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Abstract.
Purpose: Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial

recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a
result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing
in just the last five years. While some qualities of these defacing algorithms, such as patient identifiability, have been
explored in previous works, the potential impact of defacing on neuroimage processing has yet to be explored.

Approach: We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and
the 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines—
SLANT and FreeSurfer—by comparing the segmentation consistency between the original and defaced images.

Results: Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent
with some algorithms such as Quickshear, MRI Deface, and FSL deface. Compared to FreeSurfer, SLANT is less
affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of
rescanning, as measured by the Dice similarity coefficient.

Conclusions: The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular,
should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a
thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving
defaced MRIs, it’s encouraged to include multiple brain segmentation pipelines.
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1 Introduction

Magnetic resonance (MR) images are widely used to study the brain and there has been an ever

increasing number of whole head MRIs being acquired clinically—about 40 million1 scans annu-

ally in the United States.1 In conjunction with the increasing number of scans are three important

trends. First, there have been considerable improvements in scanner technology including resolu-

tion and signal-to-noise ratio (SNR) improvements which have come from many factors including

the increased proportion of 3 Tesla (3T) scanners over 1.5T systems and the use of compressed

sensing image acquisition. These improvements have led to increasing numbers of clinical scans

1139 per 1,000 in 2016 would have equated to 44 million scans.
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that are reconstructed with high fidelity. Second, there has been increasing efforts by medical

imaging stake holders towards open and reproducible science,2 which has led to ever increasing

amounts of acquired whole-head MRIs being made publicly available. These open data initiatives

are aimed at reducing barriers to entry in many research fields requiring medical images of the

human brain. Studies like ABIDE,3 ADNI,4 and HCP5 are all examples of large studies that have

made a considerable amount of their data publicly available, and there are many others.6–10 Ad-

ditionally, many medical health systems are commoditizing patient data by deidentifying it and

selling the data to commercial entities.11, 12 Third, deep learning (DL) technologies, fueled by vast

training data, architectural advancements, and remarkable computational power improvements,

have paved the way for more sophisticated face recognition capabilities. In this context, issues

surrounding privacy have become prominent.

Investigators are provided guidelines by their institutional review boards (IRBs) for handling

protected health information (PHI) that is collected during a human subjects research study. PHI

comprising textual information (e.g., meta-data such as name, date of birth, medical record number,

etc.), for example, can be readily removed while exporting data from a Picture Archiving and Com-

munication System (PACS) or after export using one of several software packages.13, 14 The ques-

tion of whether and how investigators should handle the facial information that is present in high

quality medical images is not yet agreed upon. In particular, although some studies have shown

that photographs can be matched with reconstructions from high-quality medical images;15–17 these

matches are made in highly-controlled, small-scale settings, in which there is always a correspond-

ing pair between photograph and MR reconstruction. The capability to match photographs with

reconstructions from MRIs is not routinely available, nor has it been tested on large scale cohorts

where matches may not exist. Nevertheless, it is reasonable to assume that with technological
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advances, this capability could extend to collections of photographs found on the internet.

Many algorithms have been developed over the past 15 years to tackle privacy issues asso-

ciated with facial information in medical images.18–26 These algorithms operate by obscuring or

removing potentially recognizable portions of the face from the MR images, thus reducing the

utility of 3D reconstruction for identification purposes. We refer to them collectively as “defac-

ing algorithms” although some also remove the ears as well. While defacing algorithms remove

facial features to preserve privacy, concerns have arisen that they may negatively affect analysis.

Sitter et al. showed that automated pipelines for volumetric analysis exhibit a higher failure rate

when applied to defaced images as compared to original images.27 Moreover, Buimer et al. found

that the effects of defacing vary across the subject’s age and across brain regions.28 Other studies

have also shown the effects of defacing on downstream tasks, such as co-registration between MR

images and EEG/MEG data,29 brain atrophy estimation,30 quality measurements,31 whole brain

segmentation,32 volume analysis,25 and head and neck cancer segmentation.33 Theyers et al. con-

ducted a comprehensive study on the effects of defacing on brain volume measurements and fMRI

preprocessing, as well as image registration across multiple cohorts.34 They found that, beyond the

direct errors caused by defacing, none of the resulting differences were significantly greater than

those that could be introduced by using different DICOM-to-NIfTI converters.

The findings from these studies help us to better understand the consequences of applying de-

facing techniques and to guide us towards privacy protection standards that the entire community

can agree upon. But further characterization is necessary. To our knowledge, no prior studies have

analyzed the effects of defacing on brain segmentation using multiple advanced pipelines, each

with a fundamentally different methodological approach. Moreover, few studies have simultane-

ously i) used a substantial volume of data for validation and ii) included a comprehensive selection
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Original Defacer Quickshear Pydeface MRI_Deface

FSL_deface Face_Masking AnonyMI mri_reface_0.2 mri_reface_0.3

Fig 1: A sagittal slice of an MRI is displayed over the reconstruction of the whole head MRI.
Top set of images from left to right is: the acquired MRI and then defacing using Defacer,23 Quick-
Shear,19 Pydeface,22 and MRI Deface.18 The bottom set of images from left to right is: defacing
using FSL Deface,21 Face Masking,20 AnonyMI,24 mri reface 0.2,25 and mri reface 0.3.25

of defacing algorithms for comparison.

In this work, we include eight defacing algorithms that cover the majority of publicly available

choices for defacing (See Fig. 1 for examples), and use MR images from 200 subjects across

two public datasets. As part of our evaluation, we analyze the effects these defacing algorithms

have on the performance of two popular neuroimaging pipelines: SLANT35, 36 and FreeSurfer.37

In our experiments, we begin by applying each defacing algorithm to T1-weighted MR images
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of 179 subjects from the OASIS-3 cohort.8 We conduct a manual quality check on the outputs

of each defacing algorithm, in which we identify success and two types of failures. We exclude

those failure cases from further analysis, as described in Sec. 3.1. Next, we feed both the defaced

images and the original images into two brain segmentation pipelines (SLANT and FreeSurfer).

To measure the effects of defacing, we compute the Dice Similarity Coefficient (DSC)38 between

the segmentations obtained from the original MR image and the corresponding defaced MR image.

To quantify our original vs. defaced segmentation results, we compare the effects of defacing with

those of the segmentation of scan-rescan data—after scan-rescan subject alignment—by using the

Kirby-21 dataset.39

We observe that defacing has a measurable impact on brain segmentation, with the effects

being larger on FreeSurfer segmentations (DSC = 0.918 ± 0.019) than on SLANT segmentation

(DSC = 0.970±0.005). Also, we found that DSC = 0.879±0.015 for FreeSurfer segmentation on

scan–rescan pairs and DSC = 0.952± 0.005 for SLANT segmentation on scan-rescan pairs. From

this result we conclude that the effects of defacing are smaller than those of scan–rescan followed

by registration. Based on this, one might be tempted to ignore the effects of defacing. But we also

found that catastrophic failures in brain segmentation can be caused by defacing. While most of

these failures are typically easy to detect during quality checks, some can have subtle effects, as

shown in Sec. 5.3 and discussed in Sec. 5.4.

2 Methods and Materials

2.1 Defacing Algorithms

The eight defacing algorithms used in our comparison are described in detail in the Supplementary

Material. Here, we provide a brief outline of the eight methods.
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Defacer23 is an open-source deep-learning based method for MRI anonymization. It uses a

deep network to identify the eyes, ears, nose, and mouth in an MR image. This is followed by

image processing techniques to manipulate the intensity values of the detected facial feature voxels

and their immediate surroundings.

Quickshear19 uses a precomputed brain mask and edge detection to identify a “shearing plane”

that separates the face from the brain. We generate the brain masks required by Quickshear using

BET (Brain Extraction Tool)40 with default settings.

MRI Deface,18 Pydeface,22 and FSL deface21 have a similar workflow, in that they each register

a template with a corresponding mask (or masks) to the input image; with non-brain voxels being

masked out or manipulated through some straightforward image processing to provide anonymiza-

tion. The methods use linear registration with either Fischl et al.41 or FLIRT.42 FSL deface has

a key difference with MRI Deface and Pydeface in that it includes the ears in its defacing mask.

Given the identifiability of the ears,43 this seems like an unfortunate oversight of MRI Deface and

Pydeface.

Face Masking20 focuses on blurring the facial surface so as not to introduce hard intensity

edges to the whole head MRI that can confuse subsequent processing tools. The result is an

artificial cubist-like face, see Fig. 1 for an example.

AnonyMI24 uses a combination of a watershed algorithm44 and a non-linear registration45 of a

template, to identify the facial surface and features. The template provides a generic face, while

the facial surface and features are blended with the generic face while ensuring that the image

intensities in the blended regions come from the same distribution as the facial features.

mri reface25 uses a non-linear registration46 to bring an average face template into the space of

the input image and then replaces the facial features with those of the template. The average face
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template intensities are transformed to match the input intensities with intensity matching—similar

to the one described by Nyúl and Udupa47—followed by bias correction for smooth local intensity

normalization between the images.48 We use both publicly available versions of mri reface in the

present study.

We note that Schwarz et al. evaluated whether MR images were correctly recognizable by

facial recognition software after defacing.25 Of the presented methods in that paper, the rank-

ing in terms of correct matching between photos and MRIs of participants after defacing was:

FSL Deface (28%); mri reface (30%); MRI Deface (33%); PyDeface (38%). The authors also

included an intra-class correlation coefficient (ICC) comparison between the presented methods

before and after defacing. ICC would identify brain structures that have changed their volume in

some way, it would not highlight changes in the spatial positioning of those brain structures which

is critically important when potentially considering the accidental removal of portions of the brain

due to defacing. We note this, as we have observed brain structures “moving” if their segmentation

is performed on the original or defaced images, see Fig. 6 for an example.

2.2 Dataset

All the defacing methods in our study have reported results on T1-w MRIs; additionally T1-w

MRIs are typically the images acquired at the highest resolution—important for correct facial

recognition—and are also the most commonly acquired images. As such, we have focused our

defacing evaluation on T1-w MRIs from a subset of the OASIS-38 cohort and the complete set

of the Kirby-2139 study. All images are reoriented to match the approximate orientation of the

standard template images (MNI152) using fslreorient2std,49 which only applies 0, 90, 180

or 270 degree rotations.
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2.2.1 OASIS-38

OASIS-3 is the third release of the Open Access Series of Imaging Studies (OASIS)50 and includes

retrospective data from 1,379 individuals collected over a period of 30 years by the WUSTL Knight

ADRC. Of these 1,379 individuals, 755 were cognitively normal adults, while the remaining in-

dividuals were at different stages of cognitive decline and ranged in age from 42 to 95 years.

OASIS-3 comprises over 2,800 imaging sessions that include T1-w, T2-w, FLAIR, ASL, SWI,

resting-state BOLD, and DTI. For our study, we selected a random sample of 179 subjects from

the OASIS-3 cohort. For each of these subjects, we randomly selected one T1-w image from the

available imaging sessions to use in our experiments. See the Supplemental Material for the list of

selected images.

2.2.2 Kirby-2139

Kirby-21 is part of the Multi-Modal MRI Reproducibility Resource and includes scan-rescan imag-

ing sessions of 21 healthy subjects with no history of neurological conditions. Each subject un-

derwent two identical 1-hour scanning sessions, with a short break in between and repositioning

before the second session. The resulting dataset comprises 42 sessions that include MPRAGE,

FLAIR, DTI, resting state fMRI, and so on. For our study, we used the MPRAGE images from the

scan-rescan sessions of the 21 subjects.

2.3 Brain Segmentation Pipelines

We include two popular whole head MRI segmentation pipelines to evaluate the effects of defacing

on brain segmentation.
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2.3.1 SLANT35, 36

The spatially localized atlas network tiles (SLANT) method employs multiple independent 3D

convolutional networks for segmenting the brain. Each of the networks is only responsible for

a particular spatial region, thus the task of each network is simplified to focus on patches from

a similar portion of the brain. To enable this, affine registration, N4 bias field correction, and

intensity normalization are employed to roughly normalize each brain to the same space before

segmentation. After each network performs its duty, the segmentation labels are fused together to

form the final labels for the 132 anatomical regions of the brain. SLANT is publicly2 available

and is reported to have high intra- and inter-scan protocol reproducibility.51 In this study, we use

version 1.0.3 with GPU support.

2.3.2 FreeSurfer37

FreeSurfer is a widely used tool in the neuroimaging community that provides automated pro-

cessing of MRI data to obtain measurements of various brain structures. In this study, we use

the segmentation file, aparc+aseg.mgz, generated by FreeSurfer’s “recon-all” method.

The file contains information about the cortical regions and subcortical structures segmented by

FreeSurfer, including the Desikan-Killiany atlas-based parcellation of the cerebral cortex and the

segmentation of subcortical structures such as left and right caudate, putamen, pallidum, thalamus,

lateral ventricles, hippocampus, and amygdala. We use version 7.3.2.

2https://github.com/MASILab/SLANTbrainSeg
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3 Experimental Setup

3.1 Defacing Quality Check

In Sec. 4, we present the results of application of the eight defacing algorithms on our total of 200

images (179 T1-weighted images from OASIS-3 and 21 MPRAGE images from the first session

of each subject in the Kirby-21). We initially review the resulting defaced images manually; this

review is a first stage quality check that is focused on identifying any problems in the images.

Each image is checked by viewing the axial slices from lateral to superior and then again from

superior to lateral. This initial review classifies the output of all eight defacing algorithms into

three categories:

Success: The particular defacing algorithm processes the MR image as expected. Although

some facial voxels that are supposed to be removed may remain, there are not any unrecov-

erable errors as observed in the other two categories.

Type I Failure: The defacing algorithm fails to detect facial features or run properly. As a

consequence, the face remains untouched and may still be recognizable.

Type II Failure: Some non-zero proportion of the brain is removed due to the excesses of

the defacing algorithm.

3.2 Quantify the Effects of Defacing

To quantify the effects of the defacing algorithms, we first applied them—using their default

parameters—to the 179 T1-weighted MR images from OASIS-3. After the completion of the

quality check outlined in Sec. 3.1, we include only those defacing results that are classified as

“Success” for our subsequent analyses. We then run both SLANT and FreeSurfer on the original
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data as well as on the non-excluded output of each defacing algorithm. This results in segmentation

label images from both SLANT and FreeSurfer for each of the subjects from OASIS-3 that passed

our defacing quality check. Hereafter, we refer to the segmentation from the original data as the

“unaltered result”, and the segmentation from the defaced data as the “defacing result”. We con-

sider the segmentation result on the unaltered image as the ground truth, and compare the defacing

result to this ground truth by calculating the Dice similarity coefficient (DSC),38, 52 using,

DSC =
1

K

K∑
i=1

2|Xi ∩ Yi|
|Xi|+ |Yi|

(1)

where K is the total number of labeled regions in the brain, Xi and Yi are the binary segmenta-

tion masks for region i in the unaltered and defacing results, respectively. Here, | · | denotes the

cardinality of the corresponding mask (i.e., the number of voxels).

3.3 Compare Defacing with Scan-Rescan

After quantifying the effects of defacing on segmentation by computing the DSC, we have a ques-

tion:

Are these effects comparable or worse than those of rescanning a subject followed by registra-

tion?

To answer this question, we used the MPRAGE images from the scan-rescan sessions of the

21 subjects from the Kirby-21 cohort. This question is aimed at determining if any of the defacing

methods have no more negative effect on SLANT and FreeSurfer than the variance associated with

rescanning.

Firstly, we apply the eight defacing algorithms to the MPRAGE images from the first scan,
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using default parameters. We then exclude any defaced images that did not pass our quality check,

see Sec. 3.1, by using only those images that are classified as “Success” for the subsequent steps.

We then run SLANT and FreeSurfer, on both the original data and the defaced data. This enables

us to obtain segmentation label images for each set of data. To quantify the effects of defacing on

segmentation, we compute the DSC between the segmentation results obtained from the original

and defaced data, as we did in the previous section. This is the same procedure that we used for

the 179 OASIS-3 subject, as described in Sec. 3.2.

The availability of the second contemporaneous scan of each of the Kirby-21 participants al-

lows us to take the additional step of registering the rescan (or second) MPRAGE image to the cor-

responding first MPRAGE of the same participant. We do this registration step using three different

types of registration methods: rigid, affine, and deformable (SyN) implemented by ANTs.46, 53 Af-

ter registration, we run SLANT and FreeSurfer on the rescan data registered to the first scan. We

then compute the DSC to measure the difference between the segmentation results from the two

scans.

4 Experimental Results

4.1 Quality Check

We report the results of our quality check in Table 1. Quickshear has a dramatic number of failure

cases, most of which are “Type II Failure” cases—which is when some proportion of the brain is

removed due to excessive (or inappropriate) defacing. We attribute this outcome to the dependence

of Quickshear on the quality of the input brain mask. In our experiments, the brain masks were

generated by BET without fine-tuning the parameters for each brain, and thus can be unreliable.

Upon review, we regard the vast majority of Quickshear “Type II Failure” cases as a result of
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Table 1: Manual Quality Check: The results of our manual quality check of all eight defacing
algorithms across the 179 subjects of the OASIS-3 cohort8 and the 21 participants of the Kirby-21
dataset.39 Detailed results are included in the Supplemental Material.

Algorithm Dataset Total Success Type I
Failure

Type II
Failure

Defacer23 OASIS-3 179 163 16 0
Kirby-21 21 21 0 0

Quickshear19 OASIS-3 179 78 0 101
Kirby-21 21 20 0 1

Pydeface22 OASIS-3 179 179 0 0
Kirby-21 21 21 0 0

MRI Deface18 OASIS-3 179 136 7 36
Kirby-21 21 21 0 0

FSL deface21 OASIS-3 179 142 0 37
Kirby-21 21 21 0 0

Face Masking20 OASIS-3 179 176 0 3
Kirby-21 21 21 0 0

AnonyMI24 OASIS-3 179 179 0 0
Kirby-21 21 21 0 0

mri reface 0.225 OASIS-3 179 179 0 0
Kirby-21 21 21 0 0

mri reface 0.325 OASIS-3 179 179 0 0
Kirby-21 21 21 0 0

BET and could possibly be rectified with an alternative skull-stripping software. However, we

note that if the skull-stripping is done to a high enough standard then it can serve to deidentify

an image and the additional step of defacing is superfluous. Defacer has the highest incidence of

“Type I Failure” cases, wherein the algorithm encountered issues with detecting facial features,

resulting in untouched faces in 16 subjects; MRI Deface is the only other method to have “Type

I Failure” cases, though it is only 7 of the 200 subjects we used in our studies—6 in OASIS-

3 and 1 in Kirby-21. Pydeface has zero failure cases, unlike its counterparts—FSL deface and

MRI Deface—that achieve defacing in a comparable manner, i.e., by applying a predefined mask
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SLANT

FreeSurfer's aparc+aseg

Fig 2: Dice Similarity Coefficient (DSC) between the segmentations of the unaltered images
and the defaced images in the OASIS-3 cohort: In each column, we present the results for
a specific defacing algorithm with two “raincloud” plots. The raincloud plots with the “cloud”
on the left correspond to the SLANT comparison, while the plots with the “cloud” on the right
correspond to FreeSurfer. The individual “raindrops” correspond to the mean DSC of the labels
(by SLANT or FreeSurfer) of a specific subject from the OASIS-3 cohort.

(or masks) after registration. AnonyMI and both versions of mri reface also have zero failure cases.

See the Supplemental Material for complete details about the quality check results.

4.2 OASIS-3

In our first experiment, we compare the performance of SLANT and FreeSurfer on unaltered im-

ages with their performance on defaced images. As outlined in Sec. 3.2, we applied the eight

defacing algorithms to our OASIS-3 cohort of 179 subjects and then computed the DSC overlap

that occurs between running SLANT (or FreeSurfer) on the unaltered images and the defaced im-

ages. In essence, we treat running SLANT (or FreeSurfer) on the unaltered images as a proxy
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for a gold standard segmentation; what underpins this approach is the assumption that defacing

does no harm to the underlying brain data and does not change the position and orientation of

the brain, in which case we can compare the segmentations of unaltered data to defaced data. In

Fig. 2, we visualize these results as “raincloud” plots in which the dots are the mean DSC of the

labels per subject, and the colors correspond to different defacing algorithms. The SLANT results

have the “cloud” of the raincloud on the left, while the FreeSurfer results have the cloud on the

right. We note that these results only include data that passed our quality check (see Sec. 3.1),

which explains by Quickshear has considerably fewer “raindrops” than the other algorithms due

to its large number of failure cases (see Table 1). We observe that for both SLANT and FreeSurfer

across all tested defacing algorithms, there is not a single case where DSC = 1, which indicates

that defacing always has an impact of the segmentation results from both SLANT and FreeSurfer.

Also, the DSC from the SLANT segmentations are individually and collectively higher than those

from the FreeSurfer segmentations, and the FreeSurfer segmentations have a considerably larger

spread. Interestingly, neither segmentation algorithm depends strongly on which defacing method

is used. A detailed discussion of these results is provided in Sec. 5.4.

Presenting the mean DSC per subject, as in Fig. 2, offers an incomplete picture of the per-

formance of SLANT and FreeSurfer. Unfortunately, due to the large number of labels provided

by both SLANT and FreeSurfer it is difficult to present all the results in this manuscript. As a

compromise, we present DSC for some representative regions of interest (ROIs) for both SLANT

and FreeSurfer in Fig. 3 and include results for all available labels in the Supplemental Material.

We note that the ROIs defined by SLANT and FreeSurfer differ slightly, as they were developed

from different atlases that contain different ROIs. Nonetheless, for Fig. 3 we have chosen anatom-

ically comparable ROIs that share enough similarities for an informed side-by-side comparison.
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FreeSurfer's aparc+aseg

SLANT

Fig 3: Dice Similarity Coefficient (DSC) for the segmentation (of SLANT or FreeSurfer)
between unaltered and defaced images for seven regions of interest (ROIs) for subjects from
the OASIS-3 cohort: The top collection of images shows SLANT labels on a particular subject
from the OASIS-3 cohort. Surrounding the MRI are seven raincloud plots that correspond to
specific ROIs. The bottom collection of images shows the FreeSurfer labels for the same OASIS-3
subject and raincloud plots for anatomically comparable ROIs.

The y-axis in each subplot covers the range of the DSC for that particular label. Refraining from

setting uniform y-axis limits for all subplots may hinder the comparison between ROIs, but it does

allow for a clearer view of the distribution of the DSC for each of the included labels. We observe

that FreeSurfer results have a large range and more outliers than those of SLANT. The more ex-
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SLANT

FreeSurfer's aparc+aseg

Fig 4: Dice Similarity Coefficient (DSC) between segmentations of the unaltered first scan,
the defaced first scan, and aligned rescan on the Kirby-21 dataset: In each column, we present
the results for the segmentation comparison between the unaltered first scan and either a defaced
first scan or the unaltered rescan aligned to the first scan. The raindcloud plots are explained in
Fig. 2. Key: “rescan+rigid” – rescan registered with rigid registration; “rescan+affine” – rescan
registered with affine registration; “rescan+syn” – rescan registered with SyN based deformable
registration.

treme FreeSurfer outliers indicate instances of dramatic region specific disagreement. In Sec. 5,

we provide examples of such outliers and discuss these results.

4.3 Kirby-21

Our second experiment is focused on the Kirby-2139 dataset. We first compare the performance

of SLANT and FreeSurfer on the unaltered images with their performance on the defaced im-

ages. This portion of the experiment is similar to our first experiment on the OASIS-3 cohort (see

Sec. 4.2) except with a smaller population size. This allows us to demonstrate the consistency

of the previously observed behaviors across two different datasets. Given the rescan images in
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the Kirby-21 dataset, we can ascertain if the effects of defacing are comparable to that of scan-

rescan differences. This is the second comparison we explore in this experiment. Both of these

comparisons are presented in Fig. 4, using a visualization identical to that of Fig. 2. To prevent

confusion, we separate the results from the defacing algorithms and the results from the “rescan

and registration” component with a vertical line.

Despite the smaller sample size of the Kirby-21 (N = 21) it exhibits a very similar trend for

the defacing algorithms—left side of Fig. 4—as that of the OASIS-3 (N = 179) cohort as shown in

Fig. 2. For the “rescan and registration” component, shown on the right side of Fig. 4, we observe

that the groups are significantly lower than those of the defacing algorithms. Specifically, for the

SLANT segmentation method, the DSC for the “rescan and registration” results are approximately

0.018 lower than those for the defacing methods. While for the FreeSurfer segmentations, the

difference is even greater, with the DSC for the “rescan + registration” group being about 0.039

lower than the defacing methods. These findings suggest that rescanning followed by registration

may have a greater impact on brain segmentation consistency than defacing alone. Moreover, these

results suggest that FreeSurfer may be more susceptible than SLANT to variation from “rescan +

registration”. More detailed discussion of these results is provided in Sec. 5.

5 Discussion

5.1 Quality Check Outcomes

Figure 5 presents examples of Type II Failure cases described in Sec. 3.1, where a certain propor-

tion of the brain is removed due to excessive defacing. In the figure, we see the columns from

left to right show the unaltered data and the results of FSL deface, MRI Deface, and Quickshear;

while the rows from top to bottom are a 3D reconstruction of the MR data, sagittal, coronal, and
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axial views of the MR data overlaid with SLANT labels. As this subject failed the quality check,

the SLANT and FreeSurfer results were not included in subsequent analyses. The failure of Quick-

shear is readily observable as a sizeable portion of the frontal lobe has been removed through the

defacing process. The errors of both FSL deface and MRI Deface might, as first viewing, not be as

obvious; however, review of their coronal slices through the frontal lobe, and comparison with the

unaltered image, readily demonstrate the removal of a portion of the brain. As important as defac-

ing is for providing greater access to MRI databases, it is far more fundamental that those defacing

algorithms do not remove any portion of the brain. As such those algorithms that had any Type II

Failure—Quickshear, MRI Deface, FSL deface, and Face Masking—are particularly worrisome.

It might be argued that the Type II Failure cases of Quickshear can be addressed with better quality

skull-stripping; this is not satisfactory, because if we have to do some high quality skull-stripping

and manual review to ensure accurate brain masks, then why not release the skull-stripped images

instead of the Quickshear-defaced images. This requirement of Quickshear is a hindrance to its

adoption in many settings. The failures of MRI Deface (20.1% of OASIS-3), FSL deface (20.7%

of OASIS-3), and Face Masking (1.7% of OASIS-3) are disappointing and highlight that any use

of defacing algorithms should be followed by a quality check to establish no such errors. We note

that FSL deface was used in the original processing of the UK BioBank21 data and, unfortunately,

the UK BioBank does not report any manual review of these defaced images. Finally, we recall

that Type I Failure cases are when the defacing algorithm failed to deface the underlying image.

Such cases occurred with Defacer (8.9% of OASIS-3) and MRI Deface (3.9% of OASIS-3), thus

further highlighting the necessity of manual review of the defaced output.
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5.2 Success and failure cases of defacing

As we note in Sec. 5.1, reliable defacing algorithms need to remove facial features effectively

and ensure that the entire brain is left intact without causing any damage. Although we did not

specifically evaluate the protection provided by defacing algorithms against facial recognition, we

analyzed the success and failure rates of each algorithm. Of the defacing algorithms examined

in this study, five of them exhibited instances of failure. Of these five, four had more than 15

instances of failure across the 200 testing samples (179 from OASIS-3 cohort and 21 from the

Kirby-21 dataset). Use of these algorithms in a practical setting, requires some level of supervision,

to prevent catastrophic failures such as the removal of half of the frontal lobe due to excessive

defacing—see Fig. 5 for an example. However, this poses a significant challenge for researchers

who need to apply defacing to large datasets since it can be time-consuming to ensure quality

checks. AnonyMI, Pydeface, and both versions of mri reface did not encounter any failure cases

during our experiments. Nevertheless, it is important to acknowledge that passing our quality

check does not guarantee successful defacing, as our definition of “success” only verifies that

the algorithm processes the MR image as intended, despite the possibility of some facial voxels

that were meant to be removed remaining in the image. For example, from Fig. 1 it is clear that

some facial features, such as eyes and ears, were not completely removed after using Pydeface for

defacing.

5.3 FreeSurfer Outliers

In this section, the FreeSurfer outliers we observe in Fig. 2 for the OASIS-3 cohort and Fig. 4

for the Kirby-21 dataset are further explored. These outliers represent the most disagreement

between FreeSurfer run on the unaltered data versus being run on a defaced image. We show a
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Original QuickshearMRI_DefaceFSL_deface

Fig 5: Example of Type II Failure cases: The columns from left to right show the unaltered (Orig-
inal) data and the results of FSL deface, MRI Deface, and Quickshear. The rows from top to bot-
tom show 3D renderings of the head before and after defacing by the three algorithms, then sagittal,
coronal, and axial slices with their corresponding SLANT segmentation overlaid. The red cross
marks the same position in each image and shows where brain voxels are removed by defacing.

specific example of an outlier from the Kirby-21 dataset in Fig. 6. In the image we show axial,

coronal, and sagittal views of the FreeSurfer segmentations overlaid on the MR image for the

original (unaltered) data, the data processed by the defacing algorithms, and also the registered

rescan results which we only have for the Kirby-21 dataset. Each subimage features an arrow

highlighting the same location in each view; we focus on this particular point as the labels assigned

by FreeSurfer on the unaltered data differ dramatically with the processed data. In using the term

“processed”, we are referring to the application of either a defacing algorithm or the registration

of the rescan image followed by FreeSurfer. In the original image, the location is labeled as the

right post-central gyrus (“ctx-rh-postcentral”). However, in the processed data, the segmentation
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label for this same location is consistently right pre-central gyrus (“ctx-rh-precentral”). It is worth

noting that this difference in segmentation labels occurred regardless of which processing method

was applied, indicating that the label for this region is highly sensitive to any processing. In Fig. 7,

we present FreeSurfer segmentations corresponding to the two “worst” outliers of Face Masking

shown in Fig. 2, with DSCs below 0.7. Although defacing did not damage any brain voxels, the

segmentation of the defaced image presents a problem. A large proportion of one hemisphere of

the brain is almost unlabeled, with some crushed-glass-like labels scattered around. The cause

for such failure is unclear and we note that these are the worst examples among segmentations

from images that passed our defacing quality check (see Sec. 5.1). Our manual quality check does

remove images that have been damaged by the defacing processing, however it clearly does not

indicate that subsequent processing will be accurate.

5.4 Effects of defacing on brain segmentation

We used Dice Similarity Coefficient (DSC) to quantify the differences between the segmentation

results obtained from the defaced MR images and the unaltered MR images. Figure 2 shows

that both SLANT and FreeSurfer segmentations obtained from the defaced MR images differ from

those obtained from the original MR images, suggesting that defacing has a potentially detrimental

impact on brain segmentation. Moreover, the degree of this impact varies slightly across different

defacing methods, with a stronger effect observed on FreeSurfer segmentation than on SLANT

segmentation, as evidenced by the consistently lower distribution of DSC and the number of out-

liers for FreeSurfer. Notably, the outliers with low DSC typically represent dramatic changes in

the segmentations, one of which is shown in Fig. 6, where a significant portion of the label for

the right post-central gyrus (“ctx-rh-postcentral”) shifts after defacing. This shift occurs across
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Original

rescan+affine

Defacer Quickshear Pydeface MRI_Deface FSL_deface Face_Masking

AnonyMI mri_reface_0.2 mri_reface_0.3Original rescan+rigid rescan+syn

Fig 6: FreeSurfer Outlier Comparison: MRIs overlaid with their corresponding FreeSurfer seg-
mentations. The arrows point to a location where the label given by FreeSurfer segmentation
changed dramatically after processing either by a defacing algorithm or the registration of the res-
can image. We repeat the original FreeSurfer results on both the top and bottom left column for
easier comparison across the rows.

all defacing methods and even in the rescanning group, indicating that the segmentation of this

region by FreeSurfer is highly sensitive to changes in the MR image. Another, more extreme case

is shown in Fig. 7, where the segmentation failed to label almost the entire hemisphere of the brain

after defacing, resulting in the lowest DSC among all outliers.

For SLANT segmentation, the removal or alteration of the face affects the affine registration to
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Original Face_Masking Face_MaskingOriginal

L RL LL RRR

Fig 7: Two FreeSurfer Outliers: MRIs overlaid with their corresponding FreeSurfer seg-
mentations. The left two columns are results from unaltered (Original) MRI and defaced by
Face Masking for one subject, and the right two columns are from another subject. These are
the worst two subjects in our comparison with mean DSC below 0.7. Key: “L” denotes left and
“R” denotes right.

the MNI atlas, the N4 bias field correction, and the intensity normalization. Additionally, as the

input patches around the face are different from the original, the neural network outputs also differ.

As SLANT aggregates the outputs of multiple neural networks to generate the final segmentation

label image, these differences are reflected in the final results. Given that SLANT breaks down an

MR image into 27 smaller regions for processing, it is then somewhat surprising that the effects of

defacing can be observed in regions that are “far-away” from the changed facial features—such as

changes in the occipital lobe, see Supplemental Material for an example. FreeSurfer segmentation

involves registrations of multiple atlases and mapping of labels from these atlas spaces. When the

facial voxels are removed or changed, the resulting registered image will differ, unless flawless

and perfectly-matching brain masks were used to focus the registration on the brain, which is

not feasible. Consequently, the labels mapped from the atlases can—and do—end up in different
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locations.

According to Fig. 4, the DSC between brain segmentations from registered rescans and the

unaltered first scans are lower than the DSC between segmentations from defaced images and the

original (unaltered) images. This suggests that the changes induced by rescanning a subject have

a greater impact on brain segmentation than defacing alone, in general. However, this does not

necessarily imply that the impact of defacing is negligible. Instead, it only provides a basis for

comparison that helps us understand the magnitude of the impact. There are multiple factors that

contribute to the effects of rescanning followed by alignment via registration. One factor is the

light geometric deformation of the brain that occurs between the first scan and the rescan, which

can happen due to the subjects being repositioned in the magnetic field. Another factor is the

interpolation that occurs during the registration, which may also impact the segmentation.

5.5 Recommendations

We cannot overstate the importance of manual review of defacing algorithms; it is particularly

critical if the data is being made available for public dissemination. Our current recommendation

for a preferred defacing algorithm is mri reface (version 0.3) for the following reasons:

i) It is a user-friendly application that is readily incorporated in existing scripting pipelines;

ii) It exhibits a DSC which is slightly above average for the segmentation results between the

unaltered and defaced images;

iii) It is robust to low image quality and different head positions, producing consistent results

that resemble unaltered MR images.
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iv) By manipulating the facial features to match a template, it clearly provides a non-identifiable

image.

5.6 Strengths and limitations of current study

We include eight defacing algorithms that cover the majority of popular choices used in the past

15 years. To ensure that the processing steps were performed accurately, we have communicated

with the authors of some of these defacing algorithms, including mri reface,25 AnonyMI,24 and

Defacer.23 We include two pipelines to analyze the effects of defacing on brain segmentation.

One pipeline, SLANT, is based on deep-learning, while the other, FreeSurfer, is a widely popular

multi-atlas based approach. The inclusion of these two pipelines allows for a more comprehensive

comparison of the results obtained. For our analysis, we have used a total of 200 MR images and

performed a quality check aimed to ensure the reliability of the results.

Due to the scope of this study—200 subjects, multiple defacing algorithms, and two neu-

roimaging pipelines—we only investigate the effects of defacing on brain segmentation and used

only DSC to quantify these effects. Although DSC provides information on the extent of overlap

between segmentation labels, it does not consider other aspects such as shape, topology, or the con-

nected components. We did not study volumetric changes, which is a common downstream task

in medical image analysis. This adds to the limitations of this study. For a more comprehensive

comparison, additional metrics and analyses should be included.

As we ran the defacing algorithms on different servers with varying hardware and operating

systems, we do not report the run time of each algorithm or its memory usage. As a result, we

were unable to provide evidence for questions regarding algorithm efficiency. Furthermore, we

did not provide evidence to support our recommendation of mri reface. We also did not measure
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the effectiveness of the defacing algorithms in protecting against identification, which is a crucial

aspect to consider when selecting a reliable defacing algorithm.

6 Conclusion

Defacing MR images has effects on brain segmentation. While the effects, quantified using DSC,

are less than those of rescanning followed by registration, they are still noticeable and should not

be disregarded. In particular, it is important to pay extra attention to the possibility of catastrophic

failures of brain segmentation caused by defacing. In the worst scenario, brain voxels can be re-

moved due to excessive defacing by some algorithms. To prevent this problem, a thorough quality

check is necessary before using defaced images. Using robust algorithms, which in our experience

were mri reface and AnonyMI, can alleviate the burden of manual review. There are other scenar-

ios where the problems are less noticeable but can also have devastating effects on neuroanalysis.

For instance, the output of a segmentation pipeline for a specific brain region can be highly sensi-

tive to changes in MR images. Or, in some extreme cases, the segmentation pipeline malfunctions

on the entire hemisphere of the brain in the defaced MRI, and fails to output any labels–see Fig. 7

for example. To address these issues, it can be helpful to use multiple segmentation pipelines,

especially those that are more invariant to changes of non-brain voxels in MR images, in order to

draw reliable conclusions.
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Code, Data, and Materials Availability

The datasets used in this study are open-access and can be accessed through straightforward online

applications. All software packages used in this study are publicly available. We provide the

URLs for the datasets and software packages in the Supplementary Material. For researchers

interested in reproducing our analysis results, we also list the sample subjects from the datasets in

the Supplementary Material.
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List of Figures

1 A sagittal slice of an MRI is displayed over the reconstruction of the whole

head MRI. Top set of images from left to right is: the acquired MRI and then de-

facing using Defacer,23 QuickShear,19 Pydeface,22 and MRI Deface.18 The bottom

set of images from left to right is: defacing using FSL Deface,21 Face Masking,20

AnonyMI,24 mri reface 0.2,25 and mri reface 0.3.25

2 Dice Similarity Coefficient (DSC) between the segmentations of the unaltered

images and the defaced images in the OASIS-3 cohort: In each column, we

present the results for a specific defacing algorithm with two “raincloud” plots.

The raincloud plots with the “cloud” on the left correspond to the SLANT compar-

ison, while the plots with the “cloud” on the right correspond to FreeSurfer. The

individual “raindrops” correspond to the mean DSC of the labels (by SLANT or

FreeSurfer) of a specific subject from the OASIS-3 cohort.

3 Dice Similarity Coefficient (DSC) for the segmentation (of SLANT or FreeSurfer)

between unaltered and defaced images for seven regions of interest (ROIs) for

subjects from the OASIS-3 cohort: The top collection of images shows SLANT

labels on a particular subject from the OASIS-3 cohort. Surrounding the MRI are

seven raincloud plots that correspond to specific ROIs. The bottom collection of

images shows the FreeSurfer labels for the same OASIS-3 subject and raincloud

plots for anatomically comparable ROIs.
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4 Dice Similarity Coefficient (DSC) between segmentations of the unaltered first

scan, the defaced first scan, and aligned rescan on the Kirby-21 dataset: In

each column, we present the results for the segmentation comparison between the

unaltered first scan and either a defaced first scan or the unaltered rescan aligned

to the first scan. The raindcloud plots are explained in Fig. 2. Key: “rescan+rigid”

– rescan registered with rigid registration; “rescan+affine” – rescan registered with

affine registration; “rescan+syn” – rescan registered with SyN based deformable

registration.

5 Example of Type II Failure cases: The columns from left to right show the unal-

tered (Original) data and the results of FSL deface, MRI Deface, and Quickshear.

The rows from top to bottom show 3D renderings of the head before and after de-

facing by the three algorithms, then sagittal, coronal, and axial slices with their

corresponding SLANT segmentation overlaid. The red cross marks the same posi-

tion in each image and shows where brain voxels are removed by defacing.

6 FreeSurfer Outlier Comparison: MRIs overlaid with their corresponding FreeSurfer

segmentations. The arrows point to a location where the label given by FreeSurfer

segmentation changed dramatically after processing either by a defacing algorithm

or the registration of the rescan image. We repeat the original FreeSurfer results on

both the top and bottom left column for easier comparison across the rows.
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7 Two FreeSurfer Outliers: MRIs overlaid with their corresponding FreeSurfer

segmentations. The left two columns are results from unaltered (Original) MRI

and defaced by Face Masking for one subject, and the right two columns are from

another subject. These are the worst two subjects in our comparison with mean

DSC below 0.7. Key: “L” denotes left and “R” denotes right.

List of Tables

1 Manual Quality Check: The results of our manual quality check of all eight de-

facing algorithms across the 179 subjects of the OASIS-3 cohort8 and the 21 partic-

ipants of the Kirby-21 dataset.39 Detailed results are included in the Supplemental

Material.
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