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Abstract
Molecular biologists frequently interpret gene lists derived from high-throughput experiments 
and computational analysis. This is typically done as a statistical enrichment analysis that 
measures the over- or under-representation of biological function terms associated with genes 
or their properties, based on curated assertions from a knowledge base (KB) such as the Gene 
Ontology (GO). Interpreting gene lists can also be framed as a textual summarization task, 
enabling Large Language Models (LLMs) to use scientific texts directly and avoid reliance on a 
KB.

TALISMAN (Terminological ArtificiaL Intelligence SuMmarization of Annotation and 
Narratives) uses generative AI to perform gene set function summarization as a complement to 
standard enrichment analysis. This method can use different sources of gene functional 
information: (1) structured text derived from curated ontological KB annotations, (2) 
ontology-free narrative gene summaries, or (3) direct retrieval from the model.

We demonstrate that these methods are able to generate plausible and biologically valid 
summary GO term lists for an input gene set. However, LLM-based approaches are unable to 
deliver reliable scores or p-values and often return terms that are not statistically significant. 
Crucially, in our experiments these methods were rarely able to recapitulate the most precise 
and informative term from standard enrichment analysis. We also observe minor differences 
depending on prompt input information, with GO term descriptions leading to higher recall but 
lower precision. However, newer LLM models perform statistically significantly better than the 
oldest model across all performance metrics, suggesting that future models may lead to further 
improvements. Overall, the results are nondeterministic, with minor variations in prompt 
resulting in radically different term lists, true to the stochastic nature of LLMs. Our results show 
that at this point, LLM-based methods are unsuitable as a replacement for standard term 
enrichment analysis, however they may provide summarization benefits for implicit knowledge 
integration across extant but unstandardized knowledge, for large sets of features, and where 
the amount of information is difficult for humans to process.



Introduction
Molecular biologists frequently need to interpret the results of experiments or investigations that  
result in lists of genes. These gene lists are routinely used to infer underlying mechanisms or 
phenomena. For example, a readout of genes expressed in cancer cells may be used to infer 
underlying signaling pathways, which in turn can suggest therapeutic approaches. Alternatively, 
a Genome-Wide Association Survey (GWAS) investigating a trait or disease may reveal 
correlations between that trait and variants in one or multiple genes.

The standard approach to inferring the underlying mechanism driven by a small set of genes is 
an open-ended exploratory analysis. Researchers investigate each gene individually in the 
literature and databases, then synthesize this curated knowledge into a summary and 
hypothesis. It may even be possible for a researcher to do this based on common knowledge of 
the genes involved in a pathway. This approach is time-consuming, subjective, and prone to 
bias, even for small gene sets. For larger gene sets, it is completely infeasible and while some 
automated approaches can leverage mapping to pathways or other biological classifications 
(Reimand et al., 2019; Zhao & Rhee, 2023), even in these cases inference of relevant biological 
patterns still involves human insight to cover cases such as pathways gaps, annotation errors, 
or functional degeneracy. In practice, researchers typically perform a gene set enrichment or 
over-representation analysis, in which curated ontological annotations of these genes are 
extracted and optionally compared against the annotations of the background set. These 
analyses make use of knowledge bases (KBs) with two components: (1) an ontology, which 
provides a hierarchical logical organization of gene function descriptors; and (2) gene 
annotations, which associate genes with these descriptors. The ontology supports the analysis 
by enabling reasoning to generalize to broader terms and allowing assessment of term 
information content.

These enrichment analyses are part of the core fabric of molecular biology and biomedical 
research. The leading system is the Gene Ontology(Gene Ontology Consortium, 2023), which 
provides ontological annotations of genes across the tree of life using over 40,000 descriptor 
terms. The GO is one of the most widely cited tools in the life sciences(Duck et al., 2016), and 
hundreds of tools implement GO enrichment analyses for a range of experimental modalities, 
from single cell analysis to GWAS. For example, a recent study measured gene expression at 
the single cell level in multiple cell populations in the human brain vasculature(Garcia et al., 
2022). Each population was analyzed using GO, revealing functional roles of different cell 
subtypes, with implications for conditions involving cerebrovascular injury.

More recently, instruction-based Large Language Models (LLMs) based on the Generative 
Pre-Trained (GPT) architecture(Brown et al., 2020) have attracted attention due to their highly 
general abilities on a wide range of text processing tasks, including information extraction, query 
construction, question answering, and text summarization. Instruction-based LLMs such as 
GPT-3 and successors are distinguished from the previous generation of models such as 
BERT(Devlin et al., 2018) and BioBERT(Lee et al., 2019) by their ability to follow instructions in 
response to a prompt, and the ability to generalize from a small number of examples (few-shot 
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or in-context learning). We have demonstrated that instruction-based LLMs can be used in 
conjunction with ontologies for KB and ontology extraction tasks(Harry Caufield, Hegde, et al., 
2023), potentially as an aid to curation. Others have demonstrated the ability of LLMs to perform 
tasks such as candidate gene prioritization and selection (Toufiq et al., 2023), annotation of 
single-cell sequencing data(Hou & Ji, 2023), and generating labels for gene sets(Hu et al., 
2023). Closest to our work, Hu et al. performed an evaluation of generated gene set labels 
compared to the original human-assigned set labels and this work has conceptual overlaps with 
our approach to evaluate LLMs for gene set summarization.
Here we investigate the ability of LLMs to interpret lists of genes, such as those yielded by gene 
expression experiments and GWAS. We do this by reframing the task from one of statistical 
enrichment to a text summarization task, i.e. taking a larger text and condensing it into salient 
points. We devised a method that uses LLMs and configurable sources of gene descriptions to 
perform summarization, taking as input a gene set and producing as output (1) a list of relevant 
terms, analogous to enriched terms in an over-representation analysis; and (2) a descriptive 
summary that weaves together the different functions.

We explore three different summarization approaches. The first (which we call “no synopsis”) is 
purely generative, and relies solely on the massive corpus of documents ingested as training for 
the GPT model (which can be thought of as the “latent KB” of the model). The second 
(“narrative synopsis”) makes use of narrative gene summaries, such as those authored by the 
curators of the RefSeq database(O’Leary et al., 2016). The third (“ontological synopsis”) makes 
use of controlled textual summaries of GO annotations, such as those provided by the Alliance 
of Genome Resources (AGR)(Kishore et al., 2020). We evaluate all methods against standard 
statistical enrichment analysis (see Methods).

Methods

TALISMAN: A novel method for gene set summarization using language 
models
We created a method for summarizing gene sets using LLMs called TALISMAN: Terminological 
ArtificiaL Intelligence SuMmarization of Annotation and Narratives. This method takes as input a 
list of N genes g1, g2, …, gN and produces two outputs: (1) a textual summarization of salient 
features of the gene set, and (2) a list of M ontology terms t1, t2, …, tM from an ontology such as 
the GO. The method works by generating a structured prompt containing textual summaries of 
genes from a list of sources. The prompt is also crafted to instruct the model to extract salient 
features of the gene sets (Fig. 1). The method is intended for LLMs that have been fine-tuned 
on instruction-following tasks, such as GPT-3.5, GPT-4, as well as open models such as Llama2 
(Touvron et al., 2023).
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Structured Prompt Generation
For each gene ID in the gene set, we query the Alliance of Genome Resources API (Alliance of 
Genome Resources Consortium, 2020) to retrieve (i) the gene symbol; (ii) a narrative gene 
description, aggregated from RefSeq; and (iii) automated gene descriptions (Kishore et al., 
2020). Note that automated gene descriptions are in fact derived from curated ontological GO 
annotations; here “automated” refers to the ontology-to-text process rather than the process of 
generating the ontological annotations in the first place.

Figure 1: The TALISMAN workflow. A) User selects a set of gene symbols. B) Gene symbols are parsed to gene 
identifiers. C) A textual description of the genes is generated using one of three approaches, either narrative 
summaries from RefSeq, controlled natural language derived from the Gene Ontology and Alliance of Gene 
Resources collections, or gene symbols only (i.e., no additional descriptions). D) The text from the previous step is 
used to construct a completion prompt for an LLM. E) The results of the prompt are parsed into a narrative 
component and a ranked list of terms. As part of the evaluation (boxes with dashed outline) we compared 
TALISMAN with terms from standard enrichment.
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For each gene we generate a description that is a concatenation of the gene symbol and the 
description separated by a colon character. For the narrative method, we use the narrative gene 
description, and for the ontological method we use the ontology term summaries. For the 
generative approach, we only provide the gene symbols.

We then generate a prompt using the Jinja template system(Ronacher, 2008) with a standard 
template incorporating the gene description lines, with two template variables, “taxon”, and 
“gene descriptions” The input to Jinja is as follows:

I will give you a list of {{ taxon }} genes together with descriptions of their functions. 
Perform a term enrichment test on these genes.
i.e. tell me what the commonalities are in their function.
Make use of classification hierarchies when you do this.
Only report gene functions in common, not diseases.
e.g. if gene1 is involved in "toe bone growth" and gene2 is involved in "finger 
morphogenesis"
then the term "digit development" would be enriched as represented by gene1 and 
gene2.
Only include terms that are statistically over-represented.
Also include a hypothesis of the underlying biological mechanism or pathway.

Provide results in the format

Summary: <high level summary>
Mechanism: <mechanism>
Enriched Terms: <term1>; <term2>; <term3>

For the list of terms, be sure to use a semicolon separator, and do not number the list.
Always put the list of terms last, after mechanism, summary, or hypotheses.

Here are the gene summaries:
{{ GENE_DESCRIPTIONS }}

Note that the header includes an in-context directive specifically instructing the model to 
generalize over the gene sets, including providing an example of how to do this.

Token Length Limits and Gene Description Truncation

One of the current limitations of LLMs is the number of tokens (roughly, the number of words) 
that can be provided as both input and output. If gene lists are large, or the textual summaries of 
the genes are long, then the prompt will exceed the maximum token length (currently 4k for 
GPT-3.x models, and 8k or 32k for GPT-4).
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In order to accommodate these limits in different models we truncate the length of each gene 
description proportional to the total number of tokens relative to maximum token length. We 
truncate from the end of the string, on the assumption that the text at the beginning is more 
informative. 

Note this can result in substantial information loss, proportional to the number of genes in the 
input gene set. We record this as the truncation factor (TF); a TF of 1.0 reflects that the prompt 
was generated without truncation, while a TF of 0.25 indicates that only 25% of the original text 
could be used.

Prompt Completion and Payload Parsing
Generated prompts are fed to the model via the OpenAI API. We use the default configuration, 
with the lowest “temperature” (creativity) setting (i.e. maximizing determinism). Results are 
cached to avoid expensive recomputation.

Our approach to prompt completion parsing reuses the method described in our SPIRES 
manuscript(Harry Caufield, Hegde, et al., 2023), in which the resulting functional terms are 
grounded (mapped to terms) in the Gene Ontology using the Ontology Access Kit 
(OAK)(Creators Chris Mungall1 Harshad1 Patrick Kalita1 Charles Tapley Hoyt2 Sujay Patil1 
marcin p. joachimiak1 Joe Flack3 David Linke4 Nomi Harris1 Sierra Moxon5 Kim Rutherford6 
Nico Matentzoglu7 Deepak8 Harry Caufield1 Vinícius de Souza Glass9 Jules Jacobsen10 
Justin Reese11 Manuel Lera Ramirez Shawn Tan Show affiliations 1. Lawrence Berkeley 
National Laboratory 2. Harvard Medical School 3. @jhu-bids 4. Leibniz-Institut für Katalyse e. V. 
(LIKAT) 5. LBNL 6. Uni of Cambridge / @PomBase 7. semanticly Ltd 8. SIB Swiss Institute of 
Bioinformatics 9. @det-lab @tis-lab @monarch-initiative 10. Queen Mary University of London 
11. Lawrence Berkeley National Lab, 2023) annotate functionality. 

Note that our prompt asks for separate sections in the payload: a high level narrative summary 
plus a list of terms. The narrative summary is not parsed by TALISMAN and is presented to the 
user as-is. The string with the list of terms is split, and the resulting list is fed through the OAK 
annotator. This step assumes that the model yields descriptors that conform to the terminology 
of GO, using either the primary label or the synonym.

Our prompt explicitly avoids asking for GO identifiers or any other form of identifier. This is 
because we and others (Bombieri et al., 2024; Harry Caufield, Hegde, et al., 2023; Pal et al., 
2023) have observed that GPT models frequently hallucinate “likely seeming” numeric 
identifiers, consistent with the design of sequential generation methods which are not trained on 
absolute truth and strive to maintain a variety of output. 

Implementation
The TALISMAN code is available at and the associated data for this study is here 
https://github.com/monarch-initiative/talisman-paper.
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TALISMAN is implemented in Python (https://github.com/monarch-initiative/talisman) and 
includes dependencies on the recently published OntoGPT package 
(https://github.com/monarch-initiative/ontogpt)(Harry Caufield, Hegde, et al., 2023). 

Access to a GPT model via an API such as the OpenAI API is required. However, for evaluation 
purposes, it is possible to use our cached completions. TALISMAN is agnostic to the exact 
instruction-tuned LLM assuming training on large corpuses which include GO terms, 
annotations, and gene function descriptions. Due to differences in reinforcement learning from 
human feedback (RLHF) the TALISMAN prompt may need to be optimized to generate results in 
the expected format.

Prompt completions are cached in a local sqlite3 database to avoid incurring charges by 
repeated requests of the same text. There is an interactive TALISMAN mode that bypasses API 
access and asks the user to copy the prompt into the web ChatGPT interface, and then copy 
the results back.

We provide both a command line interface and a web application interface for TALISMAN. The 
web application interface makes use of the Streamlit framework, and currently must be 
executed locally. The web application UI is shown in Figure 2.
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Figure 2: UI for TALISMAN web application

Evaluation
There is no single agreed-upon approach to benchmarking enrichment analysis algorithms 
(Ballouz et al., 2017). For this study, we collected 70 human gene sets for evaluation, ranging in 
size from 3 to 200 genes, from multiple sources including MSigDB(Dolgalev, n.d.), GeneWeaver 
(Baker et al., 2016), Human Phenotype Ontology Annotations(Köhler et al., 2021), disease to 
gene relationships from the Monarch Initiative(Putman et al., 2024), sample of large biclusters 
[REF] based on RNAseqDB data (Wang et al., 2018), and, as a baseline, gene sets 
corresponding to existing terms in the GO. For the main evaluation all gene sets consist of 
human genes.

For each gene set, we generated an additional perturbed gene set simulating noise, where we 
dropped out 10% of genes and inserted random genes as replacements.

For each gene set and perturbed gene set we ran the three TALISMAN methods (see Figure 1) 
with three different models, GPT-3.0 (also known as text-davinci-003), GPT-3.5, and GPT-4. 
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We compare the results of TALISMAN with standard statistical gene set enrichment 
implemented in OAK, using hypergeometric tests and Bonferroni correction.

Due to the nature of gene set enrichment, we expect the resulting enriched terms to be different. 
In particular, different enrichment tools may choose terms at different levels in the hierarchy, 
each representing valid perspectives. Additionally, the gene set summarization method doesn’t 
return p value calculations, which makes it harder to compare. We therefore employed a method 
that compared enrichment results using different parameters and cutoffs.

In order to compare, we first filtered the results of standard enrichment, taking only the top n 
results (as most n) for a given p-value cutoff of p. For each term tann in the standard enrichment 
results, if there exists a predicted term tpred that is equal to or is an ancestor or descendant of t, it 
counts as a true positive. Other terms in the predicted set that are unaccounted for count as 
false positives, and other terms in the standard enrichment results that are unaccounted for 
count as false negatives.

We score these outcomes for different values of n and p (Sup. Fig. X). For the case where n=1, 
this corresponds to checking whether the top standard enrichment result term is recapitulated. 

We also calculated a simplified metric has hit, which is 1 or 0 depending on whether the 
predicted terms included any term from the top n. In the case where n=1 we call this has top hit, 
as it measures whether the best ranking term from standard enrichment is found at all in the 
predicted set.

Distributions of precision, recall, and F1 score values were compared between pairs of different 
model results using the exact Mann-Whitney test.

The results of the evaluation are available via Zenodo (Joachimiak, 2023) and can be viewed as 
a Jupyter Notebook (https://github.com/monarch-initiative/enrichgpt-results).

Results

Using GO annotations as a source best recapitulates gold standard 
annotations top hit

We curated 70 gene sets and ran all methods on each gene set plus a perturbed copy of each 
gene set (see above). Next, we tested three different GPT models: GPT-3.0, its successor 
GPT-3.5, as well as GPT-4.0. For each model, we tested the three sources of gene descriptions: 
ontological synopses (GO), narrative synopses (RefSeq), and no synopsis (None). We 
evaluated the results of all methods across all gene sets. We deposited these results in a 
Zenodo-archived GitHub repository (https://github.com/monarch-initiative/enrichgpt-results/). 
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Source Model Has Top Hit

GO GPT-4.0 0.865 ± 0.343

NONE GPT-3.5 0.812 ± 0.391

NONE GPT-4.0 0.799 ± 0.402

RefSeq GPT-4.0 0.757 ± 0.43

RefSeq GPT-3.5 0.74 ± 0.44

GO GPT-3.5 0.698 ± 0.46

GO GPT-3.0 0.615 ± 0.488

NONE GPT-3.0 0.559 ± 0.497

RefSeq GPT-3.0 0.517 ± 0.501

Table 1: Proportion of runs in which the top hit (i.e most enriched term) from standard 
enrichment is recapitulated (either directly or through ancestry) using LLMs. These results are 
for p-value < 0.05, top 10 hits, and with ontological closure.

We analyzed the runs across all gene sets, computing the proportion of runs in which the best 
ranking term from standard enrichment was present in the LLM provided gene set for each 
description source and model combination (Table 1).  The best performance is achieved by 
using GO as the source of gene descriptions in combination with the GPT-4.0 model. 
Surprisingly GPT3.5 with None is second in this metric, however, the same model with GO term 
descriptions is significantly worse than the best result. GPT-3.0 underperforms in all cases 
independent of the description source. The best performing methods also exhibit a lower 
standard deviation (SD) meaning that the higher performance is consistent across different gene 
sets.

Comparison of method and source combinations reveals enrichment 
performance trends
We compared the gene set summarization behavior of different LLM method, model, and 
description source combinations using standard model performance metrics. In this assessment 
we used the reference gene sets as true answers, considered the top 10 most significantly 
enriched genes from standard enrichment, included ontology closure terms, and did not allow 
for any new, potentially correct information from the LLMs (see Methods). The mean precision, 
recall, and F1 scores were derived across all the gene sets for each method, model, and 
description source combination. Results for GPT-4.0 (Fig. 3) showed a higher recall and F1 
score when using GO term descriptions, compared to no synopsis and RefSeq gene 
descriptions. Recall followed a similar trend with highest recall observed when using GO term 
descriptions, followed by no synopsis and then RefSeq descriptions. However, the precision 
trend was the reverse: no synopsis gave the highest recall, followed by RefSeq gene and then 
GO term descriptions. Thus we observe a tradeoff between recall and precision, with GO 
information giving the highest recall and no synopsis giving the highest precision. The former 



result suggests that including GO information leads to reporting of more significantly enriched 
GO terms but this comes at the expense of also reporting additional non-significant GO terms.

Figure 3. Bar chart comparing gene set enrichment performance of description source 
combinations for GPT-4.0. These results are for p-value < 0.05, top 10 hits, and with 
ontological closure.

When including other GPT models (Table 2), GPT-3.0 and 3.5, additional trends were observed. 
The most sophisticated model, GPT-4, with ontology term summaries (“GO”) has the highest 
recall and fraction of results with a top enriched term. However, it also has lower precision and 
F1 than the GPT-3.5 model with only gene names. On the other hand when considering 
ontology summaries, each model iteration showed a clear increasing trend except for lower 
precision for GPT-4.0 versus 3.5 versus 3.0. Surprisingly, using no synopsis often gave better 
performance than using RefSeq or GO descriptions. The best performance was with GPT-3.5 
and no synopsis data (GPT-3.5-NONE in Table 2), with the highest precision and F1, and as 
well as GPT-4.0 with GO term descriptions (GPT-4.0-GO), with highest recall and proportion of 
top hits. This result may be a reflection of the model training, with gene symbols alone (“None”) 
giving more accurate information than additionally providing concise and curated biological 
knowledge such as RefSeq or GO descriptions. We also observed that including RefSeq 
descriptions gave better performance than GO term descriptions for GPT-3.5, but for GPT-4.0 
this was only true for precision but not recall and F1. Tradeoffs of precision versus recall apply 
in different settings, for example during exploratory analysis where higher recall is desired.



Source Model Precision Recall F1 score Has Top Hit

GO GPT-3.0 0.252 ± 0.266 0.2 ± 0.225 0.208 ± 0.22 0.615 ± 0.488

GO GPT-3.5 0.467 ± 0.371 0.265 ± 0.256 0.318 ± 0.278 0.698 ± 0.46

GO GPT-4.0 0.486 ± 0.286 0.374 ± 0.258 0.408 ± 0.253 0.865 ± 0.343

NONE GPT-3.0 0.339 ± 0.363 0.171 ± 0.21 0.211 ± 0.238 0.559 ± 0.497

NONE GPT-3.5 0.543 ± 0.343 0.371 ± 0.278 0.42 ± 0.28 0.812 ± 0.391

NONE GPT-4.0 0.507 ± 0.333 0.336 ± 0.269 0.386 ± 0.275 0.799 ± 0.402

RefSeq GPT-3.0 0.261 ± 0.308 0.172 ± 0.225 0.196 ± 0.24 0.517 ± 0.501

RefSeq GPT-3.5 0.517 ± 0.38 0.31 ± 0.276 0.368 ± 0.295 0.74 ± 0.44

RefSeq GPT-4.0 0.471 ± 0.342 0.304 ± 0.264 0.354 ± 0.277 0.757 ± 0.43

Table 2. Table comparing gene set enrichment performance of description source combinations 
across GPT models. These results are for p-value < 0.05, top 10 hits, and with ontological 
closure.

When averaging over all cases and standard enrichment p-value cutoffs models (Table 3), 
additional trends were observed. The most sophisticated model has the highest recall, F1, and 
fraction of results with a top enriched term but with somewhat lower precision than the GPT-3.5 
model. Since the GPT-3.5-None improvement is seen at the highest p-value cutoff but not all 
averaged results, this suggests that the precision difference becomes smaller as less significant 
terms are included.

Model Precision Recall F1 score Has Top Hit

GPT-3.0 0.263 ± 0.368 0.108 ± 0.227 0.121 ± 0.231 0.438 ± 0.496

GPT-3.5 0.423 ± 0.418 0.188 ± 0.293 0.216 ± 0.3 0.598 ± 0.49

GPT-4.0 0.414 ± 0.398 0.198 ± 0.295 0.223 ± 0.296 0.64 ± 0.48

Table 3: Comparison of different models averaging across all gene description sources and all 
evaluation parameters. GPT-4.0 performs best on all metrics other than precision where it is 
narrowly beaten by GPT-3.5. The older GPT-3.0 model consistently performs worse. These 
results are for all evaluation parameters.

To formalize the model comparisons, we performed pairwise model statistical tests for  
precision, recall, and F1 score value distributions (Figure 4). The analysis revealed a consistent 
result with all GPT-3.5 and 4.0 model results being significantly better than any GPT-3.0 results. 
This confirms advances in model architecture and training, with increases in both model 
complexity (e.g. number of parameters) and input training data. The two best models were 
GPT-3.5 with no input data and GPT-4.0 with GO term descriptions, which were significantly 
better than all other combinations (except GPT-3.5-None versus GPT-4.0-None). Overall, no 
model was significantly better than either GPT-3.5 or GPT-4.0 with GO term descriptions.



Figure 4 Heatmap of -log10(p-value) statistical test results for pairwise model comparisons of 
GO term enrichment F1 scores. Distributions of values for method, model and description 
source combinations (y-axis) were compared using a one-sided nonparametric exact test. 
Values that are p-value < 0.05, corresponding to the value of -log10(p-value)=1.3, are in darker 
shades.

Extending this analysis to precision and recall values (Sup. Info.), we also observe that all  
GPT-4.0 and 3.5 results are significantly better than 3.0. However, no GPT-4.0 model was 
significantly better than any other GPT-4.0 or 3.5 model. As in the F1-score results, 
GPT-3.5-NONE precision and recall were significantly better than GPT-3.5-GO, as well as 
GPT-4.0 with GO and RefSeq. Notably, GPT-3.0-NONE was significantly better in precision and 
recall than GPT-3.0 with GO or RefSeq, just as observed for GPT-3.5. This result was not 
observed for the GPT-4.0 model suggesting something qualitatively different in how additional 
information such as GO term descriptions or RefSeq narratives are functionally used by a newer 
model.



Gene set summaries are biologically plausible in a way that disguises 
limitations
To gain a better understanding of how AI-based gene set summarization differs from standard 
statistical enrichment, we performed a qualitative assessment of the results of GPT summary 
derived term lists. When examined in isolation, these term lists were largely biologically 
plausible, valid (i.e. at least one gene that had the indicated function) across all models, and 
regardless of source of gene descriptions. However, when the results for a given gene set were 
compared across methods or compared to the gold standard statistical-ontological enrichment it 
was revealed that results are often close to standard enrichment results albeit XXXX.

This can be seen in Figure 6, which shows superimposed results (GPT-3.5 only) for genes 
associated with the Human Phenotype Ontology term “Sensory ataxia” (HP:0010871; EGR2 
NAGLU GPI DNAJC3 SH3TC2 TWNK PIEZO2 FLVCR1 MPZ PRX PMP22 KPNA3 POLG 
RNF170 AARS1). We selected this gene set intentionally as an “easy” set with a clear 
underlying mechanism, to see what a good TALISMAN result might look like. Genes implicated 
in Mendelian diseases such as sensory ataxia are more likely to be studied and annotated. This 
particular phenotype of sensory ataxia has been well studied, with a large literature on 
underlying pathophysiological mechanisms(Lopriore et al., 2022).

Standard GO over-representation on this gene set yields “myelination” and “Schwann cell 
differentiation” as top hits (lowest p-value). Figure 6 shows all terms found by TALISMAN using 
different gene description sources, compared against standard enrichment. The significant and 
gene-set relevant GO term “myelination” was found when using either ontologies as gene 
description or providing gene descriptions; however, when using narrative gene descriptions as 
a source, the string “myelin sheath maintenance” is returned, which essentially means the same 
thing, but automated methods do not ground this term and hence do not reveal the equivalence. 
Only the narrative based method found “mitochondrial DNA replication”. None of the GPT 
methods detected “Schwann cell differentiation”.
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Figure 6: Superimposed results for summarization of sensory ataxia gene set (genes 
annotated to “Sensory ataxia”; HP:0010871). GO terms are in yellow boxes; a bold border 
indicates significance (p-values shown in the text box). Terms in white boxes are those that 
could not be grounded to a GO term identifier. ONT=ontological synopsis, NS=no synopsis, 
NAR=narrative synopsis. 

GPT returns highly variable answers across different runs
To investigate the stability of LLM results we performed two runs for each model-method 

combination, where on the second run we made an insignificant syntactic change to the prompt 
(changing the end marker from 3 hashes (###) to 3 equals symbols (===)). We then measured 
the Jaccard similarity of the term sets of each run (counting terms directly rather than using the 
ontology hierarchy). There was a very low level of consistency across runs, with the most 
consistent being GPT-3.5 with no synopses. Consistency was nearly twice as high for GPT-4.0 
vs. GPT-3.5 and almost 6-fold higher relative to GPT-3.0.  

Mean Jaccard Jaccard std Jaccard min Jaccard max

model method

GPT-3.5

RefSeq 0.152 0.143 0 0.75

None 0.123 0.129 0 0.5

GO 0.16 0.185 0 0.8

GPT-3.0

RefSeq 0.061 0.07 0 0.333

None 0.038 0.052 0 0.25

GO 0.084 0.095 0 0.5



GPT-4.0

RefSeq 0.179 0.144 0 0.833

None 0.219 0.158 0 1

GO 0.172 0.147 0 0.889

Table 3: Summary statistics for Jaccard similarity of term lists (N=142) when prompt is modified 
across all gene sets. Higher mean values are more favorable.

Generated narrative summaries are plausible but non-deterministic

We also examined the textual summaries produced by the GPT-3.5 model with the three 
sources of gene descriptions. An example is provided in Table 4, showing the results for the 
sensory ataxia gene set.

Source Summary Mechanism

Ontological 
synopsis 
(GPT-4.0)

The provided genes are mainly involved in 
processes related to the nervous system, 
peripheral nerve function, and cellular 
maintenance functions.

These genes may contribute to the biological 
processes related to the nervous system 
development, cellular response regulation, and 
transportation of molecules within cells, 
interacting in various pathways.

Narrative 
synopsis 
(GPT-4.0)

Majority of the genes are associated with 
neuropathic conditions and myelin-related 
processes in the peripheral nervous system.

The underlying biological mechanism may be 
related to the formation, maintenance, and 
function of the myelin sheath in the peripheral 
nervous system and the regulation of cellular 
pathways that impact neuronal survival and 
function.

No 
synopsis 
(GPT-4.0)

Enriched terms associated with the given list 
of genes are mostly involved in the 
development and maintenance of the nervous 
system, cellular response, and transport 
processes.

These genes may contribute to the biological 
processes related to the nervous system 
development, cellular response regulation, and 
transportation of molecules within cells, 
interacting in various pathways.

Table 4: Textual summary of the sensory ataxia gene set descriptions using the 3 different 
approaches.

Overall, the qualitative summaries of the gene sets appear plausible, although inconsistent in 
being able to yield the most significant term. We note that sentences using ‘involved in’ versus 
associated with’ have high semantic similarity (cosine similarity = 0.98 for the first and third 
sentence in Table 4) and close natural language meaning. In addition the statement ‘enriched in’ 
does imply that this term or genes are statistically enriched in this case.



Hallucinations are rare to non-existent when summarizing human gene sets
A common problem with LLMs is the tendency to hallucinate(Ji et al., 2022). Previously we have 
observed that hallucinations are less problematic for knowledge-oriented in-context tasks (Harry 
Caufield, Hegde, et al., 2023). Here we evaluate the extent to which LLMs hallucinate on a 
constrained gene set summarization task.

We took all GPT-3.5 model results, and aggregated all unannotated terms for all results. These 
represent potential hallucinations (i.e. where the model fabricated a term for a gene set). We 
examined each instance and evaluated whether it was a reasonably valid term for that gene set. 
Here the criteria for reasonable validity was whether the term was descriptive for any gene in 
that gene set. We were unable to detect any true hallucinations - every term reported by GPT 
was in some way reasonably valid even if it did not meet the bar for GO annotation. These 
unannotated cases fell into three different categories:

● Use of a term that has been obsoleted in the GO: In this case, the model is likely 
recalling an GO annotation to an obsolete term.

● Regulation vs involved in: for example, the Ehler Danlos Syndrome gene set 
summarization includes the term regulation of collagen metabolism; the actual GO 
annotation was to a similar term collagen metabolism.

● Alternate perspective: a gene is annotated to a closely related term where the 
categorization is debatable. For example, the GPT3.5 model included the term “glucose 
transmembrane transporter activity” in the summary for the hallmark glycolysis gene set 
when given narrative gene set descriptions. Surprisingly, none of the GO annotations for 
any of the genes in the gene set included this term or a descendant of this term. 
However, one term in the gene set, SLC37A4, is annotated to glucose-6-phosphate 
transmembrane transporter. Formally this is not a glucose transporter, as 
glucose-6-phosphate is a derivative of glucose. However, if GO were to make use of the 
ChEBI has-function-parent relationship when classifying GO terms then this gene would 
be classified as a glucose transmembrane transporter.

Although we were unable to detect any true hallucinations, it should be noted that many of the 
terms given in summarizations still fail to be statistically significant, as observed in the precision 
data (Table 2).

Our hallucination analysis did not extend to the non-GO term summarizations. We observed that 
in some cases, these summaries included reports of p-values (even though we did not 
specifically ask for these), and while these looked plausible, they were in fact fabricated.

We also conducted experiments in which we explicitly asked for p-values to be included in the 
results, and as expected, these looked plausible but were in fact also fabricated. Thus when the 
requested task falls within general LLM capabilities (text summarization), hallucinations seem to 
be avoided, but when a request is made for something likely outside its capabilities (calculation 
of a statistical test), it will hallucinate rather than giving an expected response that this task falls 
outside of the models’ designed capabilities.
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We also conducted experiments where we swapped in gene descriptions from random other 
genes, to test whether the model was relying on gene symbols and its own latent KB of those 
genes, rather than the in-context information. For example, when running an analysis over the 
gene set for canonical glycolysis, we swapped out each gene description for a random gene 
description from a completely different gene set such as endocytosis. If the LLM were making 
use of its latent KB, then we might expect that the summary terms would still yield glycolysis 
terms, based on what the LLM “thinks” the genes do. In fact, regardless of whether the source 
was ontological synopses or narrative descriptions, the model used the descriptions, and 
summarized these, ignoring the gene symbols. 

Discussion

Thus GPT-3.5 offers a summarization advantage since significantly enriched terms are a larger 
proportion of the results.

Limitations of approach
[potential bias for GPT4 from adding GO or RefSeq input relative to just the gene symbols]
[potential search analogy of standardizing gene symbols vs text description]

We have developed and evaluated a method that performs gene set summarization using 
language models and configurable sources of gene synopses. While this method has some 
similarities to standard methods of gene set analysis, it is inherently more limited. Some of these 
limitations may be due to our own method, while some may be inherent in the use of language 
models:

● No background sets. Providing background sets of genes to estimate the background 
distribution of function representation is crucial for accurate interpretation of results when 
not all genes were assayed [REF]. Providing descriptions of genes in the background set 
is challenging for LLMs due to constraints on the number of tokens that can be passed in 
a single prompt. Even if no gene descriptions are provided and we are making use of the 
LLM latent knowledge, the number of gene symbols may be too large. In future as newer 
models and techniques reduce token constraints it may be feasible to incorporate 
background genes.

● Lack of statistics. Standard methods of interpreting gene sets provide some statistical 
interpretation of the results, whether this is a p-value, or a probability in the case of 
model-based methods(Bauer et al., 2010). In contrast, language model based 
approaches rely on patterns in language. Although some have claimed that 
mathematical reasoning is an emergent ability of LLMs (Wei et al., 2022), we were 
unable to find a purely LLM-based way to generate reliable, meaningful statistics for 
results, although this may change in the future. Of course, it is possible to implement a 
hybrid approach whereby the LLM hands terms off to a dedicated engine that 
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implements the calculation, but this would only be possible for ontological annotation 
sources, at which point there is no real benefit to using an LLM.

● Inherent non-determinism. A current feature of LLMs is that output is highly 
non-deterministic, with minor variations in prompt resulting in sometimes massively 
different outputs. For a text summarization task this is not necessarily a problem, as 
there are many equally valid ways to summarize a task. But this becomes problematic 
when we try to apply summarization to interpreting scientific results, where we want to 
reduce arbitrariness and increase repeatability. One possibility here is to run the model 
multiple times and statistically aggregate the results. We did not attempt to evaluate this 
here, in part due to the costs the repeated runs would incur, but this may be a promising 
avenue for future research.

● Inputs are unordered gene sets, not ranked lists. Our method takes as input an 
unordered set of genes, similar to standard over-representation analysis. Many 
enrichment tools such as the PANTHER enrichment tool used by the GO Consortium(Mi 
et al., 2019) allow for rankings within the gene sets, applying the appropriate statistical 
test. We did not investigate the ability of LLMs to make use of ranked inputs. Including 
some kind of qualitative weights may be successful but we believe that as stated above 
using the appropriate statistical measure is likely outside current capabilities

Additionally, our analysis has certain limitations. Evaluating and comparing gene set enrichment 
methods is challenging due to a lack of gold standards and agreed upon metrics. Previous 
approaches to evaluation include calculating mutual coverage of gene sets(Hung et al., 2012). 
We include a mutual coverage Jaccard score in our full Jupyter notebook analysis. However, 
this is not a good method for evaluating text summarization, which is a different task. With a 
standard enrichment analysis, significance scores can be calculated for all terms in an ontology, 
but for text summarization the model selects only a small subset of relevant terms.

Language models are not a good replacement for manual curation
Gene set enrichment and over-representation analyses rely on high-quality curated KBs such as 
the GO or Reactome. The use of AI and massive LLMs may seem like an opportunity to bypass 
curation and use information either from selected textual summaries or from a massive corpus 
of training data. However, this would be a serious mistake. First it is necessary to acknowledge 
that these LLMs are almost certainly making heavy use of the curated content of these KBs. 
Information from the GO is replicated in multiple places, from encyclopedic resources such as 
Wikipedia to major genomics knowledge portals such as the UniProt and NCBI Gene interfaces, 
and GO enrichment analyses are commonplace in the literature. Annotations are also frequently 
stored in repositories such as GitHub, which are included in LLM training sets. The power of 
LLMs to make use of this information seemingly intelligently is indeed remarkable, but this is all 
derived from highly curated content. This content needs to be constantly updated in light of new 
scientific knowledge, otherwise the quality of gene set enrichment results decreases 
significantly(Green & Karp, 2006; Tomczak et al., 2018; Wadi et al., 2016). Furthermore, our 
results show that when token length is controlled for, the best results are obtained using only 
gene symbols or with textual representations of ontological annotations; in this scenario, the 
LLM is essentially regurgitating existing annotations and does not provide any shortcut to 
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curation. Using LLMs as a justification for bypassing curation would be severely misguided, 
would result in worse results over time, and is fundamentally misguided as the cost of curation is 
minimal compared with the costs of performing the underlying experiments, with curation costs 
accounting for less than 0.01% of the whole(Karp, 2016).

Furthermore, we were unable to get LLM approaches to perform the same kinds of 
ontology-based generalizations we see with standard enrichment analyses, resulting overall in 
lower precision and key informative terms being missed in results. Additionally, results are highly 
non-deterministic, with minor prompt variations resulting in different term lists each run. Thus 
while using a LLM may on the surface at first seem to deliver relevant and plausible results, the 
user may be unaware that the results are an arbitrary subset of possible results, and that they 
may be missing crucial information.

Future Directions
Our methods described here employ effectively what could be considered zero-shot learning, 
with a small in-context example of how to generalize in a similar manner to the ontological 
generalization employed in standard term enrichment. It is possible that fine tuning could 
improve the ability to generalize sets of terms, or even improve the relevancy and significance 
of these terms.

Our methods did not make use of the conversational abilities of LLMs, as exhibited by ChatGPT. 
The user has no opportunity to refine responses, or to interrogate results in finer grained detail. 
We envision future possibilities in which the user is able to enter a dialog, with LLM wrappers 
able to transparently interact with multiple different biological KBs as exhibited in the GeneGPT 
system(Jin et al., 2023).

Our approach is currently limited to enrichment using GO terms. Other annotation systems can 
be used in enrichment analyses to reveal other salient aspects of the genes involved - for 
example, gene expression using an anatomy ontology(Bastian et al., 2021), or pathway 
database annotations(Fabregat et al., 2018). In future we will explore gene set summarization 
methods for these other kinds of annotation systems, as well as unifying methods that can 
synthesize across multiple knowledge sources, such as found in the Monarch Knowledge 
Graph(Shefchek et al., 2020) or KG-Hub(Harry Caufield, Putman, et al., 2023).

Further research is required on narrative outputs of LLM-based gene set 
summarization
Our methods and study focused on using LLM-based methods to generate GO-term-based 
summaries of experiments from underlying gene sets, analogous to standard term enrichment. 
We also demonstrated the ability to create narrative summaries of these gene sets, and even to 
provide mechanistic explanations of underlying biological processes. However, we did not 
attempt to evaluate this content, beyond demonstrating that this also frequently changed from 
run to run. Fully evaluating narrative output is much more challenging, as such an evaluation 
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would be subjective and would itself require NLP techniques to automate, with attendant 
dangers of circularity.

However, while we were not able to systematically evaluate the quality of these narratives, we 
found many to sound plausible and even compelling. It is important to study this further, as there 
may be a temptation to use LLMs to “tell stories” about data. This could be risky and highly 
problematic, due to well-known issues such as hallucinations and bias. We were not able to 
detect hallucination and bias in the term summarization tasks, but it is important to note that this 
is a highly constrained task with strong in-context cues; even here we are unable to guarantee 
the absence of these problems, and we were easily able to induce hallucinations by asking for 
something the model is unable to deliver (computed p-values).

When we move from summarization in the form of controlled term lists to more open-ended 
summarization tasks, such as generating narrative summaries, the dangers increase. These 
may be more nuanced than outright confabulation of results. LLMs have been shown to exhibit 
“behavior” such as sycophancy (telling the user what they want to hear) and sandbagging 
(detecting naivety on the part of the user and providing false information)(Bowman, 2023), all of 
which are potential risks when interpreting scientific data using background knowledge.

Although our evaluation ignored the textual summaries when parsing term lists, we noticed one 
occasion when the prompt completion provided additional misleading commentary at the end:

Note: These terms were statistically over-represented among the listed genes. The 
cytoskeletal reorganization was not statistically significant enough to be included. The 
underlying biological mechanism is likely related to the regulation of intracellular trafficking and 
signaling pathways, which are important for the maintenance of cellular homeostasis.

We know for a fact that the LLM did not perform a statistical test, despite what it may be telling 
us. However, it is true that cytoskeletal reorganization (closest match in GO is GO:0007010, 
“cytoskeletal organization”) is the function of some of the genes, but not enough to reach the 
level of statistical significance. The text above is therefore partially correct, but only by accident. 
However, results like this can easily ‘sandbag’ a researcher into over-interpreting or believing 
incorrect interpretations.

Our results are complementary to yet consistent with the evaluation performed by Hu et al. (Hu 
et al., 2023), in which they used GPT-4 to generate a single label for each gene set. This 
evaluation was performed on (a) gene sets corresponding to existing GO terms, checking 
whether identical or similar labels are recapitulated (b) gene sets from omics data, using manual 
evaluation by experts. In both cases, no additional contextual information about gene function 
was passed as context into the prompt, thus this corresponds most closely to the “no synopsis” 
experiments we performed. Our experiments included both omics gene sets and gene sets from 
existing GO terms, and included additional random perturbations. A key difference is that Hu et 
al. examine whether a single unique descriptive label can be generated from a gene set, giving 
a single uniform picture of gene function, whereas we generated lists of labels, and grounded 
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these to GO terms, more similar to standard gene enrichment. While these are exploring 
complementary aspects and have different evaluation strategies, our results are consistent in 
that the results were largely free of hallucinations. Both studies also underpin the need for 
standard methods for evaluating the results of gene set enrichment and summarization 
methods.

We note that statistical approaches for standard gene set enrichment analysis also suffer from 
drawbacks that may be complemented by approaches such as with LLMs. For example, 
statistical methods can have sample size dependent effects and minimal numbers of instances 
required for accurate statistical estimates. These approaches are also subject to biases from the 
input or reference data used in the enrichment analysis with many types of bias corrections 
attempted but as a result introducing differences that can render results incompatible. Other 
more operational issues around data integration, uneven data representation across species 
and data types, as well as the current state of reference knowledge resources compared to 
what is known in the literature, are other challenges associated with statistical enrichment 
methods. In theory, LLMs with billions of parameters trained on a wide range of input 
knowledge, potentially fine tuned for performance on dedicated tasks, may be help overcome 
some of these issues in the context of a single unified reference model.

This danger is compounded when we consider the fact that the leading models used in the 
kinds of higher-order instruction-based prompting demonstrated in this paper are not open, with 
essentially inscrutable training data(Bender et al., 2021), much of it derived from massive 
numbers of websites, likely including datasets such as the Colossal Clean Crawled Corpus (C4). 
Despite being cleaned, the C4 still includes significant content from websites favoring white 
supremacist thought(Dodge et al., 2021; “Inside the Secret List of Websites That Make AI like 
ChatGPT Sound Smart,” n.d.). The prospect of using models trained on this content to interpret 
human genetics data, bypassing human involvement, should be alarming.

Some of these dangers can be mitigated by moving towards open models where training sets 
are transparent, and by using curated trusted KB content via in-context cues. However, even 
with these measures, scientific interpretations derived from current LLMs should not be used in 
place of standard KB enrichment systems.

Conclusions
We investigated the ability of LLMs to perform gene set function summarization as compared to 
standard ontology-based gene set enrichment analyses. We compared different models and 
different sources of gene descriptions, and found that while the oldest models performed most 
poorly, the newer GPT-4 did not substantially outperform GPT-3.5 albeit using different input 
data (GO term summaries and gene names, respectively). Thus considering the latest model, 
when token length limits are controlled for, using precise ontological descriptors derived from 
high quality manual curation and vetted propagation methods outperforms either narrative 
descriptions or relying on the models’ latent KB. When compared against standard enrichment, 
the LLM-generated results are typically plausible, relevant, and largely free of hallucination. 
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However, the most precise and informative term is usually missed, likely reflecting the lack of an 
ability to generalize. The LLM approach also lacks statistical rigor, and the model is unable to 
natively provide p-values or reliable quantitative indicators of relevance of terms. Additionally, 
performance varies when genes are less well known, especially in the case of model organism 
genes. Results are also highly non-deterministic, with different terms found on different runs.  

Nevertheless, the results are impressive given the relative newness of instruction-based LLMs, 
and illustrate powerful textual manipulation and in-context capabilities. The ability to generate 
narrative summaries alongside term lists is compelling; however, there are substantial risks of 
hallucination and bias associated with this approach. Our results underscore the need for high 
quality up to date human-curated KBs to assist with the interpretation of scientific data.
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