus, when P3 mean amplitude is scored in studies 

like the ERP CORE visual oddball experiment, a high-pass cutoff of 0.2 Hz is optimal, along 

with whatever low-pass cutoff is useful given the other goals of the study. For example, a low-

pass cutoff at 20 or 30 Hz can be applied to remove “fuzz” in plots of the waveforms that might 

otherwise make it difficult to visualize differences between conditions. 

The companion paper provides recommendations for six other ERP components, and 

includes peak amplitude, peak latency, and 50% area latency scores in addition to mean 

amplitude scores. One could also assess the impact of different roll-off slopes, but a slope of 12 

dB/octave is usually best in terms of minimizing waveform distortion (see Figures 7 and 8). 

7. Selecting optimal filter settings for latency scores 

The kinds of filters typically used in ERP research will typically decrease the amplitude 

of an ERP component (see Section 8 for exceptions). As a result, filters tend to reduce the 

difference in amplitude between groups or conditions. This is illustrated in Figures 10a and 10b, 

which show a simulation of two conditions in which the P3 amplitude differs. In the unfiltered 

data (Figure 10a), the peak amplitude differed by 0.5 µV between the two conditions. When a 

high-pass filter with a half-amplitude cutoff of 1 Hz was applied (Figure 10b), the difference in 

amplitude between conditions was reduced to 0.24 µV. This is why our approach to determining 

optimal filtering parameters for amplitude scores involves quantifying the effects of filtering on 

the signal as well as the noise. 

Filters do not typically have large effects on latency scores, and any observed effects may 

consist of an increase or a decrease depending on the shape of the waveform. Moreover, if a shift 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  32 

 

in latency does occur, the latency scores will typically be shifted equivalently across conditions. 

This is illustrated in Figures 10c and 10d, which show a simulation of two conditions in which 

the P3 latency differs. In the unfiltered data (Figure 10c), the peak latency differed by 100 ms 

between the two conditions. When a high-pass filter with a half-amplitude cutoff of 1 Hz was 

applied (Figure 10d), the peak latency was shifted leftward by 6.4 ms in both conditions, and the 

difference in peak latency between the two conditions remained 100 ms. Because filtering does 

not consistently reduce the difference in latency between groups or conditions, it is not typically 

necessary to consider the effects of filtering on the signal relative to the noise (the SNR) when 

selecting an optimal filter for latency scores. Indeed, the SNR might even be misleading, because 

a filter might lead to smaller (earlier) latency scores even if it does not decrease the ability to 

detect differences between groups or conditions.  

Instead, one can simply determine which filters yield the lowest noise (the smallest SME 

value), along with a consideration of waveform distortion. Thus, the flowchart shown in Figure 2 

would be altered slightly for latency scores, using RMS(SME) rather than SNRSME to assess data 

quality and choosing the filter that produces the lowest RMS(SME) while also producing an APP 

of less than 5%. 

7.1. Example: Selecting optimal filter parameters for P3 peak latency 

In this subsection, we will illustrate our process of selecting filter parameters for latency 

scores using the same dataset used for the P3 mean amplitude example. We will focus on P3 

latency, scored as the peak latency between 300 and 600 ms in the target-minus-standard 

difference wave at the Pz electrode site We examined the same set of candidate filters as in our 

analyses of P3 mean amplitude.  
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In the data quality quantification portion of our procedure (Figure 2, left), we again 

looped through the candidate filters, computing a target-minus-standard difference wave for each 

participant for a given filter. We used bootstrapping to obtain the SME for P3 peak latency for 

that filter (see Section S6 of the supplementary materials for details). We then computed the 

RMS of the single-participant SME values as our overall estimate of the noise level for that 

filter. The resulting RMS(SME) values are shown in Figure 11 (see supplementary Figure S1 for 

the grand average waveforms). 

The high-pass cutoff frequency had relatively little impact on the RMS(SME) until the 

cutoff reached extreme values (1 Hz or greater). By contrast, the low-pass cutoff frequency had a 

large impact, with progressively smaller (better) RMS(SME) values as the cutoff frequency 

decreased. This is the opposite of the pattern that was observed for mean amplitude scores, 

where the high-pass cutoff had a large effect on the RMS(SME) and the low-pass cutoff had little 

or no effect (see Figure 9b). These opposite patterns reflect the fact that mean amplitude scores 

are strongly impacted by low-frequency noise but not by high-frequency noise, whereas peak 

latency scores are strongly impacted by high-frequency noise but not by low-frequency noise. 

This further reinforces the general point that the optimal filter settings depend on how the data 

will ultimately be scored. 

The next step was to assess waveform distortion using the artifactual peak percentage 

(APP). This is done in exactly the same way for latency measures as for amplitude measures, so 

we used the APP values that we obtained for our analyses of P3 mean amplitude in Section 6. 

We then combined this information with the RMS(SME) information to select the optimal filter. 

The best RMS(SME) value was produced by the combination of a 0.5 Hz high-pass filter 

and a 5 Hz low-pass filter, but all the filter combinations including a 0.5 Hz high-pass filter 
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exceeded the 5% APP threshold. Of the filters with an APP less than 5%, the best RMS(SME) 

was produced by the combination of a 0.1 Hz high-pass filter and a 5 Hz low-pass filter. 

We also examined a denser sampling of high-pass cutoffs (see supplementary Figure S3 

for the RMS(SME) and APP values). Of the filters with an APP of less than 5%, the lowest 

RMS(SME) value was obtained for the combination of a 0.2 Hz high-pass filter and a 5 Hz low-

pass filter. This is therefore the optimal filter when P3 peak latency is scored from studies like 

the ERP CORE visual oddball experiment. Note that this is a much lower low-pass cutoff 

frequency than the 30 Hz cutoff that we previously recommended for general use in cognitive 

and affective research (Luck, 2014). This shows the value of using a formal procedure to 

determine the optimal filtering parameters. 

A 5 Hz low-pass filter produced a modest but clearly noticeable leftward shift in the 

onset latency of the simulated P3 (see the upper left panel in Figure 7). If this latency distortion 

might impact the scientific conclusions of a given study, a higher cutoff frequency could be 

chosen for the low-pass filter. For example, increasing the low-pass cutoff from 5 Hz to 10 Hz 

reduces the leftward shift in the onset latency while only increasing the RMS(SME) by less than 

5% (from 50.1 to 52.4; see supplementary Figure S3). 

8. More complex scenarios 

Our approach to filter selection was based on a simple scenario, in which the researcher 

wishes to determine the optimal filter for a single score (e.g., P3 peak latency) and the 

component of interest can be well isolated by means of a difference wave (e.g., target-minus-

standard). This section considers more complex scenarios. 

8.1. Analyzing multiple scores in a given study 
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One likely scenario is that a researcher is interested in more than one score in a given 

study (e.g., both peak amplitude and peak latency for the P3 component, or mean amplitude for 

both the N170 and P3 components). If different filters are optimal for the different scores, what 

filter settings should be used? This will depend on the scientific goals of the experiment. In most 

cases, the most conservative approach would be to use the same filter settings for all the scores in 

a given study. In this case, it would be typically appropriate to choose a filter that strikes a 

reasonable compromise between the data quality for the different scores while ensuring that the 

filter does not exceed the threshold for waveform distortion for any of the components. 

However, there may be good reasons to use different filters for different components in a 

single study when the components have very different frequency properties. For example, 

Woldorff et al. (1987)  examined the effects of selective attention on the very rapid auditory 

brainstem responses (ABRs, <10 ms), the auditory midlatency responses (MLRs, 20-50 ms), and 

the auditory long-latency responses (LLRs, >80 ms). These components have very different 

frequency properties, so the researchers one bandpass for the ABRs (30-2000 Hz) and a very 

different bandpass for the MLRs and LLRs (0.01-100 Hz). The goal of that study was to 

determine whether attention impacted each of these responses, and using the best filter settings 

for each component was a reasonable way of maximizing the ability to detect attention effects 

for the different components. 

In addition, different filter settings are often optimal for different scoring methods. For 

example, the companion paper (Zhang et al., 2023) found little or no impact of the low-pass filter 

cutoff on data quality for P3 mean amplitude scores but found that a 5 Hz low-pass cutoff 

improved the data quality for P3 peak amplitude. Onset latencies are particularly prone to 

distortion from noise. Thus, researchers sometimes use lower low-pass cutoffs for latency 
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measures than for mean amplitude in the same study. For example, Kang et al. (2019) used a 

low-pass cutoff at 30 Hz for their amplitude analyses but used a cutoff at 8 Hz for their analyses 

of the onset latency of the lateralized readiness potential. In general, researchers must think 

carefully about the consequences of using identical or different filters for different scores in the 

same dataset, and they should explicitly justify their choices. 

8.2. Temporally adjacent components 

ERP waveforms typically contain a progression from relatively small and narrow 

components (e.g., P1) to relatively large and broad components (e.g., P3). When multiple 

components are impacted by a given experimental manipulation, the difference wave may 

contain a smaller, narrower component followed by a larger, broader component. For example, a 

target-minus-standard difference wave in an oddball experiment often contains a relatively small 

and narrow N2 followed by a large and broad P3. When this happens, a filter that is appropriate 

for one of the components may produce significant waveform distortion for the other component, 

and artifactual effects may occur if the wrong filter is applied. 

This is illustrated in Figure 12, which illustrates the effects of filtering a simulated 

waveform that contains both an MMN component and a P3 component (based on the waveform 

parameters for the simulated MMN and P3 waveforms in the companion paper). Figure 12a 

shows the waveform for the simulated MMN, along with the waveform after application of a 0.5 

Hz high-pass filter (which was the optimal cutoff for the MMN and produced minimal waveform 

distortion). Figure 12b shows the simulated P3, both unfiltered and filtered at 0.5 Hz. Although 

this filter was optimal for the MMN, it produced a substantial distortion of the P3, including a 

negative-going deflection during the time period of the MMN. When both the MMN and P3 

were summed together into a single waveform (Figure 12c), the filtered waveform appeared to 
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contain a larger MMN because of the negative-going filter artifact for the P3. Figures 12d and 

12e show how this can lead to an incorrect interpretation. Figure 12d shows the unfiltered 

waveforms for two conditions, one in which the P3 is 50% larger than in the other. Figure 12e 

shows the result of filtering these waveforms. The artifactual negativity produced by the filter 

during the MMN time period is now larger for the condition with the larger P3 wave, making it 

appear as if the both the MMN and the P3 were larger in this condition (see Acunzo et al., 2012; 

Tanner et al., 2015, for similar artifactual effects). 

This problem can be minimized by choosing a filter that produces minimal waveform 

distortion (e.g., APP < 5%) for each of the individual components. To be even more careful (or 

when the waveshapes of the underlying components are not known), researchers could create an 

artificial waveform that reflects the complex shape of the observed waveform and examine how 

this waveform is distorted by the filter (as in Figure 12c). 

8.3. Temporally overlapping components 

An even more challenging problem arises when multiple components are strongly active 

in the same time period. In a typical ERP waveform, the voltage at a given electrode site at a 

given latency reflects a weighted sum of multiple different underlying components (Coles & 

Rugg, 1995; Donchin & Heffley, 1978; Luck, 2014). For example, the voltage produced by a 

target stimulus at the Pz electrode site at 400 ms may reflect the combined impact of a dozen 

different ERP components, not just the P3 component. A given filter may change the data quality 

differently for these different components, and a filter may also produce different waveform 

distortion patterns for the different components as a result of their different waveshapes. This 

makes it difficult to find a filter that is optimal for all the components that are active in the ERP 

waveform. 
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In the present work, we have used a common solution to this problem, namely using 

difference waves to subtract away most of the components, ideally leaving only a single 

component in the waveform. Difference waves work reasonably well in many cases, but they 

often fail to isolate a single component. For example, a target-minus-nontarget difference wave 

often includes an N2 component as well as a P3 component (Folstein & Van Petten, 2008), and 

the P3 portion may include multiple different components (Polich, 2012). In addition, difference 

waves may not be appropriate for assessing some kinds of effects, such as the error-related 

negativity that is present on non-error trials (Gehring et al., 2012). Researchers may choose to 

use other approaches to isolating components in these situations, such as source reconstruction 

(Michel & Brunet, 2019) or spatiotemporal principal component analysis (Spencer et al., 2001). 

It would be straightforward to insert these methods into our procedure for determining the 

optimal filter settings. 

9. Limitations and future directions 

The present approach to filter selection has several strengths, including the use of 

objective and quantifiable properties of filters with respect to specific ERP effects and the 

scoring methods used to quantify them. However, subjective decisions are involved in selecting 

the shape of the artificial waveforms that are used to assess waveform distortion. In addition, the 

5% artifactual peak percentage criterion, although reasonable, is somewhat arbitrary. 

Nonetheless, the present approach makes it possible to quantitatively assess both the benefits and 

costs of filtering. 

Another important limitation of the present approach is that it is designed only for studies 

in which the scores are obtained from averaged ERP waveforms (because the SME is a measure 

of data quality for such scores). It is not designed for single-trial analyses, which can be quite 
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valuable and are becoming increasingly common (Bürki et al., 2018; Heise et al., 2022; Volpert‐

Esmond et al., 2018; Winsler et al., 2018). However, there is good reason to believe that the 

present approach will work well for single-trial analyses in which mean amplitude is scored from 

single-trial EEG epochs and these single-trial scores are then entered into the statistical analyses. 

This scoring method is a linear operation, as is averaging across trials, and the filters typically 

used in ERP research also involve a linear or approximately linear operation. The order of 

operations does not matter for linear operations (Luck, 2014), so the effects of filtering should be 

the same whether the mean amplitude is measured before or after averaging. Thus, we conjecture 

that our filter selection approach will also be well suited for single-trial analyses using mean 

amplitude scores. However, additional research would be required to verify this conjecture. 

The present approach is also not designed for mass univariate analyses, in which 

statistical comparisons between groups or conditions are made at a large number of individual 

time points and/or electrode sites, accompanied by an appropriate correction for multiple 

comparisons (Frossard & Renaud, 2022; Groppe et al., 2011; Maris & Oostenveld, 2007). As 

discussed in Section 3.2, the SNR for an individual time point can be estimated by simply 

dividing the voltage at that time point by the standard error of the mean at that time point. Rather 

than using SNRSME, this traditional SNR value could be used in selecting filter parameters. 

However, it is not obvious how one would combine standard errors across time points and/or 

electrode sites or how these standard error values would interact with the procedure for 

correcting for multiple comparisons. This is another avenue for future research. 
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Figure 1. Frequency response functions for several filters and their application to a single-
participant ERP waveform and to a simulated N170 waveform. The frequency response 
functions quantify the extent to which a given frequency is passed versus blocked by the filter. 
(a) Frequency response functions for low-pass filters. Two cutoff frequencies are shown (5 Hz 
and 20 Hz), combined with four roll-off slopes (12 dB/octave, 24 dB/octave, 36 dB/octave, and 
48 dB/octave). (b) Frequency response functions for high-pass filters. Two cutoff frequencies are 
shown (0.1 Hz and 0.5 Hz), combined with four roll-off slopes (12 dB/octave, 24 dB/octave, 36 
dB/octave, and 48 dB/octave). (c) Averaged ERP waveform with different half-amplitude low-
pass filter cutoffs (no filter, 5 Hz, 10 Hz, and 20 Hz, all with slopes of 12 dB/octave). (d) The 
same averaged ERP waveform with different half-amplitude high-pass filter cutoffs (no filter, 0.1 
Hz, 0.5 Hz, and 2 Hz, all with slopes of 12 dB/octave). (e) and (f)  Simulated N170 waveform 
filtered by a 5Hz low-pass filter and 2Hz high-pass filter (12 dB/octave). Note that the filters 
used for (c) and (d) were applied to the continuous EEG data prior to epoching and averaging. 
All filters used here were noncausal Butterworth filters, and cutoff frequencies indicate the half-
amplitude point. The waveforms in (c) and (d) were from the face condition in the ERP CORE 
N170 paradigm, Subject 40, CPz electrode site. 
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Figure 2. Flow chart of procedure for selecting the optimal filter for an ERP amplitude score. For 
latency scores, the noise is used instead of the signal-to-noise ratio, and the filter with the lowest 
RMS(SME) is chosen from among those that yield an artifactual peak percentage of less than 
5%. If there is reason to believe that the grand average difference waveform is not a good 
reflection of the true effect, the right side of the flowchart can be repeated with multiple different 
simulated ERP waveforms that reflect the range of possibilities. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  48 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Examples of single-trial EEG epochs, averaged ERP waveforms, and standardized 
measurement error (SME) values without filtering (top row) and after application of a high-pass 
filter with a half-amplitude cutoff at 0.5 Hz (bottom row). The SME was calculated for the mean 
amplitude in consecutive 100-ms time periods, for mean amplitude in the P3 measurement 
window (300-600 ms), and for peak amplitude in the P3 measurement window. The shaded 
region for the ERP waveforms reflects the standard error of the mean at each individual time 
point. The filter was a noncausal Butterworth filter with a slope of 12 dB/octave. The data were 
from the standard condition in the ERP CORE visual oddball paradigm, Subject 40, Pz electrode 
site. 
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Figure 4. Simulated ERP waveform without noise (a) and with high-frequency noise added (b). 
This high-frequency noise had very little impact on the mean amplitude during this window 
because the upward and downward noise deflections largely canceled each other. However, the 
noise had a large impact on the peak amplitude. 
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Figure 5. Grand average ERP waveforms from the ERP Core N2pc experiment. Separate 
waveforms are shown for trials where the target was contralateral to the electrode site and trials 
where the target was ipsilateral to the electrode site. The N2pc is defined as the difference in 
voltage between the contralateral and ipsilateral waveforms (denoted here by yellow shading). 
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Figure 6. Filter-induced distortions of real and simulated N170 and P3 components from the ERP 
CORE. (a) Grand average N170 difference wave and simulation with a Gaussian function (mean 
= 129 ms, SD = 14 ms, peak amplitude = -4.6 µV). (b) Grand average P3 difference wave and 
simulation with an ex-Gaussian function (mean = 310 ms, SD = 58 ms, λ = 2000ms, peak 
amplitude =8.6 ,-). The artificial waveforms were preceded and followed by 1000 ms of zero 
values to avoid edge artifacts. (c, d) Effects of a 5 Hz low-pass filter on the real N170 and P3 
waveforms, respectively. (e, f) Effects of a 5 Hz low-pass filter on the simulated N170 and P3 
waveforms, respectively. (g, h) Effects of a 2 Hz high-pass filter on the real N170 and P3 
waveforms, respectively. (i, j) Effects of a 2 Hz high-pass filter on the simulated N170 and P3 
waveforms, respectively. All filters used here were noncausal Butterworth filters with a slope of 
12 dB/octave, and cutoff frequencies indicate the half-amplitude point. 
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Figure 7. Effects of different low-pass filter cutoffs (5, 10, 20, 30, 40, and 80 Hz) and roll-offs 
(12, 24, 36, and 48 dB/octave) on the simulated N170 and P3 waveforms. Note that the distortion 
is most notable for the lowest cutoff frequencies. All filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-
amplitude point.  
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.05.25.542359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542359
http://creativecommons.org/licenses/by-nc-nd/4.0/


  53 

 

.  
 
 
 
 
 
 
 
 
 

 
Figure 8. Effects of different high-pass filter cutoffs (0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and roll-
offs (12, 24, 36, and 48 dB/octave) on the simulated N170 and P3 waveforms.  Note that the 
distortion is most notable for the highest cutoff frequencies. All filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-
amplitude point. The embedded number in each panel is the artificial peak percentage (shown in 
magenta for P3 and light blue for N170). 
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Figure 9. Demonstration of how the signal, noise, and signal-to-noise ratio (SNR) vary as a 
function of the filter settings for the P3 mean amplitude score from the ERP CORE visual 
oddball paradigm. (a) Signal: P3 mean amplitude score (from 300-600 ms at Pz) obtained from 
the grand average target-minus-standard difference wave. (b) Noise: Root mean square (RMS) of 
the single-participant standardized measurement error (SME) values for the P3 scores. Analytic 
SME values were obtained for each participant for the target and standard conditions for mean 
amplitude, and Equation 1 was applied to obtain the SME of the target-minus-standard difference 
for each participant. These SME values were then aggregated across participants using the RMS. 
(c) SNR: The signal divided by the noise for each filter setting. Note that filtering was applied to 
the continuous EEG prior to averaging with every combination of seven high-pass filter cutoffs 
(0, 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and seven high-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 
115 Hz). All filters used here were noncausal Butterworth filters with a slope of 12 dB/octave, 
and cutoff frequencies indicate the half-amplitude point. 
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Figure 10. Demonstration of how filters reduce amplitude differences but not latency differences. 
(a) Simulated P3 wave in two conditions, with a difference in peak amplitude of 0.5 µV between 
the conditions. (b) Same waveforms as in (a) after the application of a high-pass filter with a 1 
Hz half-amplitude cutoff and a slope of 12 dB/octave. The filtering caused a reduction in the 
amplitude difference to 0.24 µV. (c) Simulated P3 wave in two conditions, with a difference in 
peak latency of 100 ms between the conditions. (d) Same waveforms as in (c) after the 
application of a high-pass filter with a 1 Hz half-amplitude cutoff and a slope of 12 dB/octave. 
The difference in latency between the two conditions is still 100 ms. The waveforms were 
created using ex-Gaussian functions with a standard deviation of 58, a tau of 2000ms, an 
amplitude of 0.5 µV or 1µV, and a Gaussian mean of 320ms or 220ms. 
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Figure 11. Noise defined by root mean square of the standardized measurement error values for 
P3 peak latency from the ERP CORE across a wide range of filter combinations. The continuous 
EEG was filtered prior to averaging with every combination of seven high-pass filter cutoffs (0, 
0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and seven high-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 
Hz).  All filters used here were noncausal Butterworth filters with a slope of 12 dB/octave, and 
cutoff frequencies indicate the half-amplitude point.  
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Figure 12. Effects of filtering a simulated waveform that contains both a mismatch negativity 
(MMN) and a P3. (a) Waveform for the simulated MMN, along with the waveform after 
application of a 0.5 Hz high-pass filter (12 dB/ octave). (b) Waveform for the simulated P3, 
along with the waveform after application of a 0.5 Hz high-pass filter (12 dB/ octave). (c) 
Summation of the MMN and P3 waveforms into a single waveform. (d) Unfiltered waveforms 
for two conditions, one in which the P3 is 50% larger than in the other.  (e) Filtered waveforms 
for the two conditions (0.5 Hz high-pass filter, 12 dB/octave).  
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S1. Table S1

Table S1: Artifactual peak percentage values (in %) for low-pass filters with di↵erent roll-o↵s (12, 24, 36, and 48 dB/octave)

for simulated N170 and P3 waves.

Roll o↵

5Hz 10Hz 20Hz 30Hz 40Hz 80Hz

N170 P3 N170 P3 N170 P3 N170 P3 N170 P3 N170 P3

12 dB/oct 0.42 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 dB/oct 2.90 0.87 3.77 0.00 1.67 0.00 0.24 0.00 0.00 0.00 0.00 0.00

36 dB/oct 7.30 0.92 7.77 0.00 2.66 0.00 0.02 0.00 0.00 0.00 0.00 0.00

48 dB/oct 10.49 0.80 10.40 0.00 3.20 0.00 0.09 0.00 0.00 0.00 0.00 0.00

S2. Figure S1
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Figure S1: Grand average target-minus-standard di↵erence waves from the ERP CORE oddball experiment at the Pz

electrode sit for each combination of seven high-pass filter cuto↵s (0, 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and seven high-pass

filter cuto↵s (5, 10, 20, 30, 40, 80, and 115 Hz). All filters used here were noncausal Butterworth filters with a slope of 12

dB/octave, and cuto↵ frequencies indicate the half-amplitude point.
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S3. Figure S2 and the e↵ects of filtering on scalp topography
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P3b: Topographies for different combintions of high-pass and low-pass filters for mean amplitude score 

Figure S2: Filtering and scalp topography

The P3 analyses presented in Section 6 of the main manuscript were obtained from the Pz electrode

site, which was the a priori measurement site for the ERP CORE P3 experiment. In many studies,

multiple electrode sites are averaged together into a cluster prior to measuring the amplitudes or latencies,

which can improve the data quality (Zhang & Kappenman, 2023). The present approach can be applied

to values obtained from these clusters (but note that the clusters must be created prior to averaging

to apply ERPLAB’s automated SME estimation routine to the clusters). In other studies, however,

amplitude or latency values are obtained separately from each of many sites (e.g., for mass univariate

analyses). It is therefore natural to ask how filtering will impact the scalp topography of the ERP signal.

If a single component has been well isolated using a di↵erence wave (or some other approach), then

the unfiltered waveform at each electrode site will be a scaled copy of the waveform at the maximal site

(because ERPs propagate multiplicatively; McCarthy & Wood (1985)), plus or minus any site-specific

noise. Filtering the data will change the waveform at the maximal site, and the filtered waveforms at the

other sites will be scaled copies of this new waveform, plus or minus any site-specific noise. As a result, the

scalp topography will not be changed by filtering under these conditions. This is illustrated in this figure,

which shows that the topography of the P3 di↵erence wave was approximately the same for the di↵erent
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combinations of low-pass and high-pass filter cuto↵s (except for di↵erences in amplitude). However,

this equivalence may not hold when multiple components with di↵erent topographies are strongly and

simultaneously active in the di↵erence wave, in which case simulations may be necessary to predict the

results.

It is possible that the frequency content of the noise would vary systematically across electrode sites. If

so, then the best SNRSME might arise from di↵erent filter settings at di↵erent electrode sites. Although

we have not formally tested this situation, we anticipate that these di↵erences would be modest under

typical EEG recording conditions (e.g., the best high-pass cuto↵ being 0.2 Hz at some sites and 0.3 Hz at

other sites, with modest di↵erences in SNRSME between these cuto↵s). If this situation arises, a simple

solution would be to “split the di↵erence” and select a cuto↵ at the mean of the optimal values for the

di↵erent sites (e.g., a high-pass cuto↵ of 0.25 Hz). However, additional research would be necessary to

rigorously assess these issues.

S4. Figure S3
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Figure S3: Metrics of filtering e↵ectiveness (a) and artifacts for P3 mean amplitude (b) and peak latency (c) for each

combination of high-pass filter cuto↵s (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,1, and 2Hz) and low-pass filter cuto↵s (5,

10, 20, 30, 40, 80, and 115 Hz). (a) Artifactual peak percentage. (b) Signal-to-noise ratio for P3 mean amplitude. (c)

Noise level (standardized measurement error) for P3 peak latency. All used filters here were noncausal Butterworth filters

with a slope of 12 dB/octave, and cuto↵ frequencies indicate the half-amplitude point.

S5. Essence of the standardized measurement error (SME)

The SME quantifies the standard error of measurement for a given amplitude or latency score.

Roughly speaking, it indicates our confidence (or lack of confidence) that the score obtained for a given

participant is representative of that participant’s true score. More precisely, the SME — like any other

standard error — quantifies the degree to which a given score would be expected to vary if we repeated
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the experiment a very large or infinite number of times in a given participant (assuming no fatigue or

learning) and measured the score for each repetition of the experiment.

In other words, the standard error of a score for a given participant reflects what would happen if, in

theory, we repeated an experiment many times with that participant and obtained the score of interest

for each repetition of the experiment (assuming no learning, fatigue, etc.). For example, we could run

an oddball task an infinite number of times for a given participant, obtain the target-minus-standard

di↵erence wave for each repetition, and get the peak latency from this di↵erence wave for each repetition.

This would yield an infinite number of peak latency scores, and the true score for that participant would

be the mean of this infinite set of scores. The standard error of the peak latency for that participant

would be the standard deviation of that infinite set of peak latency scores. For more information about

standard errors and other similar measures (see Cronbach & Shavelson (2004); Hedge et al. (2018);

Williams et al. (1995); Williams & Zimmerman (1989)).

We cannot, in practice, repeat an experiment an infinite number of times for a given participant.

Even if we could repeat an experiment a large number of times, the scores would change systematically

over repetitions as a result of factors such as learning and fatigue. Fortunately, we can estimate the

standard error from the data obtained in a single experiment for a given participant. When we scoring

the mean amplitude (i.e., the mean voltage within a specific time range), we can use the equation for

the standard error of the mean (which is a special case of the standard error of measurement). That is,

we get a mean amplitude score on each trial, take the standard deviation of these single-trial scores, and

divide by the square root of the number of trials:

SEM = SD/
p
N. (S1)

This equation is not valid for other scores (e.g., peak amplitude, peak latency), but we can use boot-

strapping to estimate the standard errors for these scores (as described in the next section). The SME

is then equal to these standard errors. Both Equation S1 and bootstrapping make the assumption that

the data are completely independent on the di↵erent trials of an experiment. This assumption is almost

certainly incorrect because the trials are obtained sequentially. There may be autocorrelations (e.g., a

larger-than-normal value on trial N when there is a larger-than-normal value on trial N-1) and there

may be gradual trends (e.g., progressively smaller amplitudes over the course of the session). These

issues are discussed in detail in Section S8 of the supplementary materials for Luck et al. (2021), and

potential solutions are provided. For the present purposes, these issues are likely to be negligible. The

autocorrelations are likely to be small once the data have been baseline-corrected. Gradual trends are

more likely, but they will tend to be small in short experiments (such as the ERP CORE experiments,

each of which lasts approximately 10 minutes). Moreover, the present goal is to compare relative di↵er-

ences in data quality across di↵erent filter settings, not the absolute data quality. Thus, violations of the

assumption of independence are unlikely to have a major e↵ect when the SME is used in the context of

assessing the data quality resulting from di↵erent filters. In experiments with large autocorrelations (e.g.,

experiments without baseline correction) or experiments with large gradual drifts in the amplitudes or

latencies (e.g., very long experiments that might produce substantial learning or fatigue), the solutions
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described in Section S8 of the supplementary materials for Luck et al. (2021) can be used. It should be

noted that there are two di↵erent classes of measurement error, random errors and systematic errors (see

Brandmaier et al. (2018) for a detailed discussion). These are quantified as the precision of a measure

(the extent to which the values are similar across repeated measurements) and the bias of a measure

(the extent to which the average value is consistently less than or greater than the true value). The SME

reflects the precision of an ERP score, not the bias. Filters also create biases by reducing amplitudes

and creating artifactual peaks. We assess these biases separately from the SME.

S6. Using bootstrapping to estimate the SME

Bootstrapping is a widely used approach for estimating the standard error of measurement (Boos,

2003; Efron & Tibshirani, 1994). A general introduction to bootstrapping in the context of ERPs is

provided in Section S4 of the supplementary materials for Luck et al. (2021). Here we provide a more

condensed description of our approach and a brief discussion of the limitations of this approach.

As described in the preceding section, the standard error of a score for a given participant reflects

the variability (standard deviation) in the score that would be expected across a large or infinite number

of replications of the experiment in that participant. We typically have the data from only one run of

the experiment for a given participant, but we can use a standard statistical “trick” to simulate running

a very large number of experiments for this participant. The trick is to randomly sample from the trials

that were actually obtained to simulate a new experiment. For example, imagine that we have 40 target

trials and 160 standard trials in a P3 experiment for a given participant. To simulate a new experiment

for this participant, we randomly select 40 of the target trials and 160 of the standard trials from the

actual set of trials, sampling with replacement, and then we make averaged ERPs for the target and

standard from these randomly sampled trials. We then make a target-minus-standard di↵erence wave

and get the peak P3 latency score from this di↵erence wave. We then repeat this a total of 1000 times,

which gives us 1000 peak latency scores for this participant. The SME is then the standard deviation of

these 1000 scores.

Note that it is necessary to sample with replacement from the set of available trials. Otherwise the

averaged ERP waveforms will be the same for each repetition. In addition, it is necessary to have the

same number of sampled trials for each simulated experiment be the same as the number of trials that

are being averaged together in each condition in the actual experiment (because the noise level in the

averaged ERP depends on the number of trials being averaged together). This is based on the number

of trials being included in the averaged ERP waveforms used in the actual experiment. For example, if

participants received 40 target trials, but a given participant had only 31 trials after the rejection of trials

with artifacts and behavioral errors, the bootstrapping would be accomplished by randomly sampling 31

of these 31 trials (with replacement). As a result, the noise level of the averaged ERPs in the simulated

experiments will reflect the number of trials included in the main analyses for a given participant. In

general, the analyses for the simulated experiments must be identical to the main analyses except that

the trials for the simulated experiments are sampled (with replacement) from the set of trials used in

the main analyses.
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S7. Quantifying latency distortion

For cases in which temporal smearing should be considered in selecting filter settings, we recommend

quantifying the amount of smearing with a latency distortion percentage that is analogous to the arti-

factual peak percentage. This would involve quantifying the width of the filtered and unfiltered artificial

waveforms as the full width at half maximum (FWHM). The FWHM is computed by finding the time

points on the two sides of the peak at which the amplitude is 50% of the peak amplitude and calculating

the di↵erence in latency between these points. The latency distortion percentage is then calculated as

the absolute value of the FWHM for the filtered waveform divided by the absolute value of the FWHM

for the filtered waveform. The threshold for an acceptable latency distortion percentage will depend on

the specific research question.

S8. SME for di↵erences between conditions

When the amplitude of an ERP component is scored as the mean voltage within a time range, the

SME for a single experimental condition can be calculated analytically using Equation 1. This equation

involves obtaining the mean voltage score from each single-trial epoch, computing the standard deviation

(SD) of these scores, and dividing by the square root of the number of trials. This approach is fast and

straightforward, and it is directly implemented in ERPLAB Toolbox. However, many ERP experiments

use a di↵erence wave to isolate an ERP component (e.g., target minus standard for the P3, related minus

unrelated for the N400). Indeed, researchers will often score an amplitude or latency from a di↵erence

wave and enter these scores into the statistical analyses. In such cases, it is valuable to quantify the

data quality for the score obtained from the di↵erence wave. It is possible to do this via bootstrapping,

but bootstrapped SME values take much longer to compute and currently require custom scripting. An

alternative is to obtain the analytic SME for each of the individual conditions using Equation S1 and

use Equation S2 to estimate the SME for the di↵erence score using Equation S2:

SMEA�B =
q
SMEA

2 + SMEB
2. (S2)

In this equation, SMEA�B is the SME of the di↵erence between conditions SMEA and SMEB , and

SMEA and SMEB are the SMEs of the two individual conditions (obtained using Equation S1). Here,

we explain why Equation S2 is valid in this situation.

Equation S2 is based on the equation for the variance between the sum or di↵erence between two

independent random variables A and B:

V arianceA�B = V arianceA + V arianceB . (S3)

SME values are a type of standard deviation, so we can rewrite this equation in terms of SDs:

SDA�B =
q
SDA

2 + SDB
2. (S4)

This is essentially the same as Equation S2. However, these equations assume that A and B are

independent of each other, and this may seem like an invalid assumption. For example, imagine that we
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obtained the mean amplitude of the P3 wave for targets and standards in an oddball experiment. If we

obtained these scores for each participant, they would not be independent variables. That is, participants

with a larger-than-average score for the standards might also be expected to have a larger-than-average

score for the targets. In other words, the two variables are correlated. The equation for estimating the

variance of the sum or di↵erence of two correlated variables is:

V arianceA�B = V arianceA + V arianceB � 2Covariance(A,B). (S5)

In this situation, we have pairs of A and B values, with one pair of values each participant. However,

this is not a good analogy for the SME of the di↵erence between conditions, because the SME is computed

separately for each individual participant. For a given participant, we do not have pairs of A and B

values. Instead, we have a sample of A values (one for each trial in condition A) and a sample of B

values (one for each trial in condition B). There is no pairing of a given A value with an individual B

value. So there is no covariance between A and B.

In other words, we are examining the variability across trials within a single participant, which can

be thought of as samples from an infinite population of trials for that participant. The trials do occur in

a given order, and the score on one trial may provide some information about the score on the next trial

(i.e., an autocorrelation). This would be like testing participants in two groups, A and B, in a random

order. For example, we might have someone in group A on one day, someone in group B on another day,

another person in group B the next day, etc. There might be some autocorrelation across days, but this

creates a covariance across days rather than a covariance across groups. Consequently, we would simply

apply Equation S1 to estimate the standard error of the mean for a given group. And if we wanted to

estimate the standard error of the di↵erence in means between the two groups, we would treat the means

for groups A and B as independent variables and apply Equation S2. Thus, estimating the SME for

a di↵erence score is analogous to estimating the standard error of the di↵erence between means in two

separate groups of subjects, and Equation S2 is appropriate.

Moreover, we have verified that the SME values obtained using Equation S2 are nearly identical

to the values obtained using bootstrapping. Thus, it appears to provide an excellent approximation

in practice. Researchers who are uncomfortable with the assumption of independence can instead use

bootstrapping to more directly assess the SME for scores obtained from di↵erence waves. Note that

Section of the supplementary materials for Luck et al. (2021) contains a more extensive discussion of the

issue of autocorrelation across trials.

There are two important exceptions to Equation S2. First, it applies only when the score is the

mean voltage across a time window (because this is the only situation in which Equation S1 can be

used to obtain the SME from each condition). Second, it applies only when the di↵erence wave is

between waveforms based on separate trials, not when it is a di↵erence between two electrode sites (e.g.,

contralateral minus ipsilateral). When A and B are scores obtained from di↵erent electrode sites on the

same trial, they are paired, and the covariance between them would need to be taken into account when

estimating the SME of the di↵erence between them.
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